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a b s t r a c t 

The ellipticity involved in the Deshpande–Fleck foam model describing the constitutive behaviour of cellular 

materials was usually considered to be constant, but some very different values were suggested in the literature. 

A cell-based finite element model of closed-cell foam under uni-/multi-axial compression is employed to verify 

the Deshpande–Fleck foam model. The ellipticity is determined by applying uniaxial and hydrostatic compression 

tests and it is found to vary with the equivalent plastic strain, i.e., the ellipticity decreases with the equivalent 

plastic strain and then increases sustainably before full densification. According to the understandings from the 

numerical results, a fitting relation between the ellipticity and the equivalent plastic strain is suggested. The 

ellipticities of an open-cell foam and a closed-cell foam studied experimentally in the literature are fitted well with 

this relation. A modification to the Deshpande–Fleck foam model with a variable ellipticity is thus proposed. The 

modified Deshpande–Fleck foam model brings much accurate predictions with using a rigid–plastic hardening (R- 

PH) idealisation model, which describes the stress–strain relation of cellular material under uniaxial compression. 

Good agreement is also observed between the experimentally measured stress–strain responses and the predictions 

of the modified Deshpande–Fleck foam model, especially when considering the effect of the plastic Poisson’s 

ratio with a non-associated flow rule. The findings herein are helpful to improve the prediction accuracy of the 

Deshpande–Fleck foam model. 
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. Introduction 

Cellular materials (e.g., metal foam) have been widely used in indus-

ry for their lightweight and superior energy absorption capability [1,

] . The stress–strain relation of cellular materials under uniaxial com-

ression can be described by several phenomenological models, such as

usch model [3, 4] , Hanssen model [5] , Liu model [6] and Avalle model

7] . Some stochastic constitutive models were developed to describe the

echanical responses of disordered cellular materials [8, 9] . However,

hese researches are focused mainly on the uniaxial compression be-

aviour of cellular materials. As cellular materials used in the engineer-

ng fields may be often subjected to complex loads, understanding the

echanical behaviours of cellular materials under multi-axial loading is

eneficial to their engineering design. 

Metal foams can yield under hydrostatic pressure due to their com-

ressibility, which is very different from that of dense metals. So, the

raditional theory of metal plasticity fails to extend to metal foams.

he mean stress should be considered to understand the constitutive

ehaviour of metal foams. Many yield criteria and subsequent yield sur-
∗ Corresponding author. 

E-mail address: zjzheng@ustc.edu.cn (Z. Zheng). 

w  

o  

ttps://doi.org/10.1016/j.ijmecsci.2018.11.028 

eceived 5 August 2018; Received in revised form 21 November 2018; Accepted 27 

vailable online 28 November 2018 

020-7403/© 2018 Elsevier Ltd. All rights reserved. 
aces were developed to describe the stress state of cellular material

nder complex loads. Some suggested forms of the relation between the

on Mises effective stress 𝜎e and the mean stress 𝜎m 

have been pro-

osed to describe the yield surface of cellular materials [1, 2, 10–14] .

wo kinds of commonly used yield functions are parabolic and elliptic.

A parabolic yield criterion was proposed by Gibson et al. [1, 2] 

e ∕ 𝜎pl + 0 . 81 𝜌
(
𝜎m ∕ 𝜎pl 

)2 = 1 , (1)

here 𝜎pl is the magnitude of the uniaxial compression plateau stress

nd 𝜌 the relative density of cellular material. This yield criterion is

nown as the GAZT model and it is only suitable for regular open-cell

oams especially without imperfection [15, 16] . An improved parabolic

ield function for metal foams was introduced by Miller [10] using the

odified Drucker–Prager yield criterion. The yield function was written

s 

e − 𝑏 𝜎m + 

𝑐 

𝑑 
𝜎2 m − 𝑑 = 0 , (2)

here b, c and d are three material parameters. The initial yield surface

f this model is in fact a translation of the GAZT yield surface on the
November 2018 
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Fig. 1. Yield surfaces for the Deshpande–Fleck foam model. 
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xis of mean stress 𝜎m 

, and the subsequent yield surfaces are controlled

y the equivalent plastic strain and the volumetric strain. 

A self-similar isotropic hardening model was developed for metal

oams by Deshpande and Fleck [11] . In this model, a popular elliptic

ield surface was proposed, written as 

 

𝜎2 e + 𝛼2 𝜎2 m − 

√ 

1 + ( 𝛼∕3 ) 2 𝑌 = 0 , (3)

here 𝛼 is the ellipticity of the ellipse representing the shape of the yield

urface and Y the uniaxial yield stress of the material. This yield surface

volves in a geometrically self-similar manner which is governed by the

quivalent plastic strain and it will be referred to as the Deshpande–

leck foam model or D–F model in the remaining discussion. Deshpande

nd Fleck [11] also proposed a more complex differential hardening

odel, assuming hydrostatic yield strength and shear strength evolve

ndependently. This differential hardening model has been rarely used

lthough it can describe the yield process better, because it requires

omplex characteristic experiments to determine the parameters of the

nitial and subsequent yield surfaces. 

Further considering the modified von Mises yield function of Drucker

nd Prager, Chen and Lu [12] introduced another elliptical yield func-

ion 

2 
e + 

(
𝛾2 + 𝐴 ( ̂𝜀 ) 

)
𝜎2 m − 𝐵( ̂𝜀 ) = 0 , (4)

here �̂� is the characteristic strain defined as �̂� = 

√ 

𝜀 2 e + 𝜀 2 v ∕ 𝛾2 , with von

ises effective strain 𝜀 e , volumetric strain 𝜀 v and elastic material param-

ter 𝛾. The evolution of the yield surface is governed by the characteris-

ic strain, and the variable material parameters A and B are both related

o the characteristic strain. 

