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The ellipticity involved in the Deshpande-Fleck foam model describing the constitutive behaviour of cellular
materials was usually considered to be constant, but some very different values were suggested in the literature.
A cell-based finite element model of closed-cell foam under uni-/multi-axial compression is employed to verify
the Deshpande-Fleck foam model. The ellipticity is determined by applying uniaxial and hydrostatic compression
tests and it is found to vary with the equivalent plastic strain, i.e., the ellipticity decreases with the equivalent
plastic strain and then increases sustainably before full densification. According to the understandings from the
numerical results, a fitting relation between the ellipticity and the equivalent plastic strain is suggested. The
ellipticities of an open-cell foam and a closed-cell foam studied experimentally in the literature are fitted well with
this relation. A modification to the Deshpande-Fleck foam model with a variable ellipticity is thus proposed. The
modified Deshpande—Fleck foam model brings much accurate predictions with using a rigid—plastic hardening (R-
PH) idealisation model, which describes the stress—strain relation of cellular material under uniaxial compression.
Good agreement is also observed between the experimentally measured stress-strain responses and the predictions
of the modified Deshpande-Fleck foam model, especially when considering the effect of the plastic Poisson’s
ratio with a non-associated flow rule. The findings herein are helpful to improve the prediction accuracy of the
Deshpande—Fleck foam model.

1. Introduction

Cellular materials (e.g., metal foam) have been widely used in indus-
try for their lightweight and superior energy absorption capability [1,
2]. The stress-strain relation of cellular materials under uniaxial com-
pression can be described by several phenomenological models, such as
Rusch model [3, 4], Hanssen model [5], Liu model [6] and Avalle model
[7]. Some stochastic constitutive models were developed to describe the
mechanical responses of disordered cellular materials [8, 9]. However,
these researches are focused mainly on the uniaxial compression be-
haviour of cellular materials. As cellular materials used in the engineer-
ing fields may be often subjected to complex loads, understanding the
mechanical behaviours of cellular materials under multi-axial loading is
beneficial to their engineering design.

Metal foams can yield under hydrostatic pressure due to their com-
pressibility, which is very different from that of dense metals. So, the
traditional theory of metal plasticity fails to extend to metal foams.
The mean stress should be considered to understand the constitutive
behaviour of metal foams. Many yield criteria and subsequent yield sur-

* Corresponding author.
E-mail address: zjzheng@ustc.edu.cn (Z. Zheng).

https://doi.org/10.1016/j.ijmecsci.2018.11.028

faces were developed to describe the stress state of cellular material

under complex loads. Some suggested forms of the relation between the

von Mises effective stress o, and the mean stress o, have been pro-

posed to describe the yield surface of cellular materials [1, 2, 10-14].

Two kinds of commonly used yield functions are parabolic and elliptic.
A parabolic yield criterion was proposed by Gibson et al. [1, 2]

2
O'e/ap1+0.81p(0'm/0'pl) =1, [€))

where oy, is the magnitude of the uniaxial compression plateau stress
and p the relative density of cellular material. This yield criterion is
known as the GAZT model and it is only suitable for regular open-cell
foams especially without imperfection [15, 16]. An improved parabolic
yield function for metal foams was introduced by Miller [10] using the
modified Drucker-Prager yield criterion. The yield function was written
as

cre—bam+§6r2n—d=0, 2)
where b, c and d are three material parameters. The initial yield surface
of this model is in fact a translation of the GAZT yield surface on the
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axis of mean stress o ;,, and the subsequent yield surfaces are controlled
by the equivalent plastic strain and the volumetric strain.

A self-similar isotropic hardening model was developed for metal
foams by Deshpande and Fleck [11]. In this model, a popular elliptic
yield surface was proposed, written as

V02 +a%cl — /1 +(a/3)’Y =0,

where « is the ellipticity of the ellipse representing the shape of the yield
surface and Y the uniaxial yield stress of the material. This yield surface
evolves in a geometrically self-similar manner which is governed by the
equivalent plastic strain and it will be referred to as the Deshpande-
Fleck foam model or D-F model in the remaining discussion. Deshpande
and Fleck [11] also proposed a more complex differential hardening
model, assuming hydrostatic yield strength and shear strength evolve
independently. This differential hardening model has been rarely used
although it can describe the yield process better, because it requires
complex characteristic experiments to determine the parameters of the
initial and subsequent yield surfaces.

Further considering the modified von Mises yield function of Drucker
and Prager, Chen and Lu [12] introduced another elliptical yield func-
tion

3
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where £ is the characteristic strain defined as £ = /€2 + £2 /y2, with von

Mises effective strain €., volumetric strain ¢, and elastic material param-
eter y. The evolution of the yield surface is governed by the characteris-
tic strain, and the variable material parameters A and B are both related
to the characteristic strain.

The Deshpande-Fleck foam model attracts a lot of attention because
it can describe the response of metal foams under multi-axial loading
approximately and it only has two parameters, i.e., the ellipticity « and
the uniaxial yield stress Y. In the literature, the ellipticity « was con-
sidered as a constant in subsequent yield and the associated flow rule
was assumed. Recently, the initial elliptical yield surface of this model
has been verified by more and more experimental tests and numerical
simulations [16-22]. The Deshpande-Fleck foam model has also been
successfully applied to and widely used in some commercial finite ele-
ment softwares, see the crushable foam model with isotropic hardening
in ABAQUS and the Deshpande-Fleck foam model in LS-DYNA [23-26].
Two typical measurements were conducted to probe the yield surface us-
ing a high pressure triaxial system by Deshpande and Fleck [11], i.e.,
the specimen was pressurized to a level of axial strain and the pressure
was then decreased slowly until zero and the other was started at the
uniaxial compression and slowly built up the pressure.

