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Abstract. The self-similar isotropic hardening model developed by Deshpande and Fleck has been 
widely used. An important issue in this model is to determine the value of ellipticity. The ellipticity 
was treated as a constant in the subsequent yield, but different values were suggested in the 
literature. In this paper a cell-based finite element model based on the 3D Voronoi technique is used 
to verify the Deshpande-Fleck foam model. It is found that the ellipticity determined from uniaxial 
and hydrostatic compressions varies with the equivalent plastic strain.  

Introduction  

Cellular materials, such as corks, honeycombs and metal foams, are a kind of materials with 
low relative density (< 0.3) and can absorb massive impact energy with large deformation [1]. It is 
necessary to understand the constitutive behavior of metal foams under complex loadings to 
improve their engineering design. Metal foams can yield under a hydrostatic pressure. This makes 
their constitutive model very different from the traditional plasticity theory of dense metals, which 
does not consider the effect of hydrostatic pressure on yielding. Several forms of the yield 
functions, based on the von Mises effective stress σe and the mean stress σm, have been proposed to 
describe the constitutive relation of metal foams [1-4].  

An elliptic yield function was proposed by Deshpande and Fleck [4] 

( )22 2 2
e m 1 / 3 0Yσ α σ α+ − + = ,                                                   (1) 

where α is the ellipticity of the ellipse representing the shape of the yield surface in the σm–σe  
plane, and Y the uniaxial yield strength. It was assumed that this elliptic yield surface evolves in a 
geometrically self-similar manner with the equivalent plastic strain. This model, known as the 
Deshpande-Fleck foam model (or short as the D-F model), attracts a lot of attention due to its 
simplicity with only two parameters, namely the ellipticity α and the uniaxial yield strength Y. The 
ellipticity α was considered to be a constant in subsequent yield surfaces. The initial elliptical yield 
surface of this model has been verified by more and more experiments when suitable plastic 
Poisson’s ratios were employed [5-7]. The Deshpande-Fleck foam model has also been successfully 
applied to the finite element softwares LS-DYNA and ABAQUS [8,9].  

A hardening law is also essential to describe the constitutive relation. The uniaxial stress–strain 
relation is most commonly used to characterize the hardening law. Various phenomenological 
models have been proposed to characterize the stress–strain relation of foams under uniaxial 
compression [10-12]. However, those models either had too many parameters or can not 
characterize the stress–strain relation very well. Recently, Zheng et al. [13] proposed a 

Key Engineering Materials Submitted: 2019-01-22
ISSN: 1662-9795, Vol. 803, pp 134-139 Accepted: 2019-02-13
doi:10.4028/www.scientific.net/KEM.803.134 Online: 2019-05-20
© 2019 Trans Tech Publications Ltd, Switzerland

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications Ltd, www.scientific.net. (#114876053, University of Science & Technology of China, Hefei, China-23/05/19,04:03:12)

https://doi.org/10.4028/www.scientific.net/KEM.803.134


rate-independent, rigid–plastic hardening (R-PH) idealization to describe the uniaxial compression 
behavior of metal foams. The nominal stress–strain relation can be expressed as  

( )2
n n0 n n1Cσ σ ε ε= + − ,  (2) 

where σn0 is the nominal initial crushing stress and C the strain hardening parameter. This model is 
very simple, with only two parameters, but is accurate enough and has been verified by many 
numerical simulations and experiments [14-17]. Due to its accuracy and simplicity, the R-PH model 
has been widely applied. For example, the design criteria of cellular sacrificial cladding based on 
the R-PH model has been verified by a cell-based finite element model [14]. An analytical model 
based on the R-PH model has been used to predict the blast response of density-graded cellular rods 
and a good agreement was achieved between the theoretical predictions and the numerical results 
[15]. Based on the R-PH model, a nonlinear plastic shock model was employed to guide the design 
strategy to determine the relative density distribution of graded cellular materials for desirable 
crashworthiness requirements and it was well verified by a cell-based finite element method [16]. 

The present study aims to revisit the Deshpande-Fleck foam model. A cell-based finite element 
model of 3D Voronoi structure is used to verify the prediction and the R-PH idealization is 
employed to describe the stress–strain relation of the cellular material under uniaxial compression.  

