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A B S T R A C T

The hyperthermia is an efficient technique for tumor treatment, in which the tumor is subjected to a heating
source, such as laser, supersonic or electromagnetic field. In order to improve the therapeutic efficiency and to
protect the surrounding healthy tissues, gold nanoshells are embedded in the tumor as the additive to make it
absorb more thermal energy than the healthy tissues. In the present study, a one-dimensional three-layered
model is established to investigate the thermal response of the bio-tissue in the hyperthermia treatment for
subcutaneous tumor. The governing equations are solved analytically by using the Green’s function method and
the Henriques’ model is employed to evaluate the degree of thermal damage in the target tissue. The influences
of the volumetric density of gold nanoshells on the temperature distribution and thermal damage are discussed
in detail. When the gold nanoshells are embedded with a proper density, it can improve the efficiency of tumor
killing and protecting the subcutaneous tissue from being burnt. The closed-form solution for the governing
equations in multilayered tissues can be a theoretical guideline to selection of appropriate parameters of the gold
nanoshells.

1. Introduction

Hyperthermia has become a significant and efficient therapeutic
method for tumor treatment. The tumor cells are more sensitive to the
high temperature than the healthy cells. The temperature of 41–47℃
will cause irreversible damage in the cancer cells by loosening the cell
membranes and denaturing the proteins (Huang et al., 2008). The
heating sources include the radio frequency, microwaves and ultra-
sound waves. However, these sources suffer from the drawbacks of the
associated damage to the surrounding healthy tissues. An alternative
strategy is photothermal therapy (PTT) in which photothermal agent is
employed for heat generation in a local environment (Huang et al.,
2016). Laser beam is a suitable heating source because of the high
parallelism degree, energy concentration and reliability. To ensure the
patients’ safety and improve treatment efficiency in laser hyperthermia,
one of the most significant issues is to predict the thermal response of
the bio-tissue induced by laser beam. The interaction between the
heating source and vivo bio-tissue in thermal therapy has attracted
much attention of researchers. Among them, Lin and Li (2016) analy-
tically investigated bioheat transfer and heat-induced mechanical re-
sponse in bi-layered human skin with variable thermal material prop-
erties. Cercadillo-Ibarguren et al. (2010) carried out an experimental

study to perform a histological evaluation of the thermal effect pro-
duced on soft tissue irradiated with CO2, Er, Cr:YSGG or diode lasers. It
was found that the wave length of the laser determines the absorption
rate characteristics of every tissue and the thermal effect. Tuncer et al.
(2010) compared the conventional surgery with CO2 laser operative on
oral soft tissue pathologies and proved that CO2 laser was an effective
instrument for soft tissue excisional biopsies with minimal in-
traoperative and postoperative complications and good pain control.

Heat transport in biological tissues is complicated due to the effects
of the vascular system, blood-tissue convection, blood perfusion, and
metabolic heat generation. The accurate description of the temperature
distribution in tissues is critical to preclude thermal damage in ther-
motherapy. The first research to investigate the thermal response of bio-
tissue was made by Pennes (1948) who developed a bio-heat transfer
model for living tissues by combining the Fourier’s law with the effects
of metabolism and blood vascular system. The Pennes model has been
successfully utilized in a batch of researches. For example, Shih et al.
(2007) and Hooshmand et al. (2015) investigated the effects of the
thermal response of a semi-infinite biological tissue due to a sinusoidal
heat flux at the skin. Shih et al. (2007) and Hooshmand et al. (2015)
studied the bioheat transfer behaviors of biological tissues induced by
laser irradiation. Cui et al. (2016) presented an analytical heat transfer
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model for targeted brain hypothermia based on Pennes model. Yue
et al. (2004) developed a one-dimensional steady-state bio-heat transfer
model of living tissues in cylindrical coordinates. Dai et al. (2004) de-
veloped a fourth-order compact finite-difference scheme for solving the
one-dimensional Pennes bioheat transfer equation in a triple layered
skin structure. (Malek and Abbasi, 2016) derived the analytical and
mild solutions of Pennes boundary control problem, which yields a
discrete optimization problem for temperature profile at the specific
depth point as well as temperature profile in the skin at the final time.
Ezzat et al. (2014) developed a new mathematical model for Pennes
bioheat equation with the usage of fractional calculus and investigated
the thermal behaviors in vivo tissue which was subjected to in-
stantaneous surface heating.