The ellipticity involved in the Deshpande-Fleck foam model is not
easy to determine. It was taken as a constant as the shapes of yield
surfaces almost do not change with the axial strain for a primary loading
path of uniaxial compression. Therefore, the ellipticity of the initial yield
surface is often used to replace the ellipticity of the subsequent yield
surface. However, the evolution of the yield surface in the Deshpande-
Fleck foam model is governed by the equivalent plastic strain defined
by the equivalent plastic work, which has contributions from both the
deviatoric plastic strain and the volumetric plastic strain. In fact, the
yield surface elongates along the axis of mean stress with the volumetric
strain for a primary loading path of hydrostatic compression. So, it is
doubtful whether the ellipticity does not vary with the equivalent plastic
strain.

The ellipticity « was considered to be dependent on the plastic Pois-
son’s ratio vP with an associated flow rule [11, 26], written as

> 91 =2wP)

T2+ wp) ®

This formula has been widely used. However, the plastic Poisson’s
ratio, defined as the negative value of the ratio of the transverse and
axial logarithmic strain rates, is hard to measure and the experimental
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Fig. 1. Yield surfaces for the Deshpande-Fleck foam model.

results were scattered. So, significantly different values of the elliptic-
ity a were suggested in the literature [11, 17, 20, 26], even for iden-
tical metal foams produced by the same company. The associated flow
“proved” by the consistency of independently measured values of the
plastic Poisson’s ratio and the ellipticity is questionable [11]. Another
formula was introduced by Vural and his co-workers [27-29], i.e.,
5 9(1-2v)
2(1+v)’
where v is the elastic Poisson’s ratio of foam. It is questionable to use
elastic parameters to characterize the plastic stage, although sometimes
this formula has a better approximation.
Another way to determine the shape parameter ellipticity is based
on two chosen points on the ellipse [11, 19], written as

2
) 960
3

95 = o5
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where o, and p, are the initial yield stress in uniaxial compression
and in hydrostatic compression, respectively. This method is adopted
in ABAQUS [23]. However, the stress—strain curves of many foam sam-
ples do not show a clear yield point, and the value of initial yield stress
cannot be determined accurately in many practical cases. More impor-
tantly, all of the methods mentioned above assume that the ellipticity
remains constant in successive yielding. In fact, the ellipticity a is ob-
viously related to the material’s compressibility and the compressibility
varies with the plastic strain [26]. So, the ellipticity may be a variable
value associated with the plastic strain.

In this study, the ellipticity involved in the Deshpande-Fleck foam
model is determined by virtual uni-/multi-axial compression tests us-
ing cell-based finite element models. A modified Deshpande-Fleck foam
model is proposed by considering a variable ellipticity. A much accu-
rate material model is employed to describe the stress—strain relation of
cellular material under uniaxial compression. The modified Deshpande—
Fleck foam model is verified by cell-based finite element models. Some
experimental data in the literature are taken for comparison to verify
the modified Deshpande-Fleck foam model with a non-associated flow
rule.

2. Constitutive models
2.1. The Deshpande—Fleck foam model

The Deshpande-Fleck foam model assumes similar behaviours in
compression and tension, as depicted in Fig. 1. The D-F model is an
elliptic yield surface in the von Mises effective stress vs. mean stress
plane and assumes the ellipticity remains constant. In this study, com-
pression is taken as positive. The elliptic yield surface is centered at the
origin in the o0, stress plane and evolves in a self-similar manner
governed by the equivalent plastic strain. After comparing with other
independent variables, Deshpande and Fleck noted that the scheme of
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Fig. 2. A cell-based finite element model of (a) Voronoi foam, (b) uniaxial compression, (c) biaxial compression and (d) triaxial compression.

using the equivalent plastic strain was found to give better agreement
with the available experimental data, see the note in page 1272 of Ref.
[11]. The equivalent plastic strain rate &P is defined according to the
equivalent plastic work rate, i.e., 6. = o; j.éfj, where o, is the uniax-
ial compression stress associated to current yield surface, o;; and éf’j are
tensors of stress and plastic strain rate respectively with i, j=1, 2, 3. The
elastic strain is assumed to be negligibly small in the present model, so
that the total strain equals the plastic strain. In the following discussion,
£ is adopted to represent the equivalent plastic strain.

The elliptic yield function of the D-F model is defined as

v/ o2 +a%0,2—F =0,

where F is the semi axis length of the yield ellipse on the ¢.-axis and
the shape parameter, i.e., ellipticity a, is defined as the aspect ratio of
the yield ellipse. The mean stress and the von Mises effective stress in
uniaxial compression are {o,, 6.} ={0./3, 6.}. Thus, the yield surface
can be re-written as Eq. (3). For the low-density metal foams used in the
following numerical simulations, o, almost equals to p,, and thus leads
to a® ~ 9/8. However, when the plastic Poisson’s ratio is nearly zero, a?
is 9/2 according to Eq. (5), which illustrates Eq. (5) deduced from an
associated flow rule may be invalid. For this geometrically self-similar
model, two loading scenarios are sufficient to determine all parameters.
Deshpande and Fleck [11] also proposed a more sophisticated differ-
ential hardening model whose yield surface elongates at different rates
along the hydrostatic and deviatoric axes. The evolution of this yield sur-
face is governed by two parameters, which needs at least three different
loading scenarios to determine all parameters and the determination of
parameters requires iterative process. This differential hardening model
has been rarely used due to its complexity. The present study only re-
visits the self-similar model mentioned above.