Models  

Deshpande-fleck foam model. The Deshpande-Fleck foam model [4] uses an elliptic yield 
surface in the mean stress vs. von Mises effective stress plane and assumes similar behaviors in 
compression and tension, as depicted in Fig. 1. The elliptic yield surface centers at the origin of the 
σm–σe plane and evolves in a self-similar manner governed by the equivalent plastic strain. The 
equivalent plastic strain rate is defined according to the equivalent plastic work rate, i.e. 

p p
c :σ ε =

σ ε , where σc is the uniaxial compression stress associated to current yield surface, σ the 

stress tensor and pε  the plastic strain rate tensor. It is assumed that the elastic strain is negligibly 

small so that the total strain equals the plastic strain. 
 

  
Fig. 1 Yield surfaces for the 

Deshpande-Fleck foam model. 
Fig. 2 Cell-based finite element models of (a) uniaxial 

compression and (b) hydrostatic compression. 
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Cell-based finite element model. The 3D Voronoi technique is widely used to simulate 
random foams because their foaming process is much like the principle of Voronoi diagram. This 
technique was employed to construct closed-cell foam models, as done in Ref. [13].  

In this study, the foam specimen is a cube with a side length of 30 mm containing 1200 nuclei. 
The irregularity is set to 0.4. Cell walls are meshed with hybrid S3R and S4R elements and the 
characteristic size of shell elements is set to about 0.3 mm after the mesh sensitivity analysis [13]. 
Shell elements having short edges are re-meshed to save computational cost. The relative density ρ 
of the foam specimen is 0.1. The base material is aluminum, which is assumed to be 
rate-independent and elastic–linear plastic hardening. The material parameters are density 
2700 kg/m3, Young’s modulus 70 GPa, Poisson’s ratio 0.33, yield stress 80 MPa and Tangent 
modulus 30 MPa, as used in Ref. [18].  

The quasi-static uniaxial and hydrostatic compressions of foam specimens are simulated by 
using the finite element (FE) code ABAQUS/Explicit. Two rigid plates are employed on the two 
parallel planes of a foam specimen to apply quasi-static uniaxial compression. One of the rigid plate 
is fixed, while the other travels at a constant velocity of V = 10 m/s towards the fixed plate, as 
shown in Fig. 2(a). Three pairs of rigid planes are employed on a cube foam specimen to apply 
hydrostatic compression, as depicted in Fig. 2(b). Similarly, in each direction, one of the rigid plates 
is fixed, while the other moves with a constant velocity of V = 10 m/s towards the fixed plate. 
General contacts were applied to all possible contacts with a friction coefficient of 0.2 between the 
shell elements, and no friction between the rigid plates and the specimen.  

Results and Discussion 

Calculation methods of the ellipticity. An important issue in the Deshpande-Fleck foam 
model is to determine the value of ellipticity. Deshpande and Fleck [4] assumed the associated flow 
and gave the ellipticity 

( ) ( )p p9 1 2 2 1α ν ν = − +  . (3) 

This formula was widely used in the literature, but in fact it is contradictory for a fully 
compressible material having a plastic Poisson’s ratio of νp = 0. When the plastic Poisson’s ratio is 
close to zero, deformations in three orthogonal directions are almost independent, which leads to the 
initial yield strength under hydrostatic compression is equal to the initial yield strength under 
uniaxial compression. In other words, the ellipticity α is approximately equal to 1 when the plastic 
Poisson's ratio is close to zero, but Eq. (3) gives α ≈ 2.12. A similar definition was defined using 
the elastic Poisson's ratio ν instead of the plastic Poisson's ratio νp [19], i.e.  

( ) ( )9 1 2 2 1α ν ν= − +   . (4) 

It is doubtful to use elastic parameters to characterize the plastic behavior.  
Another way to compute the shape parameter ellipticity α was given by [4,9]  

2 2
0 0 03 9 pα σ σ= − , (5) 

where σ0 is the initial yield stress under uniaxial compression and p0 the initial yield stress under 
hydrostatic compression. This method has been adopted in ABAQUS. All of the methods 
mentioned above for determining α assume it remains constant in the subsequent yield.  