The safety of patients is the most significant requirement in the
thermal therapy, so a lot of researches were focused on the thermal
damage of bio-tissues. Liu et al. (2012) proposed that skin damage
could be represented as a chemical rate process, which could be cal-
culated by using a first order Arrhenius rate equation, whereby damage
is related to the rate of protein denaturation and exposure time at a
given absolute temperature. Based on this theory, Verma et al. (2017)
studied biothermomechanics of skin tissues for one-dimensional and
three-dimensional models. Liu et al. (2012) estimated the thermal da-
mage in the living bio-tissue during the laser hyperthermia process by
considering the non-Fourier effects of heat conduction. Verma et al.
(2017) investigated the heat transfer characteristics in laser-skin-tumor-
tissue interaction. A three-layered model was established and a finite
volume based numerical bioheat transfer model was employed to pre-
dict the damage in healthy tissue. Kumar and Rai (2016) proposed a
mathematical model on heat transfer in multilayered tissues in finite
domain to predict the control temperature profile at hyperthermia po-
sition. The finite element Legendra wavelet Galerkin approach was used
to solve the governing equations. Afrin et al. (2012) explored the
thermal damage induced by laser irradiation by carrying out a nu-
merical simulation. Two heat conduction models, namely DPL model
and Pennes model, were used to derive the temperature response and
thermal damage and the results of the two models were compared.

Gold nanoparticles have found great usage in biomedical applica-
tions, especially in tumor therapy. The laser energy absorption of bio-
tissue is weaker than the scattering effects (Vera and Bayazitoglu,
2009a). The embedding of nanoparticles can enhance the energy ab-
sorption of the media, which will cause a localized high-temperature
and kill the tumor cells. Vera and Bayazitoglu (2009b) used a one-di-
mensional radiative transport model to calculate the collimated and
diffuse components of incident radiation in a series of semi-infinite
nanoshell-embedded slabs, which represents human tissue media. It
was shown that adding too many nanoshells or increasing laser power
can cause overheating in the entry region while leaving the rear region
heated only by conduction, producing an undesirable temperature dif-
ferential. Hatef et al. (2015) carried out a numerical analysis to in-
vestigate the photothermal response of gold nanoshells with the most
common size in an aqueous medium for biomedical applications. Xu
et al. (2011) numerically studied nanoparticle-assisted laser-induced
interstitial thermotherapy for cancer treatment. It was found that the
local enhancement in laser photon absorption induced by nanoparticles
will greatly prompt tumor hyperthermia. Tjahjono and Bayazitoglu
(2008) investigated the heating of a one-dimensional, conducting and
radiative participating medium due to embedded absorbing and scat-
tering nanoparticles. The finite difference explicit method was used to
derive the temperature distribution in the slab. Liu et al. (2009) derived
a semi-analytical solution for a one-dimensional heat conduction
equation, which described the heating process induced by pulsed laser
and continuous-wave laser.

Green’s function approach is useful in solving partial differential
Eqs. Vahidhosseini et al. (2016) and Sun et al. (2017). For example, Yen

and Beck (2004) used the Green’s function method to investigate the
axisymmetric two-dimensional heat conduction behavior of a bi-
layered circular plate during pulsed laser heating. Flint et al. (2018)
carried out a semi-analytical solution for the transient temperature
fields that were generated in a three dimensional solid body when it is
subjected to moving heat sources. Ma et al. (2018) developed a general
solution for the dual-phase-lag heat conduction equation in a two-di-
mensional finite medium by utilizing the Green’s function approach.
The Green’s function method is quite general in that all non-
homogeneous problems are handled in the same manner and the so-
lutions are presented formally in a very compact form (Ma et al., 2017;
Ozisik, 1980). The principal difficulty in the use of Green’s function
approach appears to be the determination of the appropriate Green’s
function for a given problem, because it depends on the type of co-
ordinate system, the boundary conditions, and the extent of the region
(i.e., finite, semi-infinite, or infinite). Many researchers have been de-
voted to determining the appropriate Green’s functions. At present,
there are mainly two methods to obtain a Green’s function: the Laplace
transform method with respect to time variable, and the variable se-
paration technique (Ozisik, 1980).

In summary, the above mentioned literatures mainly carried out
numerical simulations and it is still hard to obtain the analytical solu-
tion for the thermal response in the nanoshell-assisted tumor hy-
perthermia. To address this issue, an analytical research is carried out
to investigate the thermal treatment of the subcutaneous tumors.
Green’s function method is used to solve the thermal transfer equation
for the multilayered nanoparticle-embedded bio-tissue subjected to the
laser beam. Moreover, the thermal damages in the tumor and the
healthy tissue are evaluated based on the closed-form solution as well
as the Henriques’ model. The effects of the volumetric density of na-
noparticles and the optical parameters of the healthy tissue, tumor and
gold nanoparticles are discussed in detail.