®)

2.2. Predictions of typical loadings

The mean stress and the von Mises effective stress under a specific
loading condition can be expressed by . according to the D-F model,
provided the direction of multi-axial loading is known. The stress tri-
axiality, n =0, /o [111, is widely used to characterize the direction of
loading, ranging from # =1/3 for uniaxial compression to  — oo for hy-
drostatic compression. From the D-F model with a specific value of 7,
the von Mises effective stress and the mean stress can be calculated as

_ 1+a2/9

O¢ = 0c\| Tifa?
p 1+a2/9
e\ T2

It can be seen clearly that the uniaxial compression stress on the
yield surface is essential for the calculation of the mean stress and the
von Mises effective stress. Under hydrostatic compression, i.e., 7 — oo,

(©)]

m

O,
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(10)
where p is the value of hydrostatic pressure.

2.3. Uniaxial compression stress—strain relation

Metal foams can absorb massive energy with large plastic deforma-
tion and in this process the elastic deformation may be ignored. For sim-
plicity, metal foams are usually modelled as a rigid—plastic hardening
(R-PH) idealisation. Recently, Zheng et al. [30] proposed a very simple
R-PH model to describe the uniaxial compression behaviour of cellular
materials, in which the nominal stress—strain relation is expressed as

| S 11
(1-&,)’ v
where subscript n denotes nominal, ¢, is the nominal initial crushing
stress and C the strain hardening parameter. The elastic strain is as-
sumed to be negligibly small in the present model so that the axial total
strain equals the axial plastic strain. It is easy to see that the equivalent
plastic strain is equal to the axial plastic strain in uniaxial compression.
So, in this case, we have £ = ¢P = £. The relation between the true (log-
arithmic) plastic axial strain e and the nominal strain can be expressed
as e =—In(1 —¢,). Then, the true stress-true strain relation can be ex-
pressed as

0, =0y +

ono + C(e2E - ee)

12)

¢ [l + VP — VP exp (—2)]2.

It is considered that the true stress almost equals the nominal stress
since there is no significant expansion of the cross section during the
compression process of low-density foams [10, 16, 30-33]. So, the R-
PH model can also be re-written approximately as o, = o, + C(e? — e?).
There are only two material parameters in Eq. (11) and their values will
be determined by applying cell-based finite element method as follows.

3. Numerical methods
3.1. Cell-based finite element model

The 3D Voronoi technique was applied to generate random foams
in simulations, as done in Ref. [30]. Three random samples of Voronoi
structures were used in this study to measure the scatter of samples.
Numerical simulations of closed-cell foam under uni-/multi-axial com-
pression were implemented with finite element code ABAQUS/Explicit.
In this study, the specimen is a 30 x 30 x 30mm? cube with 1200 nu-
clei and the irregularity is 0.4, see Fig. 2(a). The cell-wall thickness of
the specimen is uniform and is dependent on the relative density p of
the specimen, e.g., the relative density of the specimen is set as 0.1
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Fig. 3. Cross-sectional deformable patterns of foam specimens under three typical compressive loads when nominal volumetric strain is (a) ,,, =0.2 and (b) £,,, =0.4.
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Fig. 4. Variations of the maximum principal stress of foam specimens under three typical compressive loads with (a) the true volumetric strain and (b) the true

equivalent plastic strain.

and cell-wall thickness is about 0.0993 mm. Different relative densities
of specimens with similar mesostructures can be obtained by changing
the cell-wall thickness of a generated Voronoi structure. The cell walls
are meshed with hybrid shell elements of types S4R and S3R and the
characteristic size of shell elements is set to be about 0.3 mm through a
mesh sensitivity study [30]. Shell elements with sharp angles are elim-
inated for saving computer time and finally the specimens used has
about 274,000 shell elements, including about 60,000 S3R elements
and 214,000 S4R elements. The matrix material aluminium is taken to
be rate-independent, elastic-linear plastic hardening and the material
parameters of density p,=2700kg/m3, Young’s modulus E=70 GPa,
Poisson’s ratio v=0.33, yield stress oy, =80 MPa and Tangent modulus
E.,n = 30 MPa respectively, in which the virtual uniaxial compression ex-

334

perimental data of the 3D Voronoi foam agreed well with the uniaxial
compression experimental data [15].