Eq. (3) and Eq. (4) give α ≈ 2.12 and 1.64 with the plastic Poisson’s ratio νp = 0 and the 
Poisson’s ratio ν = 0.15, respectively. When νp = 0, deformations in three orthogonal directions are 
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almost independent, which leads to the initial yield strength under hydrostatic compression equals 
the initial yield strength under uniaxial compression. Thus, Eq. (5) gives α ≈ 1.06. 

Fitting parameters of the R-PH model. The quasi-static uniaxial stress–strain data are obtained 
from the cell-based FE model with a relative density of 0.1, as shown in Fig. 3. The nominal initial 
crushing stress σn0 in the R-PH model is obtained by averaging the stress in a small plastic strain 
range (0–0.2) in the initial crushing stage. The strain hardening parameter C is determined by fitting 
using the least square method. Fitting the numerical results gives σn0 = 3.66 MPa and C = 0.452 
MPa. The fitting curve of the R-PH model is also shown in Fig. 3. It appears that the R-PH 
idealization can characteristic the stress–strain behavior well. 

Under uniaxial compression, the true stress almost equals the nominal stress because the plastic 
Poisson’s ratio of low-density foams is negligibly small [2,5,10]. The relation between the true 
(logarithmic) plastic axial strain and the nominal strain can be expressed as ε = −ln(1−εn), where 
compression strain is positive. Then the R-PH model can be re-written approximately as  

( )2
c n0 e eC ε εσ σ= + − . (6) 

This formula is used in the following predictions. 
Predictions of a typical loading. The mean stress and the von Mises stress under specific 

loads can be expressed by the D-F model and the uniaxial stress. The stress triaxiality parameter, η 
= σm /σe [4], is widely used to characterize the direction of loading. By combining the D-F model 
with η, the mean stress σm can be expressed as 

( ) ( )2 2 2
m c 1 / 9 1σ ησ α η α= + + . (7) 

Under hydrostatic compression, i.e. when η → ∞, the von Mises stress σe is zero and the mean 
stress σm can be written as 

2
m c 1/ 1/ 9pσ σ α= = + , (8) 

where p is the hydrostatic pressure.  
Hydrostatic pressure obtained from cell-based finite element model under hydrostatic 

compression and predictions using the R-PH model and the D-F model with different α are 
illustrated in Fig. 4. The results show that the prediction of the D-F model using α = 1.06 
determined by Eq. (5) has a better agreement with the numerical results than those of Eq. (3) and 
Eq. (4). Nevertheless, the prediction using α = 1.06 is deteriorated when the strain is larger than 0.3, 
but it is improved when strain is close to the theoretical compaction strain defined as -lnρ. So, all 
the results do not provide satisfactory predictions and thus considering α as a constant may be 
improper.  

A variable ellipticity. According to the definition of isotropic ellipse yield surface, the 
ellipticity can be determined by two points on the ellipse, i.e.  

2 2
c c3 9 pα σ σ= − , (9) 

where σc is the uniaxial stress and p the hydrostatic pressure. In this study, three random samples 
were used to validate the dispersion of samples. The variations of α with true equivalent plastic 
strain obtained from the three samples are depicted in Fig. 5. The results show obviously that α is 
not a constant.  
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Fig. 3 Quasi-static uniaxial 

compression stress–strain relation 
and the fitting by R-PH model. 

Fig. 4 Predictions of hydrostatic 
pressure using different value of 

α. 

Fig. 5 Ellipticity α 
calculated by Eq. (9). 

Conclusions 

The self-similar isotropic hardening model developed by Deshpande and Fleck [4] has been 
verified by a cell-based finite element model based on the 3D Voronoi technique. Hydrostatic 
pressure is predicted by the uniaxial stress–strain relation and a constant ellipticity α, based on the 
Deshpande-Fleck foam model. The uniaxial stress–strain relation is fitted well by the R-PH model. 
However, all the results do not provide a perfect prediction, hence considering α as a constant may 
be incorrect. Thus, inversely, uniaxial compression and hydrostatic compression are used to 
determine the value of ellipticity α. The results show that the ellipticity α varies with the equivalent 
plastic strain.  
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