2. Mathematical models

2.1. Bio-heat conduction model

Pennes model is employed in the present study, which considered
the heat exchange between the tissue and the blood in the capillary bed.
It is assumed that the blood enters the capillaries at an arterial tem-
perature and exits at the local tissue temperature. The Pennes bioheat
conduction equation based on Fourier’s law yields (Pennes, 1948;
Nobrega and Coelho, 2017):

= + + +c T
t

k T w c T T Q Q( ) ( )t t b b b a m laser (1)

where, t represents the tissue density, ct the tissue specific heat, T the
tissue temperature, k the tissue heat conductivity, wb the blood perfu-
sion rate, b the blood density, cb the blood specific heat,Tathe body and
arterial blood temperature, Qm the metabolic heat generation per unit
time and volume and Qlaser the volumetric heat source due to the laser
beam.

2.2. Thermal damage model

The study of burnt damage caused by a thermal source on a living
tissue is complex and multidisciplinary, which depends on the power of
the heat source and its duration. Moritz R (1947) proposed an expres-
sion for the denaturation process based on the first order approximation
of the Arrhenius equation. The denaturation rate K is defined as:

=K T A E
RT

( ) exp a
(2)

where, A is the tissue frequency factor, R the universal gas constant and
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Ea the activation energy of the denaturation reaction. And the thermal
damage can be evaluated as:

=t A E
RT

dt( ) exp
t a

0 (3)

2.3. Energy absorption of nanoshells

The purpose of embedding nanoshells in the tumor is to augment
the optical energy absorption of the tumor. According to the research of
Vera and Bayazitoglu (2009a), the nanoshell with a core radius of
16 nm and shell thickness of 5 nm is a suitable choice with peak optical
absorption and minimal scattering when exposed to a 633-nm laser, as
shown in Fig. 1. The gold nanoshells are assumed to distribute uni-
formly in the tumor region.

The absorption coefficient for the nanoshell-embedded tumor can
be derived from the summation of the absorption coefficients for tumor
and nanoshells, which can be written as (Vera and Bayazitoglu, 2009a):

= +µ µ µ20 2 0 (4)

where, µ2, µ0 and µ20 are the absorption coefficients of the tumor, the
nanoshell supplement and the nanoshell-embedded tumor.

The absorption coefficient for nanoshell supplement is determined
by the geometry, optical characteristics ( =Q 5.9492ma

1) and volume
density of the nanoshells (NT). In the present study, the absorption
coefficient for nanoshell supplement can be calculated from the fol-
lowing formula (Vera and Bayazitoglu, 2009a):

=µ r Q Na T0 0
2 (5)

2.4. Governing model

In the present study, the target tissue in the thermal therapy is
considered as a finite domain, which is shown in Fig. 2. The bio-tissue is
considered as a one-dimensional model consisting of the normal tissue
( <x x x2 3), the nanoshell-embedded tumor ( <x x x1 2) and the skin
as top layer ( <x x0 1). The laser beam irradiates the target tissue on
the top surface ( =x 0), which is considered as a body heat source in the
three-layer tissue. The thermal condition on the top surface is assumed
to be natural convection (the environment temperature =T 20 Ce

o ) and
the temperature on the bottom is taken as the body temperature

=T 37 C0
o .

It is assumed that the laser power is absorbed in the three layers and
the heat source can be regarded as the volumetric heat generation in
each layer, which can be expressed as (Orndorff et al., 2017; Tang et al.,
2006):

=q x q R µ µ x x x( ) (1 ) exp( ), 0a1 0 1 1 1 (6)

= <q x q R µ µ x µ x x x x x( ) (1 ) exp[ ( )],a2 0 20 1 1 20 1 1 2 (7)

= <q x q R µ µ x µ x x µ x x x x x( ) (1 ) exp[ ( ) ( )],a3 0 3 1 1 20 2 1 3 2 2 3

(8)

where, q0 is the energy density of the laser source, Ra the reflective ratio
of each layer, and µ1 and µ3 the absorption coefficients of the first and
the third layers, respectively.