The Deshpande–Fleck foam model attracts a lot of attention because

t can describe the response of metal foams under multi-axial loading

pproximately and it only has two parameters, i.e., the ellipticity 𝛼 and

he uniaxial yield stress Y . In the literature, the ellipticity 𝛼 was con-

idered as a constant in subsequent yield and the associated flow rule

as assumed. Recently, the initial elliptical yield surface of this model

as been verified by more and more experimental tests and numerical

imulations [16–22] . The Deshpande–Fleck foam model has also been

uccessfully applied to and widely used in some commercial finite ele-

ent softwares, see the crushable foam model with isotropic hardening

n ABAQUS and the Deshpande–Fleck foam model in LS-DYNA [23–26] .

wo typical measurements were conducted to probe the yield surface us-

ng a high pressure triaxial system by Deshpande and Fleck [11] , i.e.,

he specimen was pressurized to a level of axial strain and the pressure

as then decreased slowly until zero and the other was started at the

niaxial compression and slowly built up the pressure. 

The ellipticity involved in the Deshpande–Fleck foam model is not

asy to determine. It was taken as a constant as the shapes of yield

urfaces almost do not change with the axial strain for a primary loading

ath of uniaxial compression. Therefore, the ellipticity of the initial yield

urface is often used to replace the ellipticity of the subsequent yield

urface. However, the evolution of the yield surface in the Deshpande–

leck foam model is governed by the equivalent plastic strain defined

y the equivalent plastic work, which has contributions from both the

eviatoric plastic strain and the volumetric plastic strain. In fact, the

ield surface elongates along the axis of mean stress with the volumetric

train for a primary loading path of hydrostatic compression. So, it is

oubtful whether the ellipticity does not vary with the equivalent plastic

train. 

The ellipticity 𝛼 was considered to be dependent on the plastic Pois-

on’s ratio 𝜈p with an associated flow rule [11, 26] , written as 

2 = 

9 ( 1 − 2 𝜈p ) 
2 ( 1 + 𝜈p ) 

. (5)

This formula has been widely used. However, the plastic Poisson’s

atio, defined as the negative value of the ratio of the transverse and

xial logarithmic strain rates, is hard to measure and the experimental
332 
esults were scattered. So, significantly different values of the elliptic-

ty 𝛼 were suggested in the literature [11, 17, 20, 26] , even for iden-

ical metal foams produced by the same company. The associated flow

proved ” by the consistency of independently measured values of the

lastic Poisson’s ratio and the ellipticity is questionable [11] . Another

ormula was introduced by Vural and his co-workers [27–29] , i.e., 

2 = 

9 ( 1 − 2 𝜈) 
2 ( 1 + 𝜈) 

, (6)

here 𝜈 is the elastic Poisson’s ratio of foam. It is questionable to use

lastic parameters to characterize the plastic stage, although sometimes

his formula has a better approximation. 

Another way to determine the shape parameter ellipticity is based

n two chosen points on the ellipse [11, 19] , written as 

2 = 

9 𝜎2 0 
9 𝑝 2 0 − 𝜎2 0 

, (7)

here 𝜎0 and p 0 are the initial yield stress in uniaxial compression

nd in hydrostatic compression, respectively. This method is adopted

n ABAQUS [23] . However, the stress–strain curves of many foam sam-

les do not show a clear yield point, and the value of initial yield stress

annot be determined accurately in many practical cases. More impor-

antly, all of the methods mentioned above assume that the ellipticity

emains constant in successive yielding. In fact, the ellipticity 𝛼 is ob-

iously related to the material’s compressibility and the compressibility

aries with the plastic strain [26] . So, the ellipticity may be a variable

alue associated with the plastic strain. 

In this study, the ellipticity involved in the Deshpande–Fleck foam

odel is determined by virtual uni-/multi-axial compression tests us-

ng cell-based finite element models. A modified Deshpande–Fleck foam

odel is proposed by considering a variable ellipticity. A much accu-

ate material model is employed to describe the stress–strain relation of

ellular material under uniaxial compression. The modified Deshpande–

leck foam model is verified by cell-based finite element models. Some

xperimental data in the literature are taken for comparison to verify

he modified Deshpande–Fleck foam model with a non-associated flow

ule. 

. Constitutive models 

.1. The Deshpande–Fleck foam model 

The Deshpande–Fleck foam model assumes similar behaviours in

ompression and tension, as depicted in Fig. 1 . The D –F model is an

lliptic yield surface in the von Mises effective stress vs. mean stress

lane and assumes the ellipticity remains constant. In this study, com-

ression is taken as positive. The elliptic yield surface is centered at the

rigin in the 𝜎e –𝜎m 

stress plane and evolves in a self-similar manner

overned by the equivalent plastic strain. After comparing with other

ndependent variables, Deshpande and Fleck noted that the scheme of
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Fig. 2. A cell-based finite element model of (a) Voronoi foam, (b) uniaxial compression, (c) biaxial compression and (d) triaxial compression. 
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sing the equivalent plastic strain was found to give better agreement

ith the available experimental data, see the note in page 1272 of Ref.

11] . The equivalent plastic strain rate ̇̄𝜀 p is defined according to the

quivalent plastic work rate, i.e., 𝜎c ̇̄𝜀 
p = 𝜎𝑖𝑗 ̇𝜀 

p 
𝑖𝑗 

, where 𝜎c is the uniax-

al compression stress associated to current yield surface, 𝜎ij and �̇� 
p 
𝑖𝑗 

are

ensors of stress and plastic strain rate respectively with i, j = 1, 2, 3. The

lastic strain is assumed to be negligibly small in the present model, so

hat the total strain equals the plastic strain. In the following discussion,

̄ is adopted to represent the equivalent plastic strain. 