A pair of rigid plates is employed on the top and bottom of a
foam specimen to apply quasi-static uniaxial compression, as shown in
Fig. 2(b). A rigid plate is fixed, while the other one moves with a con-
stant velocity of 10 m/s, perpendicular to the fixed rigid plate. Two pairs
of rigid plates are employed to apply biaxial compression, as depicted in
Fig. 2(c). Similarly, three pairs of rigid plates are used for triaxial load-
ing, as shown in Fig. 2(d). In one direction of every pair of rigid plates,
one plate is fixed, while the other moves with a constant velocity. The
speed of moving rigid plate is no more than 10 m/s, which ensures the
stress balance between the support end and the loading end of each di-
rection during the whole loading process. General contacts were applied
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Fig. 5. Variations of the plastic Poisson’s ratios with the nominal strain for foam
specimens having different relative densities.

to all possible contact, with a friction coefficient of 0.2 between shell
elements and without friction between rigid plates and the foam. Dis-
placement controlled loading is applied in numerical simulations. This
controlled loading method is also recommended to experimental tests,
although it is hard to realize, as the stress controlled loading may cause
inhomogeneous overall deformation, e.g., see Fig. 13 in Ref. [5].

3.2. Deformation patterns under uniaxial, equi-biaxial and hydrostatic
compression

Uniaxial, equi-biaxial and hydrostatic compressions of a foam spec-
imen with a relative density of 0.1 are selected as three typical loading
scenarios here. The speed of moving rigid plates is 10 m/s and the image
of an identical middle section is used to represent deformation charac-
teristics. Different deformation patterns are observed under uniaxial,
biaxial and triaxial compressions, as shown in Fig. 3. At the very begin-
ning of the three loading scenarios, the deformation all starts from the
place close to the rigid plates, which is because the cut cells are weaker
than the complete ones. With the continuation of compression, e.g. when
nominal volumetric strain e,,=0.2, it can be seen from Fig. 3(a) that

30
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the deformation consists of randomly distributed shear collapse bands in
uniaxial compression, as reported in Ref. [30]. Under multi-axial com-
pression, however, the shear collapse bands are concentrated near the
rigid plates and they form a circular feature in deformation. The in-
tersecting of shear collapse bands may strength the foam specimen to
block further local deformation. When the macroscopic deformation in-
creases, more shear collapse bands are observed under uniaxial com-
pression while the circular shear band disappears under equi-biaxial and
hydrostatic compressions. The existence of rigid plates hinders the free
development of shear collapse bands and makes the whole specimen in
a more uniform deformation state, as shown in Fig. 3(b). Shear collapse
bands are induced by the deformation of surrounding relatively weak
cells due to minimal energy consumption, and the maximum principal
stress is dependent on the strength of the weakest links. Another obvious
difference between multi-axial and uniaxial compressions is that almost
all the cell walls are bent under multi-axial compression, but only the
cell walls near the shear bands are bent under uniaxial compression. It
indicates that the deformation under multi-axial compression tends to
be much homogeneous. Under uniform deformation, the ability to resist
deformation of relatively weak cells is averaged by the strong cells, so
the whole specimen shows a higher ability to resist deformation. The
more rigid plates there are, the more uniform the deformation of the
specimen. That may be the deformation mechanisms to the maximum
principal stress of hydrostatic compression larger than the equi-biaxial
compression which is larger than the uniaxial compression when tak-
ing the true volumetric strain as an independent variable, as shown in
Fig. 4(a). As a comparison, the maximum principal stress by taking the
true equivalent plastic strain as an independent variable is shown in
Fig. 4(b).

Uniaxial compression Equi-biaxial compression Hydrostatic com-
pression

The plastic Poisson’s ratio of foam specimens under uniaxial com-
pression, which is defined as the negative ratio of the transverse loga-
rithmic strain rate to the axial logarithmic strain rate [11], is found to
be very small, as illustrated in Fig. 5. So, the plastic Poisson’s ratio is
assumed to be zero in the analysis of the numerical simulations.

3.3. Fitting parameters for the R-PH model

The nominal stress—strain data of the foam specimens with differ-
ent relative densities under virtual uniaxial compression were used to
fit the R-PH model. It is found that the R-PH model can fit the quasi-
static nominal stress—strain relation very well, as shown in Fig. 6(a). It
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Fig. 6. (a) Nominal stress—strain relations for the Voronoi models with different relative densities under uniaxial compression and (b) fitting parameters of the R-PH

model.
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should be noted that in the fitting process the two material parameters
are determined as follows. The initial crush stress ¢, is obtained by the
average of stress in a small plastic strain range of the initial crushing
stage, here up to a nominal plastic strain of 0.2 is considered. The strain
hardening parameter C is determined by applying the least squares fit-
ting technique.

The two material parameters of the R-PH model, ¢, and C, were
found both related to the relative density of cellular material and can
be expressed in the form of a power exponent [34], written as

on0(p) = 0ys - ki p™
. 1
{C(p) = oy, - kpp (13)

where oy is the yield stress of matrix material, ki, ky, n; and n, are
material parameters. By fitting the initial crushing stress and the strain
hardening parameter of different relative densities in Fig. 6(b) with
Eq. (13), we obtain k; =0.963, n; =1.32, k, =0.141 and n, =1.39.

4. Results and discussion
4.1. A typical example with constant values of the ellipticity

Under hydrostatic compression, i.e., when 1 — oo, the mean stress is
the value of hydrostatic pressure which can be deduced from Eq. (10) us-
ing the known uniaxial stress—strain relation. Different values of the el-
lipticity a, i.e., > =4.5, 2.7 and 1.1, are obtained from Egs. (5)- (7)
with using the plastic Poisson’s ratio vP =0, the Poisson’s ratio v=0.15
and the relation of 6y =p,, respectively. Predictions using these values
of the ellipticity « for a foam specimen with a relative density of 0.1 are
illustrated in Fig. 7. It transpires that all the results do not provide any
satisfactory prediction. This suggests a variable value of the ellipticity
with the equivalent plastic strain, as discussed later.