With the Pennes model employed, the governing equations of the
three-layered system can be written as:

= + +

= + + <

= + + <

c k w c q q x x

c k w c q q x x x

c k w c q q x x x

, 0

,

,

t x b b b m

t x b b b m

t x b b b m

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 1 2

3 3 3 3 3 3 3 2 3

1 2 1
2

2 2 2
2

3 2 3
2 (9)

where, = T Ti i 0, i, ci, ki, wbi and qmi ( =i 1, 2, 3) are the temperature
rise, the density, the specific heat capacity, the heat conductivity, the
blood perfusion and the metabolic heat generation of each layer, re-
spectively. The subscript i refers to each layer ( =i 1 for the skin, =i 2
for the tumor and =i 3 for the normal tissue). qi is the external heating
source, which is defined by Eqs. (6)–(8).

As is mentioned above, the top surface is set to be naturally con-
vective and the bottom keeps at a constant temperature T0. The thermal
contacts between the three layers are assumed to be perfect, which
implies continuity of temperature at the interfaces. So the boundary
conditions can be written as:

+ = =
= =
= =
= =
= =
= =

k h h T T x
x x

k k x x
x x

k k x x
x x

( ), at 0
, at

, at
, at

, at
0, at

x e

x x

x x

1 1 1 1 0

1 2 1

1 2 1

2 3 2

2 3 2

3 3

1

1 2

2 3

(10)

And the initial conditions are

= = = =
= = = =

t
t

0, at 0
0, at 0t t t

1 2 3
1 2 3

(11)

Fig. 1. Scattering and absorption spectra of the nanoshell suspension (Vera and
Bayazitoglu, 2009a).

Fig. 2. Schematic geometry of the one-dimensional three-layered tissue.
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3. Analytical solution of governing equations

The Green’s Function method, which is on the basis of superposition
principle and turns out to be effective to solve partial differential
equations, is employed in this section to solve the governing equations
analytically.

3.1. Determination of Green’s function for the problem

To determine the desired Green’s functions appropriate for the so-
lution of the non-homogeneous heat conduction equations, it is re-
quired to consider the homogeneous version of the problem defined by
Eq. (9) for the same region, which is given as:

=

= <

= <

x x

x x x

x x x

, 0

,

,

t x
A
k

t x
A
k

t x
A
k

1 1 1 1

2 2 2 1 2

3 3 3 2 3

b

b

b

1 2 1
2

1
1

2 2 2
2

2
2

3 2 3
2

3
3 (12)

where =i
k

c
i

i i
is the thermal diffusivity.

In the auxiliary problem, the general initial conditions can be set as:

= =
= = <
= = <

F x t x x
F x t x x x
F x t x x

( ) at 0 in 0
( ) at 0 in
( ) at 0 in x

1 1 1

2 2 1 2

3 3 2 3 (13)

By means of the variables separation method, i can be separated in
the following form:

= =X x t i( ) ( ), ( 1, 2, 3)i i (14)

The functions X x( )i should satisfy the following equations:

=

= <

= <

x x

x x x

µ x x x

, 0

,

,

X
d X
dx

X
d X
dx

X
d X
dx

1 2
1

1 2
1 2

1 2
2 3

1

2 1
2

2

2 2
2

3

2 3
2 (15)

And

= =
= =
= =
= =
= =
= =

k h X x
X X x x

k k x x
X X x x

k k x x
X x x

, at 0
, at

, at
, at

, at
0, at

X
x

X
x

X
x

X
x

X
x

1 1 1

1 2 1

1 2 1

2 3 2

2 3 2

3 3

1

1 2

2 3

(16)

The solution for t( ) is obtained as:

=t t( ) exp( )2 (17)

where,

= + = + = +A
k

A
k

µ A
k

b b b2
1

2 1

1
2

2 2

2
3

2 3

3 (18)

The mode functions in x-direction can be obtained as:

= +
= + <
= + <

X x A x A x x x
X x B x B x x x x
X x C µ x C µ x x x x

( ) cos( ) sin( ), 0
( ) cos( ) sin( ),
( ) cos( ) sin( ),

m m m m m

m m m m m

m m m m m

1, 1, 2, 1

2, 1, 2, 1 2

3, 1, 2, 2 3 (19)

where the coefficients A m1, , A m2, , B m1, , B m2, , C m1, and C m2, can be de-
termined from the following equations, which are obtained by sub-
stituting Eq. (19) into Eq. (16):