The elliptic yield function of the D –F model is defined as 

 

𝜎e 
2 + 𝛼2 𝜎m 

2 − 𝐹 = 0 , (8)

here F is the semi axis length of the yield ellipse on the 𝜎e -axis and

he shape parameter, i.e., ellipticity 𝛼, is defined as the aspect ratio of

he yield ellipse. The mean stress and the von Mises effective stress in

niaxial compression are { 𝜎m 

, 𝜎e } = { 𝜎c /3, 𝜎c }. Thus, the yield surface

an be re-written as Eq. (3) . For the low-density metal foams used in the

ollowing numerical simulations, 𝜎0 almost equals to p 0 , and thus leads

o 𝛼2 ≈9/8. However, when the plastic Poisson’s ratio is nearly zero, 𝛼2 

s 9/2 according to Eq. (5) , which illustrates Eq. (5) deduced from an

ssociated flow rule may be invalid. For this geometrically self-similar

odel, two loading scenarios are sufficient to determine all parameters.

eshpande and Fleck [11] also proposed a more sophisticated differ-

ntial hardening model whose yield surface elongates at different rates

long the hydrostatic and deviatoric axes. The evolution of this yield sur-

ace is governed by two parameters, which needs at least three different

oading scenarios to determine all parameters and the determination of

arameters requires iterative process. This differential hardening model

as been rarely used due to its complexity. The present study only re-

isits the self-similar model mentioned above. 

.2. Predictions of typical loadings 

The mean stress and the von Mises effective stress under a specific

oading condition can be expressed by 𝜎c according to the D–F model,

rovided the direction of multi-axial loading is known. The stress tri-

xiality, 𝜂 = 𝜎m 

/ 𝜎e [11] , is widely used to characterize the direction of

oading, ranging from 𝜂 = 1/3 for uniaxial compression to 𝜂→∞ for hy-

rostatic compression. From the D–F model with a specific value of 𝜂,

he von Mises effective stress and the mean stress can be calculated as 

 

 

 

 

 

𝜎e = 𝜎c 

√ 

1+ 𝛼2 ∕9 
1+ 𝜂2 𝛼2 

𝜎m = 𝜂𝜎c 

√ 

1+ 𝛼2 ∕9 
1+ 𝜂2 𝛼2 

. (9) 

It can be seen clearly that the uniaxial compression stress on the

ield surface is essential for the calculation of the mean stress and the

on Mises effective stress. Under hydrostatic compression, i.e., 𝜂→∞,
333 
ne has 𝜎e = 0 and 

m = 𝑝 = 𝜎c 

√ 

1 
𝛼2 

+ 

1 
9 
, (10)

here p is the value of hydrostatic pressure. 

.3. Uniaxial compression stress–strain relation 

Metal foams can absorb massive energy with large plastic deforma-

ion and in this process the elastic deformation may be ignored. For sim-

licity, metal foams are usually modelled as a rigid–plastic hardening

R-PH) idealisation. Recently, Zheng et al. [30] proposed a very simple

-PH model to describe the uniaxial compression behaviour of cellular

aterials, in which the nominal stress–strain relation is expressed as 

n = 𝜎n0 + 

𝐶 𝜀 n (
1 − 𝜀 n 

)2 , (11)

here subscript n denotes nominal, 𝜎n0 is the nominal initial crushing

tress and C the strain hardening parameter. The elastic strain is as-

umed to be negligibly small in the present model so that the axial total

train equals the axial plastic strain. It is easy to see that the equivalent

lastic strain is equal to the axial plastic strain in uniaxial compression.

o, in this case, we have 𝜀 = 𝜀 p = �̄� . The relation between the true (log-

rithmic) plastic axial strain 𝜀 and the nominal strain can be expressed

s 𝜀 = − ln(1 − 𝜀 n ). Then, the true stress–true strain relation can be ex-

ressed as 

c = 

𝜎n0 + 𝐶 

(
e 2 𝜀 − e 𝜀 

)[
1 + 𝜈p − 𝜈p exp ( − 𝜀 ) 

]2 . (12 ) 

It is considered that the true stress almost equals the nominal stress

ince there is no significant expansion of the cross section during the

ompression process of low-density foams [10, 16, 30–33] . So, the R-

H model can also be re-written approximately as 𝜎c = 𝜎n0 + C (e 2 𝜀 − e 𝜀 ).

here are only two material parameters in Eq. (11) and their values will

e determined by applying cell-based finite element method as follows.

. Numerical methods 

.1. Cell-based finite element model 

The 3D Voronoi technique was applied to generate random foams

n simulations, as done in Ref. [ 30 ]. Three random samples of Voronoi

tructures were used in this study to measure the scatter of samples.

umerical simulations of closed-cell foam under uni-/multi-axial com-

ression were implemented with finite element code ABAQUS/Explicit.

n this study, the specimen is a 30 ×30 ×30 mm 

3 cube with 1200 nu-

lei and the irregularity is 0.4, see Fig. 2 (a). The cell-wall thickness of

he specimen is uniform and is dependent on the relative density 𝜌 of

he specimen, e.g., the relative density of the specimen is set as 0.1
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Uniaxial compression  Equi-biaxial compression   Hydrostatic compression 
(b)

5 mm5 mm5 mm
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(a) V

5 mm 5 mm 5 mm

Fig. 3. Cross-sectional deformable patterns of foam specimens under three typical compressive loads when nominal volumetric strain is (a) 𝜀 nv = 0.2 and (b) 𝜀 nv = 0.4. 

Fig. 4. Variations of the maximum principal stress of foam specimens under three typical compressive loads with (a) the true volumetric strain and (b) the true 

equivalent plastic strain. 
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nd cell-wall thickness is about 0.0993 mm. Different relative densities

f specimens with similar mesostructures can be obtained by changing

he cell-wall thickness of a generated Voronoi structure. The cell walls

re meshed with hybrid shell elements of types S4R and S3R and the

haracteristic size of shell elements is set to be about 0.3 mm through a

esh sensitivity study [30] . Shell elements with sharp angles are elim-

nated for saving computer time and finally the specimens used has

bout 274,000 shell elements, including about 60,000 S3R elements

nd 214,000 S4R elements. The matrix material aluminium is taken to

e rate-independent, elastic–linear plastic hardening and the material

arameters of density 𝜌s = 2700 kg/m 

3 , Young’s modulus E = 70 GPa,

oisson’s ratio 𝜈 = 0.33, yield stress 𝜎ys = 80 MPa and Tangent modulus

 = 30 MPa respectively, in which the virtual uniaxial compression ex-
tan 

334 
erimental data of the 3D Voronoi foam agreed well with the uniaxial

ompression experimental data [15]. 

