
A Scalable and Persistent Key-Value Store Using Non-Volatile
Memory

Doyoung Kim
Department of Computer Science

Yonsei University
50, Yonsei-ro, Seodaemun-gu, Seoul,

Republic of Korea
kem2182@yonsei.ac.kr

Won Gi Choi
Department of Computer Science

Yonsei University
50, Yonsei-ro, Seodaemun-gu, Seoul,

Republic of Korea
cwk1412@yonsei.ac.kr

Hanseung Sung
Department of Computer Science

Yonsei University
50, Yonsei-ro, Seodaemun-gu, Seoul,

Republic of Korea
hssung@yonsei.ac.kr

 Sanghyun Park †
Department of Computer Science

Yonsei University
50, Yonsei-ro, Seodaemun-gu, Seoul,

Republic of Korea
sanghyun@yonsei.ac.kr

ABSTRACT
Non-volatile random-access memory1 has gained recent attention
because of its guaranteed data persistence and low data access
latency. In-memory key-value stores generally operate by storing
log files, which generate disk I/O to prevent data loss from
unexpected system failure. As the performance of in-memory key-
value stores is bound by disk speed, the advent of NVRAM can be
a viable solution to alleviate performance degradation. However,
leveraging NVRAM to store entire data is nascent in terms of the
cost per capacity. We propose a novel hybrid key-value scheme
that consists of NVRAM and dynamic random-access memory,
which supports a higher level of data persistence while
maintaining high performance. Results from our proposal scheme
show outstanding results against NoSQL benchmarks in terms of
performance per data persistency. In addition, our scheme
provides scalability allowing NVRAM and DRAM to be used
without possibility of data loss.

CCS CONCEPTS
• Information Systems → Key-value stores; Hardware → Non-
volatile memory

KEYWORDS
In-Memory Key-value stores; Non-volatile memory; Data
Persistence; Database Logging; Hybrid Database system

† Corresponding author
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the Owner/Author.
SAC '19, April 8–12, 2019, Limassol, Cyprus
© 2019 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5933-7/19/04.
https://doi.org/10.1145/3297280.3298991

1 INTRODUCTION
In-memory key-value store [6] is a database that holds all the
metadata in dynamic random-access memory (DRAM), including
the key-value data. However, since DRAM is volatile, data is lost
when a system is unexpectedly crashed. To prevent data loss,
Redis [15], a well-known open source In-memory key-value store
widely used in various enterprise solutions, provides two types of
logging schemes known as Redis-database file (RDB) and
append-only file (AOF). As both schemes generate disk I/O to
access persistent storage, Redis suffers from critical performance
issues.
Non-volatile random-access memory(NVRAM, NVM) has been
considered a promising device for replacing the existing block
devices, such as hard disk drives or solid-state drives. Several
NVRAM devices [3, 12] have been actively researched. As
NVRAM provides high performance, that is comparable to
DRAM, it can be used to alleviate the performance gap between
DRAM and slower block devices. Although In-memory key-value
stores leverage DRAM to achieve high throughput for client
requests, the stores maintain information in a persistent device to
facilitate recovery from an unexpected system crash, which
bounds the entire performance of the system. As NVRAM
preserves data even if failure occurs, while maintaining higher
performance than block devices, studies that utilize NVRAM in
memory stores have emerged in recent years [5, 9, 18, 22].
Intel implemented an NVRAM-aware Redis to mitigate the
performance degradation using persistent development kit
(PMDK) APIs to develop NVRAM-related architecture. However,
designating NVRAM as the main Redis storage is premature
because NVRAM devices are not commercialized and do not have
the capacity required to be cost effective [21].
We propose a novel data management scheme to utilize a hybrid
environment consisting of NVRAM and DRAM. To achieve this,
we designed a hybrid architecture with a relatively limited cost

464

per capacity of NVRAM. In addition, boosting the utilization of
DRAM is our primary contribution while also increasing data
persistence over that of the conventional persistence model of
Redis.