=
+ =

+ +

=
+ =

+ +

=
+ =

h A k A
A x A x B x B x

A k x A k x B k x

B k x
B x B x C µ x C µ x

B k x B k x C k µ µ x

C k µ µ x
C µ x C µ x

0
cos( ) sin( ) cos( ) sin( ) 0

sin( ) cos( ) sin( )

cos( ) 0
cos( ) sin( ) cos( ) sin( ) 0

sin( ) cos( ) sin( )

cos( ) 0
cos( ) sin( ) 0

m

m m m m

m m m m m m

m m

m m m m

m m m m m m

m m

m m

1 1 1 2

1 1 2 1 1 1 2 1

1 1 1 2 1 1 1 2 1

2 2 1

1 2 2 2 1 2 2 2

1 2 2 2 2 2 1 3 2

2 3 2

1 3 2 3 (20)

Since Eq. (20) has untrivial solutions, the eigenvalues m, m and µm
should satisfy the following equation:

The unknown coefficients in Eq. (19) can be derived as:

=

h k
x x x x

k x k x k x k x
x x µ x µ x

k x k x k µ µ x k µ µ x
µ x µ x

0 0 0 0
cos( ) sin( ) cos( ) sin( ) 0 0

sin( ) cos( ) sin( ) cos( ) 0 0
0 0 cos( ) sin( ) cos( ) sin( )
0 0 sin( ) cos( ) sin( ) cos( )
0 0 0 0 cos( ) sin( )

0

m

m m m m

m m m m m m m m

m m m m

m m m m m m m m

m m

1 1

1 1 1 1

1 1 1 1 2 1 2 1

2 2 2 2

2 2 2 2 3 2 3 2

3 3 (21)

=

=

=
+ +

=
+ + +

=
+

=
+

A

A h
k

B
k x A x A x k x A x A x

k

B
k x A x A x k x A x A x

k

C
B x B x µ x

µ x x

C
B x B x µ x

µ x x

{ 1

sin( )[ sin( ) cos( )] cos( )[ cos( ) sin( )]

cos( )[ sin( ) cos( )] sin( )[ cos( ) sin( )]

[ cos( ) sin( )]sin( )
sin[ ( )]

[ cos( ) sin( )]cos( )
sin[ ( )]

m

m
m

m
m m m m m m m m m m m m

m

m
m m m m m m m m m m m m

m

m
m m m m m

m

m
m m m m m

m

1,

2,
1

1

1,
1 1 1, 1 2, 1 2 1 1, 1 2, 1

2

2,
1 1 1, 1 2, 1 2 1 1, 1 2, 1

2

1,
1, 2 2, 2 3

2 3

2,
1, 2 2, 2 3

2 3 (22)
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From Eq. (18), the following equation can be attained:

= + = + = +A
k

A
k

µ A
km m

b
m

b
m

b2
1

2 1

1
2

2 2

2
3

2 3

3 (23)

Combining the initial conditions Eq. (13) and the boundary condi-
tions Eq. (16), the complete solutions for Eq. (12) can be determined as:

= =
=

x t
M

t X x i( , ) exp( ) ( ), 1, 2, 3i
m

m

m
m i m

1

2
,

(24)

where, with the value of x0 set to be zero,

=
=

=

k X x F x dx( ) ( )m
i

i

i x x

x
i m i

1

3

,
i

i

1 (25)

=
=

M k X x dx( )m
i

i

i x

x
i m

1

3

,
2

i

i

1 (26)

According to Green’s function method, the solutions can be ex-
pressed in terms of Green’s function as:

= =
=

= =x t G x t x F x dx i( , ) ( , , ) ( ) , 1, 2, 3i
j

x x

x
i j j

1

3

, 0j

j

1 (27)

With the comparison between the two sets of solutions (Eqs. (23)
and (26)), the Green’s function for the homogeneous problem can be
obtained as:

==
=

G x t x
M

k
t X x X x( , , ) 1 exp( ) ( ) ( )i j

m m

j

j
m i m j m, 0

1

2
, ,

(28)

where, =i j, 1, 2, 3.
Then replace t in Eq. (27) by t( ), and the desired Green’s func-

tion for Eq. (9) can be obtained as:

=
=

G x t x
M

k
t X x X x( , , ) 1 exp[ ( )] ( ) ( )i j

m m

j

j
m i m j m,

1

2
, ,

(29)

3.2. Solution for non-homogeneous heat conduction equations

According to Green’s function method, the solutions for Eqs.
(9)–(11) are

=

+

= = =

= =

x t G x t x
k

Q x dx d

k
G x t x f d

( , ) ( , , ) ( , )