A pair of rigid plates is employed on the top and bottom of a

oam specimen to apply quasi-static uniaxial compression, as shown in

ig. 2 (b). A rigid plate is fixed, while the other one moves with a con-

tant velocity of 10 m/s, perpendicular to the fixed rigid plate. Two pairs

f rigid plates are employed to apply biaxial compression, as depicted in

ig. 2 (c). Similarly, three pairs of rigid plates are used for triaxial load-

ng, as shown in Fig. 2 (d). In one direction of every pair of rigid plates,

ne plate is fixed, while the other moves with a constant velocity. The

peed of moving rigid plate is no more than 10 m/s, which ensures the

tress balance between the support end and the loading end of each di-

ection during the whole loading process. General contacts were applied
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Fig. 5. Variations of the plastic Poisson’s ratios with the nominal strain for foam 

specimens having different relative densities. 
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o all possible contact, with a friction coefficient of 0.2 between shell

lements and without friction between rigid plates and the foam. Dis-

lacement controlled loading is applied in numerical simulations. This

ontrolled loading method is also recommended to experimental tests,

lthough it is hard to realize, as the stress controlled loading may cause

nhomogeneous overall deformation, e.g., see Fig. 13 in Ref. [5] . 

.2. Deformation patterns under uniaxial, equi-biaxial and hydrostatic 

ompression 

Uniaxial, equi-biaxial and hydrostatic compressions of a foam spec-

men with a relative density of 0.1 are selected as three typical loading

cenarios here. The speed of moving rigid plates is 10 m/s and the image

f an identical middle section is used to represent deformation charac-

eristics. Different deformation patterns are observed under uniaxial,

iaxial and triaxial compressions, as shown in Fig. 3 . At the very begin-

ing of the three loading scenarios, the deformation all starts from the

lace close to the rigid plates, which is because the cut cells are weaker

han the complete ones. With the continuation of compression, e.g. when

ominal volumetric strain 𝜀 = 0.2, it can be seen from Fig. 3 (a) that
nv 

ig. 6. (a) Nominal stress–strain relations for the Voronoi models with different relat

odel. 

335 
he deformation consists of randomly distributed shear collapse bands in

niaxial compression, as reported in Ref. [30] . Under multi-axial com-

ression, however, the shear collapse bands are concentrated near the

igid plates and they form a circular feature in deformation. The in-

ersecting of shear collapse bands may strength the foam specimen to

lock further local deformation. When the macroscopic deformation in-

reases, more shear collapse bands are observed under uniaxial com-

ression while the circular shear band disappears under equi-biaxial and

ydrostatic compressions. The existence of rigid plates hinders the free

evelopment of shear collapse bands and makes the whole specimen in

 more uniform deformation state, as shown in Fig. 3 (b). Shear collapse

ands are induced by the deformation of surrounding relatively weak

ells due to minimal energy consumption, and the maximum principal

tress is dependent on the strength of the weakest links. Another obvious

ifference between multi-axial and uniaxial compressions is that almost

ll the cell walls are bent under multi-axial compression, but only the

ell walls near the shear bands are bent under uniaxial compression. It

ndicates that the deformation under multi-axial compression tends to

e much homogeneous. Under uniform deformation, the ability to resist

eformation of relatively weak cells is averaged by the strong cells, so

he whole specimen shows a higher ability to resist deformation. The

ore rigid plates there are, the more uniform the deformation of the

pecimen. That may be the deformation mechanisms to the maximum

rincipal stress of hydrostatic compression larger than the equi-biaxial

ompression which is larger than the uniaxial compression when tak-

ng the true volumetric strain as an independent variable, as shown in

ig. 4 (a). As a comparison, the maximum principal stress by taking the

rue equivalent plastic strain as an independent variable is shown in

ig. 4 (b). 

Uniaxial compression Equi-biaxial compression Hydrostatic com-

ression 

The plastic Poisson’s ratio of foam specimens under uniaxial com-

ression, which is defined as the negative ratio of the transverse loga-

ithmic strain rate to the axial logarithmic strain rate [11] , is found to

e very small, as illustrated in Fig. 5 . So, the plastic Poisson’s ratio is

ssumed to be zero in the analysis of the numerical simulations. 

.3. Fitting parameters for the R-PH model 

The nominal stress–strain data of the foam specimens with differ-

nt relative densities under virtual uniaxial compression were used to

t the R-PH model. It is found that the R-PH model can fit the quasi-

tatic nominal stress–strain relation very well, as shown in Fig. 6 (a). It
ive densities under uniaxial compression and (b) fitting parameters of the R-PH 
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Fig. 7. Predictions of hydrostatic pressure using different values of the elliptic- 

ity 𝛼. 

Fig. 8. A schematic diagram of ellipse fitting for three different samples with 

the equivalent plastic strains of 0, 1.2, 1.7 and 2.0. 

s  

a  

a  

s  

h  

t

 

f  

b{
 

w  

m  

h  

E

4

4

 

t  

i  

l  

w  

a  

o  

i  

s  

w

4

 

l  

d  

a

i  

i  

Fig. 9. Fitting of 𝛼2 determined by (a) 

336 
hould be noted that in the fitting process the two material parameters

re determined as follows. The initial crush stress 𝜎n0 is obtained by the

verage of stress in a small plastic strain range of the initial crushing

tage, here up to a nominal plastic strain of 0.2 is considered. The strain

ardening parameter C is determined by applying the least squares fit-

ing technique. 

The two material parameters of the R-PH model, 𝜎n0 and C , were

ound both related to the relative density of cellular material and can

e expressed in the form of a power exponent [34] , written as 

 

𝜎n0 ( 𝜌) = 𝜎ys ⋅ 𝑘 1 𝜌
𝑛 1 

𝐶( 𝜌) = 𝜎ys ⋅ 𝑘 2 𝜌
𝑛 2 

. (13)

here 𝜎ys is the yield stress of matrix material, k 1 , k 2 , n 1 and n 2 are

aterial parameters. By fitting the initial crushing stress and the strain

ardening parameter of different relative densities in Fig. 6 (b) with

q. (13) , we obtain k 1 = 0.963, n 1 = 1.32, k 2 = 0.141 and n 2 = 1.39. 