2 BACKGROUND

2.1 Redis Persistence Methods
Redis provides two persistence methods for preserving data from
unexpected system crashes: RDB and AOF [16]. RDB is a
snapshot file in binary format consisting of the Redis contents.
Redis periodically saves this file at a user-defined time. While
RDB provides fast recovery times, Redis cannot guarantee data
persistence between successive generations of RDB.
On the contrary, AOF is a file tracing the commands that modify
the contents of Redis. The commands are kept in the AOF buffer
in memory, and the contents of the AOF buffer are flushed to a
persistent disk through an fsync call. AOF provides a higher level
of data persistence than RDB. However, depending on the fsync
invocation policy, Redis cannot guarantee persistence across the
entire set of data, or its performance can be poor. For example, the
“always” policy, which invokes fsync whenever a command is
requested, heavily degrades the throughput of Redis. The
“everysec” policy uses a background thread to invoke an fsync
call every second and cannot guarantee all commands between
fsync invocation.
AOF continuously writes the command requested to Redis, so its
file size becomes infinitely large. To prevent this problem, Redis
performs an AOF-rewrite operation. If the size of an AOF file
becomes larger than a certain size, Redis temporarily delays
incoming commands and writes stored data to a new AOF file as a
SET command log. After writing a new AOF file, Redis replaces
the old AOF file with the new file. Since the commands are
delayed while the AOF rewrite is performed, AOF rewrite is a
major factor that temporarily degrades the performance of Redis.

2.2 PMDK/Redis
Intel implemented NVRAM-aware Redis with the PMDK API
[14], which supports transactional updates to NVRAM and
preserves data persistence between the CPU and NVRAM.
NVRAM-aware Redis stores Redis keys and values in a memory
pool, which is allocated in NVRAM as a mapped file. As the
PMDK API requires additional latency to ensure data persistence,
NVRAM-aware Redis stores internal structures like hashes in
DRAM. The internal structure can be reconstructed by referencing
a list that keeps the addresses of the keys and values in NVRAM
when the system restarts. NVRAM-aware Redis guarantees data
persistence generated from all modifications compared with Redis,
the performance against persistence is remarkable. However, as
NVRAM has not been commercialized, designating NVRAM as
primary storage is immature in terms of cost per capacity.

3 METHODS
We propose a new database system to maintain performance
against persistency and to overcome the limited cost per capacity
of NVRAM. The proposed model uses NVRAM to lower the
AOF log dependency so that frequent rewrites do not occur. We
describe our proposed method for building an NVRAM-DRAM
eviction system. Because the cost per capacity of NVRAM is
limited, we extend the total storage capacity using DRAM by
evicting some victims from NVRAM to DRAM. An outline of the
proposed structure is shown in Fig. 1.

NVRAM

pool

K V K V

……

K V K V K V

head rear
victim
head

DRAM

entry

hash

K V K V
SET K, V
SET K, V
DEL K, V
SET K, V

…

AOF log buffer

SET K, V
SET K, V
SET K, V
DEL K, V

…

AOF log file
(Disk)

LRU clock priority queue

Figure 1: Outline of the NVRAM-DRAM hybrid database
system.

First, NVRAM was set to tier 1 storage and data were stored in
NVRAM. When the capacity of NVRAM exceeded the set point,
the system selects victims by the least-recently-used (LRU) policy.
These victims are evicted to tier 2 storage, DRAM with AOF log
writing. To improve utilization of DRAM space, a hash table built
in the DRAM manages both data in NVRAM and DRAM. If the
system experiences failure, a recovery handler will reconstruct
data from the AOF log file first, and data is subsequently
reconstructed from NVRAM. When the system reconstructs data
from NVRAM, if data are already present in the database, that
was already been reconstructed from AOF, then it is rewritten to
data from NVRAM because the data in NVRAM are up-to-date.
Fig. 2 shows an example of a situation where the AOF log buffer
is flushed. Prior to flushing the AOF log buffer, the victims are
kept in the NVRAM list to prevent data loss during flushing. After
the AOF log buffer is flushed, victims are removed from the
NVRAM list.