4.2. A modified relation of the ellipticity

A more accurate ellipticity « can be calculated by fitting the yield el-
lipse. The mean stress and the von Mises effective stress obtained from
different loading scenarios in the cell-based finite element simulations
are fitted to the ellipse standard equation, and then the ellipticity «
is determined. Seven different loading scenarios are concerned, includ-
ing two cases of proportional loading, i.e., uniaxial compression with

2.0
p=0.1 p
—=— Sample 1 , j
—— Sample 2 ,
N§ 1.5 —A— Sample 3 7
52 — Fitting curve V: ,/
‘5 — = Obtained from complete fitting
i . o
= 1.0 (WO - ¥
) ‘ \ N PR ¢
'45 \\ >~ - _ - P
) AN al
§ \ = >
£ 05
n
0.0 T T T T T T T T
0.5 1.0 1.5 2.0

True equivalent plastic strain, &

(b)

Fig. 9. Fitting of a? determined by (a) complete fitting and (b) Eq. (16).

336



C. Zhu, Z. Zheng and S. Wang et al.

2.0

—=—p=0.05

g
——p=0.1 ¥
—A—p=0.15 5

13 —o—p=02 ’

— Fitting curve

Square of ellipticity, o
=

0.0

T T T
0.5 1.0 1.5 2.0

True equivalent plastic strain, &

(a)

0.0

2

Square of ellipticity, o

International Journal of Mechanical Sciences 151 (2019) 331-342

2.0

—=—p=0.05
——p=0.1
—A—p=0.15
—O0—p=02
— Fitting curve

—_
W

o

o
n

T T T T
0.2 0.4 0.6 0.8 1.0

Nominal equivalent plastic strain, én

(b)

Fig. 10. Variations of the square of ellipticity «® for Sample 1 having different relative densities with (a) the true equivalent plastic strain and (b) the nominal
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Fig. 11. Variations of the square of ellipticity a? for three different samples having a relative density of 0.05 with (a) the true equivalent plastic strain and (b) the

nominal equivalent plastic strain.

n=1/3 and hydrostatic compression with # - o0, and five cases of non-
proportional loadings in which # is not constant, and the ratios of the
velocities in the three principal stress directions are -:0:5, -:2:5, 0:0:5,
0:1:5 and 1:3:5, where “-” represents a free end (without constraint) and
0 is a fixed constraint end. For example, -:0:5 and 0:0:5 are two kinds
of passive multi-axial tests, i.e., one-side-displacement constrained and
lateral-displacement constrained compression which are easy to imple-
ment [35]. Three different samples are employed to consider the scatter
of samples.

As shown in Fig. 8, the mean stress and the von Mises effective stress
of different loading scenarios are fitted by the ellipse standard equation
at different true equivalent plastic strains of 0, 1.2, 1.7 and 2.

The variation of a2 with the true equivalent plastic strain is indepen-
dent of random sampling and the results show that a2 is obviously not a
constant, as depicted in Fig. 9(a). The square of ellipticity, a%, obtained
from elliptic equation fitting, is originally close to 9/8, which means
the deformation of three orthogonal directions indeed does not affect
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each other at the very beginning, i.e., the plastic Poisson’s ratio is equal
to zero approximately. It decreases with the increase of the equivalent
plastic strain and then increases sustainably before full densification.
According to the variation characteristics of 2, it is assumed that the
fitting equation consists of three terms: an exponential term (decreas-
ing), a quadratic term (increasing) and a constant term, i.e.,

(14)

Fitting Eq. (14) with the data averaging of the three samples
in Fig. 9(a), we obtain b; =3.342, b,=0.3977, b3=0.5242 and
by =—2.035.

According to the definition of isotropic ellipse yield surface, the el-
lipticity can also be determined by any two asymmetrical points of the
ellipse, i.e., @® can be determined by any two loading cases {63, ¢1}
and {0y, 00} associated with the same true equivalent plastic strain
in the absence of a large amount of experimental data, written as

a® = be™% 4 bE% + b,
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Fig. 12. Predictions of pressure under hydrostatic compression according to the
D-F model and modified D-F model.

2 2
[0} — O
ot = —;2 ;l } (15)
O-ml - 6m2

In particular, a2 can be calculated according to

2 90'62
et (16)
when applying loading scenarios of uniaxial compression {o,
601} ={0./3, 6.} and hydrostatic compression {65, 6.2} ={p, 0}. This
is the simplest way to determine a? experimentally. Compared to any
other two loading scenarios, the value of o2 calculated using Eq. (16) has
a smaller error, since the two points of uniaxial compression and hydro-
static compression have the farthest distance in the von Mises effective
stress vs. mean stress plane. In fact, Eq. (7), which has been used widely
to calculate a2, is the special case of Eq. (16) when using the initial
yield stresses in uniaxial and hydrostatic compressions. The calculated
values of a2 from Eq. (16) (based only on data from uniaxial and hydro-
static compressions, hereafter refers as two-point fitting) and the results
from ellipse fitting (based on all data from different loading conditions,
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Fig. 13. Predictions of the maximum principal stress by the D-F model and the
modified D-F model when the velocity ratio of three principal stress directions
is 5:5:0.