( , , ) ( )

i
j

t

x x

x
i j

j

j
j

t i

i
i x

1

3

0 ,

0 ,1 0 1

j

j

1

(30)

where, Q x( , )j represents the heat source in the jth layer and
=f h T T( )e1 1 0 is the boundary condition on the top boundary.
In the present research, all the three layers are influenced by the

laser beam, so the heat source can be expressed as:

= +
= + <
= + <

Q x q q x x x
Q x q q x x x x
Q x q q x x x x

( ) ( ), 0
( ) ( ),
( ) ( ),

m

m

m

1 1 1 1

2 2 2 1 2

3 3 3 2 3 (31)

Substitute Eqs. (28) and (31) into Eq. (30), and the temperature
increments in the three layers can be obtained as:

= < < =
=

x t H
M

X x P t x x x i( , ) ( ) ( )in , 1, 2, 3i
m

m

m
i m i i

1
, 1

(32)

Table 2
Thermal and optical parameters of living tissue.

Parameters Blood Skin Tumor Subcutis

Thermal conductivity (W/mK) – 0.293 0.51 0.21
Density (kg/m3) 1060 1100 1050 911
Specific heat (J/kg K) 3770 3150 3950 2348
Blood perfusion (s−1) – 0.0016 0.007 0.0006
Metabolic heat Generation (W/m3) – 368.1 4000 464.6
Absorption coefficient (m−1) – 180 180 180
Thickness (m) – 0.001 0.004 0.005

Table 1
Optical parameters of laser beam.

Parameters Values

q0, Power density(W/m
3) ×1 104

Ra, Energy rejection coefficient 0.024

Table 3
Parameters for thermal damage prediction.

Temperature range (°C) E R/ (K)a A, Frequency factor(s−1)

T≤55 7.5×104 3.1× 1098

T > 55 3.54× 104 5.0× 1045

Fig. 3. Temperature vs location in the target tissue.
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where,

= + +
=

H f L q G( )m m
i

i m mi i m1,
1

3

, ,
(33)

=
=

G X x dx( )i m x x

x
i m, ,

i

i

1 (34)

=L X x q x dx( ) ( )i m x

x
i m i, ,

i

i

1 (35)

=P t t d( ) exp[ ( )]
t

m0
2

(36)

4. Physical parameters

The physical parameters used in the present study are introduced in
this section.

The optical parameters of the laser beam which are introduced in
Eqs. (6)–(8) are shown in Table 1. The heat sources are considered as
volume heat sources in the three layers.

The thermal and optical parameters of the skin, tumor,

Fig. 4. Temperature variation with time.

Table 4
Contribution of the nanoshells to the tumor’s absorption coefficient.

Nanoshell
density(m 1)

Nanoshell absorption
coefficient(m 1)

Absorption coefficient of
nanoshell embedded
tumor(m 1)

×1 1014 0.824 180.824

×1 1015 8.24 188.24

×1 1016 82.4 262.4
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subcutaneous tissue and blood are shown in Table 2 (Vera and
Bayazitoglu, 2009a; Nobrega and Coelho, 2017; Orndorff et al., 2017).

The parameters that characterize the thermal damage, which are
introduced in Eqs. (2) and (3), are shown in Table 3 (Nobrega and
Coelho, 2017). It is accepted that: = 0.53 represents the first-degree
burn, = 1 for the second degree-burn and = 104 for the third-de-
gree burn (Tzou, 1995; Lin, 2013).

5. Results and discussions

A calculating example for mathematical model in the present study
is carried out with the usage of the physical parameters shown in
Section 4. The central points of each layer (x=0.0005m, x=0.003m,
x=0.0075m) are selected as typical points to represent the three
layers respectively.

Fig. 3 shows the temperature variation with the x-coordinate in the
target tissue during the laser treatment for tumor. It is shown in
Fig. 3(a) that the peak value of the temperature appears below the top

surface in the first layer (the skin). Due to the natural convection
boundary condition, the temperature does not maximize at the top
surface. The laser energy decays with the increasing of the depth, so the
temperature decreases as well. With the time going by, the incident
energy increases, and the bulk temperature of the target tissue rises.
Fig. 3(b) shows the temperature distributions with the different nano-
shell density. The embedding of nanoshells can augment the absorption
coefficient of the tumor, as is shown in Eqs. (6)–(8). The temperature in
the skin and the tumor increases with the increment of nanoshells
density, however the temperature in the subcutis decreases. Especially,
this phenomenon is obvious when the value of the density reaches

= ×N 1 10 mT
16 1, as is shown in Fig. 3(b). The participation of nano-

shells changes the energy distribution in the target tissue. More energy
is concentrated in the top layers and less energy is absorbed in the
subcutaneous tissue. The increasing temperature-difference between
the tumor and subcutis tissue due to the embedding of nanoshells was
also found efficient for cancer therapy in the published literature (Vera
and Bayazitoglu, 2009a).