. Results and discussion 

.1. A typical example with constant values of the ellipticity 

Under hydrostatic compression, i.e., when 𝜂→∞, the mean stress is

he value of hydrostatic pressure which can be deduced from Eq. (10) us-

ng the known uniaxial stress–strain relation. Different values of the el-

ipticity 𝛼, i.e., 𝛼2 = 4.5, 2.7 and 1.1, are obtained from Eqs. (5) – (7)

ith using the plastic Poisson’s ratio 𝜈p = 0, the Poisson’s ratio 𝜈 = 0.15

nd the relation of 𝜎0 = p 0 , respectively. Predictions using these values

f the ellipticity 𝛼 for a foam specimen with a relative density of 0.1 are

llustrated in Fig. 7 . It transpires that all the results do not provide any

atisfactory prediction. This suggests a variable value of the ellipticity

ith the equivalent plastic strain, as discussed later. 

.2. A modified relation of the ellipticity 

A more accurate ellipticity 𝛼 can be calculated by fitting the yield el-

ipse. The mean stress and the von Mises effective stress obtained from

ifferent loading scenarios in the cell-based finite element simulations

re fitted to the ellipse standard equation, and then the ellipticity 𝛼

s determined. Seven different loading scenarios are concerned, includ-

ng two cases of proportional loading, i.e., uniaxial compression with
complete fitting and (b) Eq. (16) . 
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Fig. 10. Variations of the square of ellipticity 𝛼2 for Sample 1 having different relative densities with (a) the true equivalent plastic strain and (b) the nominal 

equivalent plastic strain. 

Fig. 11. Variations of the square of ellipticity 𝛼2 for three different samples having a relative density of 0.05 with (a) the true equivalent plastic strain and (b) the 

nominal equivalent plastic strain. 

𝜂  

p  

v  

0  

0  

o  

l  

m  

o

 

o  

a

 

d  

c  

f  

t  

e  

t  

p  

A  

fi  

i

𝛼  

 

i  

b

 

l  

e  

a  

i

= 1/3 and hydrostatic compression with 𝜂→∞, and five cases of non-

roportional loadings in which 𝜂 is not constant, and the ratios of the

elocities in the three principal stress directions are -:0:5, -:2:5, 0:0:5,

:1:5 and 1:3:5, where “- ” represents a free end (without constraint) and

 is a fixed constraint end. For example, -:0:5 and 0:0:5 are two kinds

f passive multi-axial tests, i.e., one-side-displacement constrained and

ateral-displacement constrained compression which are easy to imple-

ent [35] . Three different samples are employed to consider the scatter

f samples. 

As shown in Fig. 8 , the mean stress and the von Mises effective stress

f different loading scenarios are fitted by the ellipse standard equation

t different true equivalent plastic strains of 0, 1.2, 1.7 and 2. 

The variation of 𝛼2 with the true equivalent plastic strain is indepen-

ent of random sampling and the results show that 𝛼2 is obviously not a

onstant, as depicted in Fig. 9 (a). The square of ellipticity, 𝛼2 , obtained

rom elliptic equation fitting, is originally close to 9/8, which means

he deformation of three orthogonal directions indeed does not affect
337 
ach other at the very beginning, i.e., the plastic Poisson’s ratio is equal

o zero approximately. It decreases with the increase of the equivalent

lastic strain and then increases sustainably before full densification.

ccording to the variation characteristics of 𝛼2 , it is assumed that the

tting equation consists of three terms: an exponential term (decreas-

ng), a quadratic term (increasing) and a constant term, i.e., 

2 = 𝑏 1 e − 𝑏 2 ̄𝜀 + 𝑏 3 ̄𝜀 
2 + 𝑏 4 . (14)

Fitting Eq. (14) with the data averaging of the three samples

n Fig. 9 (a), we obtain b 1 = 3.342, b 2 = 0.3977, b 3 = 0.5242 and

 4 = − 2.035. 

According to the definition of isotropic ellipse yield surface, the el-

ipticity can also be determined by any two asymmetrical points of the

llipse, i.e., 𝛼2 can be determined by any two loading cases { 𝜎m1 , 𝜎e1 }

nd { 𝜎m2 , 𝜎e2 } associated with the same true equivalent plastic strain

n the absence of a large amount of experimental data, written as 
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Fig. 12. Predictions of pressure under hydrostatic compression according to the 

D–F model and modified D–F model. 
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Fig. 13. Predictions of the maximum principal stress by the D–F model and the 

modified D–F model when the velocity ratio of three principal stress directions 

is 5:5:0. 
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2 = 

𝜎2 e2 − 𝜎2 e1 

𝜎2 m1 − 𝜎2 m2 

. (15)

In particular, 𝛼2 can be calculated according to 

2 = 

9 𝜎2 c 
9 𝑝 2 − 𝜎2 c 

, (16)

hen applying loading scenarios of uniaxial compression { 𝜎m1 ,

e1 } = { 𝜎c /3, 𝜎c } and hydrostatic compression { 𝜎m2 , 𝜎e2 } = { p , 0}. This

s the simplest way to determine 𝛼2 experimentally. Compared to any

ther two loading scenarios, the value of 𝛼2 calculated using Eq. (16) has

 smaller error, since the two points of uniaxial compression and hydro-

tatic compression have the farthest distance in the von Mises effective

tress vs. mean stress plane. In fact, Eq. (7) , which has been used widely

o calculate 𝛼2 , is the special case of Eq. (16) when using the initial

ield stresses in uniaxial and hydrostatic compressions. The calculated

alues of 𝛼2 from Eq. (16) (based only on data from uniaxial and hydro-

tatic compressions, hereafter refers as two-point fitting) and the results

rom ellipse fitting (based on all data from different loading conditions,
ig. 14. Stress–strain relations of closed-cell and open-cell foams under (a) uniax

xtracted from Ref. [36] . 
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ereafter refers as complete fitting) are shown in Fig. 9 (b) and (a), re-

pectively. A comparison shows that the two-point fitting is a good ap-

roximation of the complete fitting, as illustrated in Fig. 9 (b). Fitting

q. (14) with the data in Fig. 9 (b) leads to 

2 = 2 . 496 e −0 . 5790 ̄𝜀 + 0 . 4314 ̄𝜀 2 − 1 . 252 . (17)