hereafter refers as complete fitting) are shown in Fig. 9(b) and (a), re-
spectively. A comparison shows that the two-point fitting is a good ap-
proximation of the complete fitting, as illustrated in Fig. 9(b). Fitting
Eq. (14) with the data in Fig. 9(b) leads to

a? = 2496707908 4 0431482 — 1.252. a17)

The values of a2 calculated from Eq. (16) with different relative den-
sities are shown in Fig. 10 by taking the true equivalent plastic strain
or the nominal equivalent plastic strain as an independent variable. It
is found that the relative density has a negligible effect on 2 for Sam-
ple 1. The ellipticity is almost constant when the true equivalent plastic
strain is very large for Sample 1 with a relative density of 0.05. This is
resulted from the scatter of samples, since other two selected samples
fit with Eq. (17) well, as shown in Fig. 11. Although different samples
may produce different results, the scope of strain with almost constant
ellipticity is very small, as illustrated in Fig. 10(b) with taking the nom-
inal equivalent plastic strain as an independent variable. Ignoring this
unimportant small area, we can obtain a very simple but well approxi-

80
Hydrostatic compression
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5 404 /
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Fig. 14. Stress-strain relations of closed-cell and open-cell foams under (a) uniaxial compression and (b) hydrostatic compression. The experimental data are

extracted from Ref. [36].
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Fig. 15. Values of 2 of two kinds of foams in Ref. [36].

mated equation. In the following, Eq. (17) will be used for the sake of
simplification.

According to Eq. (10), the pressure under hydrostatic compression
can be obtained with using the uniaxial stress and the ellipticity. In
the D-F model, a constant «>=9/8 and scattered data get from uni-
axial compression of the cell-based finite element model are used. In
the modified D-F model, we use the R-PH model to replace the uni-
axial stress-strain relation of scattered points. Two curves of a(g) are
considered to replace a fixed value of a. One is obtained by the com-
plete fitting method and the other is by the two-point fitting method
(Eq. (17)), which correspond to the modified D-F model 1 and 2 in
Fig. 12 respectively. The nominal equivalent strain is obtained through
coordinate transformation and details will be given in Section 4.3.

The pressure under hydrostatic compression predicted by the D-
F model and the modified D-F model using the uniaxial compres-
sion stress—strain relation are compared with the virtual experiment in
Fig. 12. The results show that the prediction of D-F model has a good
agreement with the virtual experimental data when the strain is less than
about 0.3, while the prediction is getting bad when the strain increases.
The prediction is improved in the densification stage. The results also

6

Closed-cell foam p = 0.14
5 Experimental data [36]

— + = D-F model

— — Modified D-F model
4 -

Normalised axial stress, 0,,/0,

T T T T
0.1 0.2 0.3 0.4
True equivalent plastic strain, e

(2)

0.5

Normalised axial stress, <5“/0'0
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show that the prediction of modified D-F model considering a variable
a have a better agreement with the results obtained from virtual ex-
periments, no matter which a2 curve is adopted. This suggests, on the
other hand, that Eq. (17) can replace the complete fitting method in
determining the ellipticity. The following analysis with the modified -F
model will all use the variable ellipticity determined by uniaxial and
hydrostatic compressions (the two-point fitting method).

4.3. Verification of virtual experiments

The three most important factors in plastic constitutive relation are
the yield condition, hardening law and flow rule. It is no need to con-
sider the flow rule here because the principal stress and principal strain
of three directions can all be obtained from the cell-based finite ele-
ment method. The modified D-F model using a variable a described in
Section 4.2 is adopted here. The hardening law is characterized by the
quasi-static stress—strain relation.

The quasi-static stress—strain relations under uniaxial compression
were obtained by the virtual experiment, as described in Section 3.2.
All data in this paper are processed based on the true stress-strain re-
lation. The nominal stress—strain relation can be converted to the true
stress—strain relation as described below. Under uniaxial compression,
the true stress is assumed to be equal to the nominal stress and the ax-
ial true plastic strain can be obtained by the relation between nominal
strain and true (logarithmic) strain that e = —In(1 —¢,,), when neglect-
ing the elastic behaviour and the small lateral expansion. In order to be
consistent with the traditional nominal stress-strain relation, the coor-
dinate transformation of the final result is carried out. The coordinate
transformation does not change the scale of y-axis, but only converts
the true strain to the so-called nominal strain with £, =1 — exp(—¢) on
the x-axis. Then, the true stress-true equivalent plastic strain relation be-
comes the true stress-nominal equivalent plastic strain, like Figs. 12 and

13.

Considering a special proportional compression case, i.e.,
611:099:033=k: ki1 (k>1), we have stress triaxiality parameter
n=2k+1)/(Bk-3) and o, =(k—1)o33=(k—1)/ko;. The maximum
principal stress ¢, (£) can be determined by

1+a2/9
1+ n2a2’

Eq. (18) also applies to the situation when ¢41:055:033 =k:1:1, be-
cause it happens that o, = (k— 1)o33 too. In fact, Eq. (18) is also appli-

ko,

k-1

k—=1°

(18)

oy
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Experimental data [36] /-
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Fig. 16. Predictions of axial stress of (a) the closed-cell foam and (b) the open-cell foam under proportional compression (1 =2) from the D-F model with «? =0.8

and the modified D-F model.
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Fig. 17. (a) Predictions of axial stress of the open-cell foam with different plastic Poisson’s ratios and (b) the relative square error.

cable for the cases of non-proportional loadings, as long as k and # are
not constants but values vary with strain.