NVRAM

pool

K V K V

…

K V

head rear

DRAM

entry

hash

K V K V

AOF log buffer
(Cleared)

…
SET K, V
DEL K, V
SET K, V

…

AOF log file
(Disk)

LRU clock priority queue

Clear
victims

Figure 2: AOF log buffer flushing.

465

3.2 Eviction
Victims are chosen to be sent to DRAM from NVRAM by an
eviction policy. We used the LRU policy for our eviction policy.
This is because, we can greatly reduce the total number of
evictions when updates occur frequently if we perform eviction
with LRU. If a victim that was evicted by DRAM is updated, it
will be returned to NVRAM because NVRAM is the higher-level
storage. Then, if we choose the LRU policy that rarely updates
victims, victims will not return to NVRAM because selected
victims have low update probability. Therefore, in the case that
victim selection is updated frequently, the LRU policy could be
used as a proper eviction policy.

3.3 Reconstruction
Our recovery system reconstructs a hash table and recovers data
that was stored in DRAM. In addition, the system remaps the data
address stored in NVRAM to the hash table. During step 1,
evicted entries are restored in the DRAM while the AOF log file
is recovered. During step 2, victims that were not erased from the
NVRAM list are restored to the DRAM. Because AOF logs of
victims are not written yet, the system again attempts to write the
AOF logs of victims to the disk. After the AOF log buffer is
flushed to the file, victims in the NVRAM victim list are cleared.
Finally, recovery completes during step 3 while reconstructing K-
V data from the NVRAM list. Database persistence is fully
maintained because victims must be stored in either the AOF file
or the NVRAM list.

4 EVALUATION
We implemented the NVRAM-DRAM hybrid system in Redis
(NDHedis) and evaluated it with the following device
specifications. The system consists of quad-core 4.0 GHz
processors with 64 GB of DRAM. The AOF log file is stored on a
3 TB of HDD. 8 GB of NVRAM in DRAM was built using the
NVRAM emulator [4] provided by PMDK.
We set eviction to trigger when the NVRAM capacity exceeds 10
MB. This is because it is difficult to measure the performance of
NDHedis unless we attempt to force eviction.

4.1 NVRAM usage evaluation
In this test, we measured the usage of NVRAM for PMDK/Redis
and NDHedis. We used the Redis-benchmark[17] and stored non-
redundant key-value data. We set the size of the data to 32 Bytes.

0

100

200

300

100000 500000 1000000 2000000U
sa

ge
 o

f N
V

R
A

M
 (M

B
)

Requests

PMDK/REDIS NDHedis

Figure 3: NVRAM usage evaluation results.

Fig. 3 shows the NVRAM utilization results used by
PMDK/Redis and NDHedis. In NDHedis, when the capacity of
the NVRAM increases by more than a certain amount, the data is
evicted to the DRAM. Therefore, the capacity of provided by
NVRAM and used by NDHedis is much smaller and constant than
PMDK/Redis. NDHedis showed the same NVRAM capacity as
PMDK-Redis when storing 100,000 data entries, but it is a factor
0.06 smaller than the NVRAM capacity of PMDK/Redis when
storing 2,000,000 data entries.

4.2 NVRAM latency evaluation
 Read (ns) Write (ns)

DRAM 50 50
PCM 50 500

3D XPoint
(Memory Mapped) 100 100

3D XPoint
(Storage Mapped) 200 200

Table 1: Latency of NVRAM devices.