The values of 𝛼2 calculated from Eq. (16) with different relative den-

ities are shown in Fig. 10 by taking the true equivalent plastic strain

r the nominal equivalent plastic strain as an independent variable. It

s found that the relative density has a negligible effect on 𝛼2 for Sam-

le 1. The ellipticity is almost constant when the true equivalent plastic

train is very large for Sample 1 with a relative density of 0.05. This is

esulted from the scatter of samples, since other two selected samples

t with Eq. (17) well, as shown in Fig. 11 . Although different samples

ay produce different results, the scope of strain with almost constant

llipticity is very small, as illustrated in Fig. 10 (b) with taking the nom-

nal equivalent plastic strain as an independent variable. Ignoring this

nimportant small area, we can obtain a very simple but well approxi-
ial compression and (b) hydrostatic compression. The experimental data are 
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Fig. 15. Values of 𝛼2 of two kinds of foams in Ref. [36] . 
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ated equation. In the following, Eq. (17) will be used for the sake of

implification. 

According to Eq. (10) , the pressure under hydrostatic compression

an be obtained with using the uniaxial stress and the ellipticity. In

he D–F model, a constant 𝛼2 = 9/8 and scattered data get from uni-

xial compression of the cell-based finite element model are used. In

he modified D–F model, we use the R-PH model to replace the uni-

xial stress–strain relation of scattered points. Two curves of 𝛼( ̄𝜀 ) are

onsidered to replace a fixed value of 𝛼. One is obtained by the com-

lete fitting method and the other is by the two-point fitting method

 Eq. (17) ), which correspond to the modified D–F model 1 and 2 in

ig. 12 respectively. The nominal equivalent strain is obtained through

oordinate transformation and details will be given in Section 4.3 . 

The pressure under hydrostatic compression predicted by the D–

 model and the modified D–F model using the uniaxial compres-

ion stress–strain relation are compared with the virtual experiment in

ig. 12 . The results show that the prediction of D–F model has a good

greement with the virtual experimental data when the strain is less than

bout 0.3, while the prediction is getting bad when the strain increases.

he prediction is improved in the densification stage. The results also
ig. 16. Predictions of axial stress of (a) the closed-cell foam and (b) the open-cell f

nd the modified D–F model. 

339 
how that the prediction of modified D–F model considering a variable

have a better agreement with the results obtained from virtual ex-

eriments, no matter which 𝛼2 curve is adopted. This suggests, on the

ther hand, that Eq. (17) can replace the complete fitting method in

etermining the ellipticity. The following analysis with the modified –F

odel will all use the variable ellipticity determined by uniaxial and

ydrostatic compressions (the two-point fitting method). 

.3. Verification of virtual experiments 

The three most important factors in plastic constitutive relation are

he yield condition, hardening law and flow rule. It is no need to con-

ider the flow rule here because the principal stress and principal strain

f three directions can all be obtained from the cell-based finite ele-

ent method. The modified D–F model using a variable 𝛼 described in

ection 4.2 is adopted here. The hardening law is characterized by the

uasi-static stress–strain relation. 

The quasi-static stress–strain relations under uniaxial compression

ere obtained by the virtual experiment, as described in Section 3.2 .

ll data in this paper are processed based on the true stress–strain re-

ation. The nominal stress–strain relation can be converted to the true

tress–strain relation as described below. Under uniaxial compression,

he true stress is assumed to be equal to the nominal stress and the ax-

al true plastic strain can be obtained by the relation between nominal

train and true (logarithmic) strain that 𝜀 = − ln(1 − 𝜀 n ), when neglect-

ng the elastic behaviour and the small lateral expansion. In order to be

onsistent with the traditional nominal stress–strain relation, the coor-

inate transformation of the final result is carried out. The coordinate

ransformation does not change the scale of y -axis, but only converts

he true strain to the so-called nominal strain with 𝜀 n = 1 − exp( − 𝜀 ) on

he x -axis. Then, the true stress–true equivalent plastic strain relation be-

omes the true stress–nominal equivalent plastic strain, like Figs. 12 and

13 . 

Considering a special proportional compression case, i.e.,

11 : 𝜎22 : 𝜎33 = k: k :1 ( k > 1), we have stress triaxiality parameter

= (2 k + 1)/(3 k − 3) and 𝜎e = ( k − 1) 𝜎33 = ( k − 1)/ k 𝜎11 . The maximum

rincipal stress 𝜎1 ( ̄𝜀 ) can be determined by 

1 = 

𝑘 

𝑘 − 1 
𝜎e = 

𝑘 𝜎c 
𝑘 − 1 

√ 

1 + 𝛼2 ∕9 
1 + 𝜂2 𝛼2 

. (18)

Eq. (18) also applies to the situation when 𝜎11 : 𝜎22 : 𝜎33 = k :1:1, be-

ause it happens that 𝜎 = ( k − 1) 𝜎 too. In fact, Eq. (18) is also appli-
e 33 

oam under proportional compression ( 𝜂 = 2) from the D–F model with 𝛼2 = 0.8 
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Fig. 17. (a) Predictions of axial stress of the open-cell foam with different plastic Poisson’s ratios and (b) the relative square error. 
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able for the cases of non-proportional loadings, as long as k and 𝜂 are

ot constants but values vary with strain. 

Consider a loading situation when the ratio of the velocity of three

rincipal directions is 5:5:0, which corresponds to a special loading case

n experiment that the whole specimen is loaded under a liquid pressure

hile the axial displacement is constrained to be zero. The ratio of three

rincipal stresses is 𝜎1 : 𝜎2 : 𝜎3 = k: k :1 ( k > 1), and the maximum principal

tress 𝜎1 can be determined by Eq. (18) . Three different relative densities

re compared here, i.e., 0.05, 0.1 and 0.15. The D–F model uses scattered

niaxial data and constant 𝛼2 = 9/8. The modified D–F model adopts the

-PH model to replace scattered uniaxial stress–strain relation and uses

he variable ellipticity in Eq. (17) to replace the constant 𝛼2 = 9/8. 