Consider a loading situation when the ratio of the velocity of three
principal directions is 5:5:0, which corresponds to a special loading case
in experiment that the whole specimen is loaded under a liquid pressure
while the axial displacement is constrained to be zero. The ratio of three
principal stresses is 61:05:03 =k: k:1 (k> 1), and the maximum principal
stress o can be determined by Eq. (18). Three different relative densities
are compared here, i.e., 0.05, 0.1 and 0.15. The D-F model uses scattered
uniaxial data and constant a2 =9/8. The modified D-F model adopts the
R-PH model to replace scattered uniaxial stress—strain relation and uses
the variable ellipticity in Eq. (17) to replace the constant a® =9/8.

The predictions of the maximum principal stress by the two models
are shown in Fig. 13. It can be seen that both the D-F model and mod-
ified D-F model can describe the initial stage and densification stage
well, but the modified D-F model has a better prediction in the strain
range of 0.2 to 0.7. This again verifies that « should not be a fixed value.

4.4. Verification of experiments

Three kinds of experiments, i.e., uniaxial compression, hydrostatic
compression and proportional compression, were conducted by Wang
et al. [36]. Two kinds of foams were used: one is a closed-cell foam with
a relative density of 0.14 and the other is an open-cell foam with a rel-
ative density of 0.41. Uniaxial compression tests were performed with
a material test system (MTS 810.23, University of Science and Tech-
nology of China) lubricated by the MoS,. Hydrostatic compression tests
and proportional compression tests were conducted using a Shimadzu
EHF-UG digital hydraulic pressure servo 3D test machine (China Univer-
sity of Mining and Technology (Beijing)). The specimens were separated
from the oil wrapped by Teflon film to avoid the influence of the outside
holes.

For a stress—strain curve with no apparent yield point, the yield
point is defined at 0.3% axial plastic strain [11], and the uniaxial
yield strength ¢ are 2.4 MPa and 6.3 MPa for the closed-cell foam and
open-cell foam, respectively. It is confirmed that the selection of ini-
tial crushing stress at other axial plastic strain (0.2% or 0.4%) does
not substantially modify the predictions. The uniaxial stress—strain rela-
tion and the hydrostatic pressure-volumetric strain curve are plotted in
Fig. 14. The square of ellipticity, a2, calculated from Eq. (16) is plotted
in Fig. 15 which is obviously not constant no matter for the closed-cell
foam or the open-cell foam. It is found that a2 of the closed-cell foam
decreases in the form of an approximate exponential function, while a?
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of the open-cell foam first decreases with the increase of the equivalent
plastic strain and then increases. Although the microstructure of the ex-
perimental foams may be not same with the Voronoi structure used in
finite element simulations, the variation characteristics of ellipticity are
very similar to that of the Voronoi model mentioned above. So, we also
take Eq. (14) to fit «2. The fitting equations are

o? = 0.4559¢%%37¢ 1 0.09550&2 + 0.4011 19)
and
a? = 039617365 1 0.87102 + 0.4851, (20)

for the closed-cell and open-cell foam, respectively, as shown in Fig. 15.

The uniaxial compressive stress—strain data presented in Ref.
[36] are some deficiencies, which are lack the data of hardening stage.
Thus, it is not sufficient to fit the R-PH model and we will compare the
results in the true stress—strain coordinates using the scattered data in
the uniaxial compression tests.

The axial stress 0,1, i.e., the maximum principal stress, under pro-
portional compression can be deduced from the known uniaxial stress—
strain relation, the ellipticity and the stress triaxiality with Eq. (18). The
stress triaxiality is # = 2 in the proportional compression test. The results
are depicted in Fig. 16.

Comparisons between the experimental results in Ref. [36] and the
predictions with the D-F model using «®>=0.8 and the modified D-F
model show that using the modified D-F model with a variable elliptic-
ity « results in a better agreement, as shown in Fig. 16. It is also noted
that the predictions of the modified D-F model deviate from the exper-
imental data when the strain becomes larger than about 0.3, especially
for the open-cell foam with a relative density of 0.41. This may be due to
the effect of the plastic Poisson’s ratio, which becomes significant when
the foam has a high relative density.

4.5. Further correction with the plastic Poisson’s ratio

As shown in Appendix A, the plastic strain components can be de-
rived from the plastic flow potential which is related to the plastic Pois-
son’s ratio. However, the previous research is based on the assumption
that the plastic Poisson’s ratio is zero. This assumption may be unac-
ceptable when the relative density of metal foams is high.