NVRAM has a different latency for each type[3, 12]. Table 1
shows the approximate latency of various types of DRAM and

0

20000

40000

60000

80000

32 128 512 2048 8192 32768

R
eq

ue
st

s p
er

 se
co

nd

Data Size(byte)

0

20000

40000

60000

80000

32 128 512 2048 8192 32768

R
eq

ue
st

s p
er

 se
co

nd

Data Size(byte)

0

20000

40000

60000

80000

32 128 512 2048 8192 32768

R
eq

ue
st

s p
er

 se
co

nd

Data Size(byte)

0

20000

40000

60000

80000

32 128 512 2048 8192 32768

R
eq

ue
st

s p
er

 se
co

nd

Data Size(byte)

(a) DRAM (b) PCM (c) 3D XPoint (Memory Mapped) (d) 3D Xpoint (Storage Mapped)

Figure 4: SET performance graph measured for each emulated NVRAM device.

466

NVRAM. 3D XPoint (memory mapped) has great performance
among the various types of NVRAM. However, the memory
mapped method in 3D XPoint does not completely guarantee non-
volatility of stored data.
In this experiment, we compared performance changes of
NDHedis and PMDK/Redis according to the type of NVRAM.
We used the Memtier-benchmark[11] and stored key-value data
ranged from 0 to 1,000,000, leading to infrequent updates. Since
the NVRAM emulator provided by PMDK does not provide a
latency option, we implement a wrapper function on the PMDK
interface to set the latency virtually. A virtually implemented
latency option is not exactly the same as the latency of an actual
NVRAM device. However, the performance of NDHedis and
PMDK/Redis can be approximated by a virtualized latency option.
Fig. 4 shows the SET performance of several emulated NVRAM
devices. Redis-everysec and Redis-always are not affected by the
type of NVRAM emulation. However, PMDK/Redis and
NDHedis exhibit different performance depending on the type of
NVRAM emulation. Among the NVRAMs used in the experiment,
3D XPoint (memory mapped) showed the best SET processing
performance, but data persistence cannot be guaranteed. 3D
XPoint (storage mapped) is slower than 3D XPoint (memory
mapped), but it has better performance than PCM. Among all the
types of NVRAM, NDHedis exhibits better performance than
Redis-everysec when the data size exceeds 8192 bytes. This is
because AOF-rewrite operations occur frequently in Redis-
everysec as the data size increases, whereas NDHedis performs
AOF-rewrite only once when the NVRAM capacity exceeds a
certain eviction point.

5 CONCLUSIONS
We designed and implemented a hybrid system that compensates
the capacity limit of NVRAM and the volatile limit of DRAM.
Compared with Redis, which has fast performance but is partially
persistent, we guarantee data persistence using NVRAM. We also
store data in the NVRAM first, thereby reducing the occurrence of
AOF-rewrite so that no performance degradation occurs. In
addition, compared with PMDK/Redis, which is persistent and
fast but has limited capacity, we overcome the limitation of cost
per capacity by using DRAM to extend the entire capacity. Our
proposal provides the same persistence level as PMDK/Redis by
supporting persistence during an eviction.
In a further study, we will apply other eviction algorithms to the
NVRAM eviction policy. Since maintaining a priority queue is
costly, we will design the structure of the list built into NVRAM
with a different structure, such as a tree or heap. AOF-rewrite can
still occur if the amount of stored data is very large. We will
improve the performance by re-designing the AOF-rewrite
operation using NVRAM.

6 ACKNOWLEDGEMENTS
This research was supported by the MSIT (Ministry of Science
and ICT), Korea, under the SW Starlab support program (IITP-
2017-0-00477) supervised by the IITP (Institute for Information &
communications Technology Promotion).

REFERENCES
[1] J. Arulraj, and A. Paylo. 2017. How to Build a Non-Volatile Memory Database

Management System. In Proceedings of the 2017 ACM International
Conference on Management of Data (New York, NY, USA 2017), ACM,
(2017), 1753–1758.