Fig. 5. Temperature variation with the volumetric density of the gold nanoshells.
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Fig. 4 shows the time histories of temperatures in the target tissue.
The laser beam continues irradiating on the tissue, so the tempera-
tures in the three layers increase with time going by. However, the
temperature grows the fastest at the beginning and then slows down.
The temperature drops down from layer to layer because of the op-
tical extinction in the upper layer, as is shown in Fig. 4(a). Fig. 4(b)
(c) and (d) show the temperature curves at a specified location in the
skin, tumor and subcutis, respectively. As is introduced above, the
embedding of nanoshells will enhance the energy absorption in the
tumor and remain less energy for the subcutis. As a result, the tem-
perature in tumor increases with the increment of nanoshell density,
as is shown in Fig. 4(c). However, the thermal response in the sub-
cutis is opposite to that in the tumor, as is shown in Fig. 4(d). The
temperature in the subcutaneous tissue decreases due to the partici-
pation of the nanoshells, which was also mentioned in Vera’s work
(Vera and Bayazitoglu, 2009a). That is to say, the embedded nano-
shells could advantage tumor hyperthermia in two aspects: opti-
mizing the temperature distribution and shortening the treatment
time. Table 4 shows the contribution of the nanoshells to the tumor’s
absorption coefficient. The absorption coefficient of the tumor
without additive is =µ 180m2

1. With the comparison of µ2 and the
parameters presented in Table 4, it can be found that the absorption
coefficient is obviously improved when the volumetric density of
nanoshells reaches = ×N 1 10 mT

16 1, which agrees well with Fig. 4(b)
(c) and (d).

It can be deduced that the gold nanoshells can offer excellent as-
sistance in the tumor heat treatment by detaining more laser energy in
the tumor instead of the subcutis. As a result, the increment of nano-
shell density will raise the temperature of tumor and reduce the tem-
perature of subcutaneous tissue. Fig. 5 shows the temperature variation
with the volumetric density of the gold nanoshells.

It can be found from Fig. 5 that the gold nanoshells doesn’t in-
fluence the temperature obviously until the volumetric density
reaches the value of = ×N m1 10T

16 1. This influence becomes more
and more significant with the increasing of NT, which is in good
agreement with Table 4. Fig. 5(a) shows the temperature curves at
different positions in the target tissue. The points x=0.0005 m,
x=0.003m and x=0.0075 m are located in the skin, the rumor and
the subcutis, respectively, as has been mentioned above. It is clear
that the increment of the nanoshell volumetric density leads
to increasing of the tumor temperature and decreasing of
the subcutaneous temperature. And this tendency becomes
more and more noticeable with the increasing of nanoshell volu-
metric density. Fig. 5(b) (c) and (d) show the temperature curves at
different time instants for each layer. It is shown in Fig. 5(b) and (c)
that the temperatures of the skin and the tumor are in positive cor-
relation with the radiation time and the volumetric density of nano-
shells. However, the temperature of subcutaneous tissue is inversely
proportional to the volumetric density of nanoshells, as is shown in
Fig. 5(d).

In thermal treatment, it is demanded to protect the surrounding
healthy tissues while killing the tumor cells. So it is necessary to study
the thermal damage behavior of the tissue, which is determined by the
temperature of the target tissue and it will be discussed in the following.

Fig. 6 shows the thermal damage of the target tissue caused by the
laser radiation in the process of tumor heat treatment. Fig. 6(a) shows
the thermal damage variation with x-coordinate at different times.

The serious burn occurs mainly in the top two layers (the skin and the
tumor). The degree of the burn decreases rapidly into the depth,
because of the decreasing of the absorbed energy. Fig. 6(b) shows the
influence of the nanoshell volumetric density on the thermal damage.
Since more energy is absorbed by the tumor and less by the sub-
cutaneous tissue due to the embedding of nanoshells, the burns in the
skin and the tumor are deepened and the thermal damage in the
subcutaneous tissue is weakened. That is to say, the nanoshell-as-
sisted heat treatment will improve the curative effect for the tumor
and protect the subcutaneous tissue from being seriously burnt
meanwhile.