The variation of normalised maximum axial stress with axial plastic
strain (611/0¢—¢;71) obtained experimentally in Ref. [36] is compared
with predictions of the modified D-F model using different values of
plastic Poisson’s ratios, as shown in Fig. 17(a). The relative square error
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5, defined as 6 = Y ((o1,(i) — 01(i)) /0, (i))z/n, is used to evaluate the in-
1

fluence of plastic Poisson’s ratio, where the number of scattered points
isn=1000 and o is the experimental value. It is obvious that the plastic
Poisson’s ratio has a great influence on the prediction error of the open-
cell foam, as illustrated in Fig. 17(b). It can be seen that the prediction
error will be smaller than that when the plastic Poisson’s ratio is taken
as zero, provided the measured plastic Poisson’s ratio is between 0 and
0.4 which is almost sure for metal foams. The results also show that the
prediction error is the smallest when the plastic Poisson’s ratio is about
0.27. Although the plastic Poisson’s ratio was not given in Ref. [36] and
there are lack of other experimental data for open-cell aluminium foams
with a high relative density in the literature, a variable plastic Poisson’s
ratio is recommended as vP =0.278 — 0.409¢P in Ref. [37]. Hence, when
considering the influence of the plastic Poisson’s ratio, a much better
prediction can be obtained. It also indicates that it is necessary to mea-
sure the plastic Poisson’s ratio in experiments.

5. Conclusions

The self-similar isotropic hardening model developed by Deshpande
and Fleck [11] has been widely used to describe the constitutive be-
haviour of metal foams because it is very simple with only two param-
eters (the ellipticity a and the uniaxial yield stress Y). Cell-based finite
element models based on 3D Voronoi technique were used to verify this
model in this study.

Seven different loading scenarios, including uniaxial, biaxial and tri-
axial compressions, are carried out numerically with finite element code
ABAQUS/Explicit. The ellipticity is obtained by fitting the results of nu-
merical simulations with the ellipse standard equation. It is found that
the ellipticity varies with the equivalent plastic strain. The data of uni-
axial and hydrostatic compression tests were used to determine approxi-
mately the ellipticity «. A fitting relation Eq. (14) between the ellipticity
and the equivalent plastic strain is suggested. The ellipticity « is found
to be independent of the relative density of cellular material.

The uniaxial stress-strain relation is fitted well with using the R-
PH model. A modification to the Deshpande-Fleck foam model with
a variable value of ellipticity is suggested. The modified Deshpande-
Fleck foam model provides a satisfactory prediction of the post-yield
behaviour of the cell-based finite element model of foam with using the
variable ellipticity and the R-PH model.

The ellipticity « determined experimentally by uniaxial compression
tests and hydrostatic compression tests is not constant. Good agreement
is also observed between the experimentally measured stress-strain re-
sponses and the predictions of the modified Deshpande-Fleck foam
model using a non-associated flow rule. The prediction becomes bet-
ter when considering the effect of the plastic Poisson’s ratio. It is im-
portant to measure the plastic Poisson’s ratio to determine the plastic
flow potential accurately. Further study is required to measure the plas-
tic Poisson’s ratio effectively, or calculate the plastic Poisson’s ratio by
some characteristic experiments.
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Appendix A. A plastic flow rule and the equivalent plastic strain

Inspired by the modified von Mises yield function of Drucker and
Prager, the plastic flow potential has been proposed [11, 23, 38]

@ =1/0.2+ 20,2,

(A1)

341

International Journal of Mechanical Sciences 151 (2019) 331-342

where f represents the shape of the plastic flow potential in the von
Mises effective stress vs. mean stress (c.—0,,) plane.
The plastic strains are assumed to be normal to the flow potential @,
written as
00

=di-—

de..
Y do;; ’

(A2)
where di is the non-negative plastic flow multiplier. In a typical
proportional loading case, the ratio of three principal stresses is
011:099:033 =k:1:1 (k> 1, marked as case I), then the ratio of radial and
axial strain rates is given by

deyy  0®/doy, (1 —k)+26%(k+2)/9 (A3)

dey;  0®/doy 20k — D+242(k +2)/9° '
Under uniaxial loading, i.e., k — o0, Eq. (A.3) is simplified to

d 1-2p2

% _ _—ﬁ/9‘ (A4)

dey, 2(1+p2/9)

For large deformation, the plastic Poisson’s ratio vP is defined as
the negative ratio of the transverse logarithmic strain rate to the axial
logarithmic strain rate [11], written as

VP=_£‘£=_d££. (A.5)
£ deyy
Combining Eq. (A.4) with Eq. (A.5) leads to
9(1 — 2vP)
2 _
r= 2(1+w) -~ (A6)

The plastic flow rule is non-associated if only the value of g is not
the same as the ellipticity a of yield function. In general, the plastic flow
is not associated to the yield function, thus independent calculations of
the ellipticity of yield function and the plastic Poisson’s ratio are allowed
[13, 14, 23]. For many low-density foams, the plastic Poisson’s ratio is
close to zero, which corresponds to f~2.12 as mentioned above.

The o,,-¢ relation can be converted to the ¢,;—¢;; relation, which
is more convenient in comparison with the experimental results. On the
basis of the definition of equivalent plastic work, the work conjugate
strain rate, i.e., the equivalent plastic strain rate, can be explicitly ex-
pressed as [11]

. 2 \( ., &
E = <1+?><£e+z .

where ¢, = 4/(2/3)¢;;¢;; is the von Mises effective strain rate and ¢, =
£, the volumetric plastic strain rate. For case I, by combining Eq. (A.3)
with =0, /0e, Eq. (A.7) can be re-written as
a(@)(1+pn/3)
V (1+a2@)/9) (2@ + pn?)

Integrating Eq. (A.8) with respect to time and considering £,; =0 and
£=0 at time t=0, we can obtain the relation between ¢;; and . Then,
611—€11 and oq1-¢ can be converted to each other.

(A7)

& = (A.8)
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