[2] J. Arulraj, M. Perron, and A. Pavlo. 2016. Write-behind Logging. Proc. VLDB
Endow., 10 (Nov. 2016), 337–348.

[3] P. Cappelletti. 2015. Non volatile memory evolution and revolution. In 2015
IEEE International Electron Devices Meeting (IEDM) (Dec. 2015), 10.1.1–
10.1.4.

[4] S.R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran,
and J. Jackson. 2014. System Software for Persistent Memory. In Proceedings
of the Ninth European Conference on Computer Systems (New York, NY, USA
2014), ACM, 15:1–15:15.

[5] R. Fang, H. Hsiao, B. He, C. Mohan, and Y. Wang. 2011. High performance
database logging using storage class memory. In 2011 IEEE 27th International
Conference on Data Engineering (Apr. 2011), 1221–1231.

[6] J. Han, H. E, G. Le, and J. Du. 2011. Survey on NoSQL database. In 2011 6th
International Conference on Pervasive Computing and Applications (Oct.
2011), 363–366.

[7] J. Huang, K. Schwan, and M. K. Qureshi. 2014. NVRAM-aware Logging in
Transaction Systems. Proc. VLDB Endow., 8 (Dec. 2014), 389–400.

[8] W.H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won. 2016. NVWAL: Exploiting
NVRAM in Write-Ahead Logging. SIGOPS Oper. Syst. Rev., 50 (Mar. 2016),
385–398.

[9] S.K. Lee, K.H. Lim, H. Song, B. Nam, and S.H. Noh. 2017. WORT: Write
Optimal Radix Tree for Persistent Memory Storage Systems. In 15th USENIX
Conference on File and Storage Technologies (FAST 17) (CA, Santa 2017),
USENIX Association, 257–270.

[10] L. Lersch, I. Oukid, W. Lehner, and I. Schreter. 2017. An Analysis of LSM
Caching in NVRAM. In Proceedings of the 13th International Workshop on
Data Management on New Hardware (New York, NY, USA 2017), ACM, 9:1–
9:5.

[11] Memtier-benchmark, https://github.com/Redis-Labs/memtier_benchmark
[12] S. Mittal, and J. S. Vetter. 2016. A Survey of Software Techniques for Using

Non-Volatile Memories for Storage and Main Memory Systems. IEEE
Transactions on Parallel and Distributed Systems, 27 (May 2016), 1537–1550.

[13] Persistent Memory Development Kit, https://github.com/pmem/pmdk
[14] PMDK Implementation Redis, https://github.com/pmem/redis
[15] Redis, https://redis.io/
[16] Redis Persistence, https://redis.io/topics/persistence
[17] Redis-benchmark, https://redis.io/topics/benchmarks
[18] Y. Son, H. Kang, H.Y. Yeom, and H. Han. 2017. A Log-structured Buffer for

Database Systems Using Non-volatile Memory. In Proceedings of the
Symposium on Applied Computing (New York, NY, USA 2017), ACM, 880–
886.

[19] T. Wang, and R. Johnson. 2014. Scalable Logging Through Emerging Non-
volatile Memory. Proc. VLDB Endow., 7 (June 2014), 865–876.

[20] F. Xia, D. Jiang, J. Xiong, and N. Sun. 2017. HiKV: A Hybrid Index Key-
Value Store for DRAM-NVM Memory Systems. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17) (CA, Santa 2017), USENIX
Association, 349–362.

[21] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang. 2015. In-Memory Big
Data Management and Processing: A Survey. IEEE Transactions on
Knowledge and Data Engineering, 27 (July 2015), 1920-1948.

[22] P. Zuo, and Y. Hua. 2018. A Write-Friendly and Cache-Optimized Hashing
Scheme for Non-Volatile Memory Systems. IEEE Transactions on Parallel
and Distributed Systems, 29 (May 2018), 985–998.

467

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'IEEE_Xplorer'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryList_V1
 qi2base