The predictions of the maximum principal stress by the two models

re shown in Fig. 13 . It can be seen that both the D–F model and mod-

fied D–F model can describe the initial stage and densification stage

ell, but the modified D–F model has a better prediction in the strain

ange of 0.2 to 0.7. This again verifies that 𝛼 should not be a fixed value.

.4. Verification of experiments 

Three kinds of experiments, i.e., uniaxial compression, hydrostatic

ompression and proportional compression, were conducted by Wang

t al. [36] . Two kinds of foams were used: one is a closed-cell foam with

 relative density of 0.14 and the other is an open-cell foam with a rel-

tive density of 0.41. Uniaxial compression tests were performed with

 material test system (MTS 810.23, University of Science and Tech-

ology of China) lubricated by the MoS 2 . Hydrostatic compression tests

nd proportional compression tests were conducted using a Shimadzu

HF-UG digital hydraulic pressure servo 3D test machine (China Univer-

ity of Mining and Technology (Beijing)). The specimens were separated

rom the oil wrapped by Teflon film to avoid the influence of the outside

oles. 

For a stress–strain curve with no apparent yield point, the yield

oint is defined at 0.3% axial plastic strain [11] , and the uniaxial

ield strength 𝜎0 are 2.4 MPa and 6.3 MPa for the closed-cell foam and

pen-cell foam, respectively. It is confirmed that the selection of ini-

ial crushing stress at other axial plastic strain (0.2% or 0.4%) does

ot substantially modify the predictions. The uniaxial stress–strain rela-

ion and the hydrostatic pressure–volumetric strain curve are plotted in

ig. 14 . The square of ellipticity, 𝛼2 , calculated from Eq. (16) is plotted

n Fig. 15 which is obviously not constant no matter for the closed-cell

oam or the open-cell foam. It is found that 𝛼2 of the closed-cell foam

ecreases in the form of an approximate exponential function, while 𝛼2 
340 
f the open-cell foam first decreases with the increase of the equivalent

lastic strain and then increases. Although the microstructure of the ex-

erimental foams may be not same with the Voronoi structure used in

nite element simulations, the variation characteristics of ellipticity are

ery similar to that of the Voronoi model mentioned above. So, we also

ake Eq. (14) to fit 𝛼2 . The fitting equations are 

2 = 0 . 4559 e −6 . 937 ̄𝜀 + 0 . 09550 ̄𝜀 2 + 0 . 4011 (19)

nd 

2 = 0 . 3961 e −53 . 65 ̄𝜀 + 0 . 8710 ̄𝜀 2 + 0 . 4851 , (20)

or the closed-cell and open-cell foam, respectively, as shown in Fig. 15 .

The uniaxial compressive stress–strain data presented in Ref.

36] are some deficiencies, which are lack the data of hardening stage.

hus, it is not sufficient to fit the R-PH model and we will compare the

esults in the true stress–strain coordinates using the scattered data in

he uniaxial compression tests. 

The axial stress 𝜎11 , i.e., the maximum principal stress, under pro-

ortional compression can be deduced from the known uniaxial stress–

train relation, the ellipticity and the stress triaxiality with Eq. (18) . The

tress triaxiality is 𝜂 = 2 in the proportional compression test. The results

re depicted in Fig. 16 . 

Comparisons between the experimental results in Ref. [36] and the

redictions with the D –F model using 𝛼2 = 0.8 and the modified D–F

odel show that using the modified D–F model with a variable elliptic-

ty 𝛼 results in a better agreement, as shown in Fig. 16 . It is also noted

hat the predictions of the modified D –F model deviate from the exper-

mental data when the strain becomes larger than about 0.3, especially

or the open-cell foam with a relative density of 0.41. This may be due to

he effect of the plastic Poisson’s ratio, which becomes significant when

he foam has a high relative density. 

.5. Further correction with the plastic Poisson’s ratio 

As shown in Appendix A , the plastic strain components can be de-

ived from the plastic flow potential which is related to the plastic Pois-

on’s ratio. However, the previous research is based on the assumption

hat the plastic Poisson’s ratio is zero. This assumption may be unac-

eptable when the relative density of metal foams is high. 

The variation of normalised maximum axial stress with axial plastic

train ( 𝜎11 / 𝜎0 –𝜀 11 ) obtained experimentally in Ref. [36] is compared

ith predictions of the modified D–F model using different values of

lastic Poisson’s ratios, as shown in Fig. 17 (a). The relative square error
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, defined as 𝛿 = 

𝑛 ∑
1 
( ( 𝜎11 ( 𝑖 ) − 𝜎1 ( 𝑖 ) )∕ 𝜎1 ( 𝑖 ) ) 2 ∕ 𝑛 , is used to evaluate the in-

uence of plastic Poisson’s ratio, where the number of scattered points

s n = 1000 and 𝜎1 is the experimental value. It is obvious that the plastic

oisson’s ratio has a great influence on the prediction error of the open-

ell foam, as illustrated in Fig. 17 (b). It can be seen that the prediction

rror will be smaller than that when the plastic Poisson’s ratio is taken

s zero, provided the measured plastic Poisson’s ratio is between 0 and

.4 which is almost sure for metal foams. The results also show that the

rediction error is the smallest when the plastic Poisson’s ratio is about

.27. Although the plastic Poisson’s ratio was not given in Ref. [36] and

here are lack of other experimental data for open-cell aluminium foams

ith a high relative density in the literature, a variable plastic Poisson’s

atio is recommended as 𝜈p = 0.278 − 0.409 𝜀 p in Ref. [37] . Hence, when

onsidering the influence of the plastic Poisson’s ratio, a much better

rediction can be obtained. It also indicates that it is necessary to mea-

ure the plastic Poisson’s ratio in experiments. 