Fig. 7 shows the thermal damage in the target tissue, which varies
with time. It is accepted that the irreversible damage occurs when

= 1 (the second-degree burn), which corresponds to a denaturation
of 63% of the molecules (Zhou et al., 2009). It is shown in Fig. 7(a)
that the thermal damage in the three layers becomes more and more
serious as time passes. However, the irreversible thermal damage
occurs earlier in the skin and tumor than that in the subcutis. Fig. 7(b)
(c) and (d) show the influences of the nanoshell embedding on the
thermal damage in each layer. With the nanoshells embedded, the
temperatures in the skin and tumor increase faster and higher. So the

Fig. 6. Thermal damage distributions in the target tissue.
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irreversible thermal damage occurs earlier in the top two layers.
However, it takes more time to irreversibly burn the subcutaneous
tissue. These conclusions are in good agreement with Fig. 7. The
embedding of the gold nanoshells can help concentrating the laser
energy in the tumor instead of the subcutis. And the subcutaneous
tissues will be protected from being burnt.

It is shown in Table 4 and Fig. 5 that the embedding of nanoshells
can influence the energy distribution in the three-layered system by
increasing the absorption coefficient of the tumor. This effect shows
up when = ×N m1 10T

16 1 and becomes more and more obvious with
the increasing of NT. Fig. 8(a) shows the thermal damage variation
with the volumetric density of the gold nanoshells in each layer. The
thermal damage parameters in skin and tumor increase with the in-
crement of the nanoshell volumetric density. However the thermal
damage in the subcutis decreases with the increment of the nanoshell
density, which can also be found in Fig. 8(b)-(d). The thermal damage

is influenced by the thermal characteristics, the radiation time and
the energy power of the laser source. With the assistance of the gold
nanoshells, it is easier to ensure the safety of the subcutis during the
humor thermal treatment by adjusting the volumetric density of the
nanoshells, the radiation duration and the energy power of the laser
source.

As is introduced in Section 4, the thermal damage can be classified
into three degrees according to the parameter . In order to embody
the burn depths in the three layers more intuitively, the variations of
the burn depth in the target tissue are shown in Fig. 9. The thermal
damage in bio-tissue is caused by the heat accumulation and the
duration of the thermal effect is an important factor on the burn. The
degree of thermal damage increases as time passes, so the burn depths
in three degrees all increase with time, which can be found from
Fig. 9(a). Fig. 9(b) shows the variation of burn depth with the na-
noshell volumetric density. With the increment of the nanoshell

Fig. 7. Thermal damage variation with time.
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density, the temperature increases in the rumor layer while decreases
in the subcutis. As a result, the thermal damage in the tumor becomes
more serious and the burnt region is smaller. As is shown in Fig. 9(b),
when the nanoshell density NT increases to a proper value, the
burnt region in subcutis begins to decrease and the serious burn
(the third-degree burn) starts to appear in the tumor. It comes
to a conclusion that the gold nanoshells can be used to improve the
tumor-killing effects and reduce the thermal damage to the healthy
subcutis.

6. Conclusions

Thermal treatment is an efficient therapy method for tumor be-
cause the tumor cells are more sensitive to high temperature than the
healthy cells are. In the present study, the thermal response of the
bio-tissue in the nanoshell-assisted thermal treatment for the subcutis
tumor was investigated. The target tissue was simplified as a one-
dimensional model, which is composed of three layers: skin, tumor
and subcutaneous tissue. Gold nanoshells were embedded in the

tumor to augment its optical absorption property. A continuous laser
beam irradiated on the top surface of the model. The governing
equations were analytically solved with the usage of Green’s function
method. The thermal responses of the target tissue, including the
temperature distribution and the thermal damage distribution, were
derived.

The embedding of the gold nanoshells can increase the absorption
coefficient of the tumor, which means that more energy is
absorbed by the tumor and less by the subcutaneous tissue. By se-
lecting the proper volumetric density of the nanoshells, the high-
temperature zone can be limited in the tumor instead of the subcutis
and the serious burn will occur mainly in tumor with proper irra-
diation duration. Embedding gold nanoshell is an effective assistance
in the thermal treatment for subcutis tumor. The therapeutic effi-
ciency can be increased and the subcutaneous tissue can be well
protected from thermal damage. The analytical solution for the
thermal response of the bio-tissue in the thermal treatment can help
to determine the nanoshell volumetric density and the treatment
duration.

Fig. 8. Thermal damage variation with the volumetric density of the gold nanoshells.
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