. Conclusions 

The self-similar isotropic hardening model developed by Deshpande

nd Fleck [11] has been widely used to describe the constitutive be-

aviour of metal foams because it is very simple with only two param-

ters (the ellipticity 𝛼 and the uniaxial yield stress Y ). Cell-based finite

lement models based on 3D Voronoi technique were used to verify this

odel in this study. 

Seven different loading scenarios, including uniaxial, biaxial and tri-

xial compressions, are carried out numerically with finite element code

BAQUS/Explicit. The ellipticity is obtained by fitting the results of nu-

erical simulations with the ellipse standard equation. It is found that

he ellipticity varies with the equivalent plastic strain. The data of uni-

xial and hydrostatic compression tests were used to determine approxi-

ately the ellipticity 𝛼. A fitting relation Eq. (14) between the ellipticity

nd the equivalent plastic strain is suggested. The ellipticity 𝛼 is found

o be independent of the relative density of cellular material. 

The uniaxial stress–strain relation is fitted well with using the R-

H model. A modification to the Deshpande–Fleck foam model with

 variable value of ellipticity is suggested. The modified Deshpande–

leck foam model provides a satisfactory prediction of the post-yield

ehaviour of the cell-based finite element model of foam with using the

ariable ellipticity and the R-PH model. 

The ellipticity 𝛼 determined experimentally by uniaxial compression

ests and hydrostatic compression tests is not constant. Good agreement

s also observed between the experimentally measured stress–strain re-

ponses and the predictions of the modified Deshpande–Fleck foam

odel using a non-associated flow rule. The prediction becomes bet-

er when considering the effect of the plastic Poisson’s ratio. It is im-

ortant to measure the plastic Poisson’s ratio to determine the plastic

ow potential accurately. Further study is required to measure the plas-

ic Poisson’s ratio effectively, or calculate the plastic Poisson’s ratio by

ome characteristic experiments. 
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ppendix A. A plastic flow rule and the equivalent plastic strain 

Inspired by the modified von Mises yield function of Drucker and

rager, the plastic flow potential has been proposed [11, 23, 38] 

= 

√ 

𝜎e 
2 + 𝛽2 𝜎m 

2 , (A.1)
341 
here 𝛽 represents the shape of the plastic flow potential in the von

ises effective stress vs. mean stress ( 𝜎e –𝜎m 

) plane. 

The plastic strains are assumed to be normal to the flow potential Φ,

ritten as 

 𝜀 𝑖𝑗 = d 𝜆 𝜕Φ
𝜕 𝜎𝑖𝑗 

, (A.2)

here d 𝜆 is the non-negative plastic flow multiplier. In a typical

roportional loading case, the ratio of three principal stresses is

11 : 𝜎22 : 𝜎33 = k :1:1 ( k > 1, marked as case I), then the ratio of radial and

xial strain rates is given by 

d 𝜀 22 
d 𝜀 11 

= 

𝜕 Φ∕ 𝜕 𝜎22 
𝜕 Φ∕ 𝜕 𝜎11 

= 

( 1 − 𝑘 ) + 2 𝛽2 ( 𝑘 + 2 ) ∕9 
2 ( 𝑘 − 1 ) + 2 𝛽2 ( 𝑘 + 2 ) ∕9 

. (A.3)

Under uniaxial loading, i.e., k →∞, Eq. ( A.3 ) is simplified to 

d 𝜀 22 
d 𝜀 11 

= − 

1 − 2 𝛽2 ∕9 
2 
(
1 + 𝛽2 ∕9 

) . (A.4)

For large deformation, the plastic Poisson’s ratio 𝜈p is defined as

he negative ratio of the transverse logarithmic strain rate to the axial

ogarithmic strain rate [11] , written as 

p = − 

�̇� 22 
�̇� 11 

= − 

d 𝜀 22 
d 𝜀 11 

. (A.5)

Combining Eq. ( A.4 ) with Eq. ( A.5 ) leads to 

2 = 

9 ( 1 − 2 𝜈p ) 
2 ( 1 + 𝜈p ) 

. (A.6) 

The plastic flow rule is non-associated if only the value of 𝛽 is not

he same as the ellipticity 𝛼 of yield function. In general, the plastic flow

s not associated to the yield function, thus independent calculations of

he ellipticity of yield function and the plastic Poisson’s ratio are allowed

13, 14, 23] . For many low-density foams, the plastic Poisson’s ratio is

lose to zero, which corresponds to 𝛽 ≈2.12 as mentioned above. 

The 𝜎11 –�̄� relation can be converted to the 𝜎11 –𝜀 11 relation, which

s more convenient in comparison with the experimental results. On the

asis of the definition of equivalent plastic work, the work conjugate

train rate, i.e., the equivalent plastic strain rate, can be explicitly ex-

ressed as [11] 

̇̄
 = 

√ √ √ √ 

( 

1 + 

𝛼2 

9 

) 

( 

�̇� 2 e + 

�̇� 2 v 

𝛼2 

) 

, (A.7)

here �̇� e = 

√
( 2∕3 ) ̇𝜀 𝑖𝑗 ̇𝜀 𝑖𝑗 is the von Mises effective strain rate and �̇� v =

̇  𝑘𝑘 the volumetric plastic strain rate. For case I, by combining Eq. ( A.3 )

ith 𝜂 = 𝜎m 

/ 𝜎e , Eq. ( A.7 ) can be re-written as 

̇  11 = 

𝛼( ̄𝜀 ) 
(
1 + 𝛽2 𝜂∕3 

)√ (
1 + 𝛼2 ( ̄𝜀 )∕9 

)(
𝛼2 ( ̄𝜀 ) + 𝛽4 𝜂2 

) ̇̄𝜀. (A.8) 

Integrating Eq. ( A.8 ) with respect to time and considering 𝜀 11 = 0 and

̄ = 0 at time t = 0, we can obtain the relation between 𝜀 11 and �̄� . Then,

11 –𝜀 11 and 𝜎11 –�̄� can be converted to each other. 
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