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We prove that, as Gerstenhaber algebras, the Hochschild cohomology ring of the tensor
product of two algebras is isomorphic to the tensor product of the respective Hochschild
cohomology rings of these two algebras, when at least one of them is finite dimensional.
In case of finite dimensional symmetric algebras, this isomorphism is an isomorphism of
Batalin–Vilkovisky algebras. As an application, we explain by examples how to compute
the Batalin–Vilkovisky structure, in particular, the Gerstenhaber Lie bracket, over the
Hochschild cohomology ring of the group algebra of a finite abelian group.
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1. Introduction

Let A be an associative algebra over a field k. The Hochschild cohomology ring HH∗(A) of A is a graded commutative
algebra via the cup product, and in the meantime, it is a graded Lie algebra of degree −1; these make HH∗(A) a Gersten-
haber algebra [4]. If the algebra A is finite dimensional and symmetric, then HH∗(A) has an additional structure, as we now
explain.

Let A be a finite dimensional symmetric algebra, for example, the group algebra kG of a finite group G . Then there is
a symmetric associative non-degenerate bilinear form 〈 , 〉 : A × A → k. This bilinear form gives rise to a duality between
Hochschild homology and Hochschild cohomology, i.e. for n � 0,

HHn(A) � Homk
(
HHn(A),k

)
.

Recall that there is an operator over the Hochschild homology groups, the so-called Connes’ B-operator [9, Chapter 2]

B : HHn(A) → HHn+1(A), n � 0.

We obtain an operator over the Hochschild cohomology groups by duality

� : HHn(A) → HHn−1(A), n � 1.

Tradler [15] noticed that the Lie bracket over HH∗(A) can be expressed in terms of this �-operator and the cup product. In
fact, he proved that HH∗(A) is a Batalin–Vilkovisky algebra [5,11]. For different proofs of this fact, see [13] and [3].
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We are interested in computing the Batalin–Vilkovisky structure over HH∗(kG) for a finite abelian group G . Notice that
kG is isomorphic to a tensor product of the group algebras of some cyclic groups, while the Batalin–Vilkovisky structure
of HH∗(kC) with C a cyclic group is known [17]. This observation leads us to study the Batalin–Vilkovisky structure of the
Hochschild cohomology ring of a tensor product algebra.

Let A and B be two k-algebras such that one of them is finite dimensional. It is a folklore result that there is an isomor-
phism of graded commutative algebras: HH∗(A ⊗ B) � HH∗(A) ⊗ HH∗(B) (though we could not find a precise reference in
the literature). We prove that it is furthermore an isomorphism of Gerstenhaber algebras (Theorem 3.3). In addition, when
both A and B are finite dimensional and symmetric, the mentioned isomorphism is an isomorphism of Batalin–Vilkovisky
algebras (Theorem 3.5). The key point of the proof is to use the well-known Alexander–Whitney map and the Eilenberg–
Zilber map which are comparison morphisms between the (normalized) bar resolution of A ⊗ B and the tensor product of
the (normalized) bar resolutions of A and B .

As an application of Theorem 3.5, we explain by examples how to compute the Batalin–Vilkovisky structure over the
Hochschild cohomology ring of the group algebra of a finite abelian group. In particular, the Batalin–Vilkovisky structure
over the Hochschild cohomology ring of the group algebra of an elementary abelian group is described in Theorem 4.3.

In future work, we shall use these results to compute the Batalin–Vilkovisky structure over the Hochschild cohomology
of an algebra with one generator, that is, an algebra of the form k[X]/( f ) with f a monic polynomial. We shall also
consider the Hochschild cohomology of a group algebra and investigate the behavior of the �-operator under the additive
decomposition of the Hochschild cohomology of a group algebra; see [8].

The main results of this paper (Theorem 3.3 and Theorem 3.5) should be known to experts in string topology. In fact,
Hochschild cohomology corresponds to free loop space homology H∗(LM), our results are thus closed related to some
known results in string topology. We are grateful to the referee for this remark. However, it seems that our proof is the first
algebraic one of these results.

Throughout this paper, k denotes a field and a k-algebra is always assumed to be associative with unit. The symbol ⊗
means ⊗k . For a homogeneous element a in a graded space, |a| denotes its degree.

2. Gerstenhaber vs Batalin–Vilkovisky

In this section, we recall the definitions of Gerstenhaber algebras and Batalin–Vilkovisky algebras. We study the tensor
product of two Gerstenhaber algebras and that of Batalin–Vilkovisky algebras, respectively.

Definition 2.1. A Gerstenhaber algebra over a field k is a graded k-vector space A• = ⊕
n∈Z An equipped with two linear

maps: a cup product

� : An × Am → An+m, (a,b) 	→ a � b

and a Lie bracket of degree −1

[ , ] : An × Am → An+m−1, (a,b) 	→ [a,b]
such that

(i) (A•,�) is a graded commutative associative algebra, that is, a � b = (−1)|a||b|b � a;
(ii) (A•, [ , ]) is a graded Lie algebra of degree −1, i.e.

[a,b] = −(−1)(|a|−1)(|b|−1)[b,a]
and

(−1)(|a|−1)(|c|−1)
[[a,b], c

] + (−1)(|b|−1)(|a|−1)
[[b, c],a

] + (−1)(|c|−1)(|b|−1)
[[c,a],b

] = 0;
(iii) the cup product and the Lie bracket satisfy the Poisson rule, i.e.

[a � b, c] = [a, c] � b + (−1)|a|(|c|−1)a � [b, c],
where a,b, c are arbitrary homogeneous elements in A• .

Notice that by (iii), the Lie bracket is a derivation with respect to the first variable. Our definition of Gerstenhaber
algebras follows the original work of Gerstenhaber [4] in contrary to [11, (9.14) and (9.18)] and [5, Definition 1.1], where
the Lie bracket is a derivation with respect to the second variable.

The cohomology theory of associative algebras was introduced by Hochschild [7]. The Hochschild cohomology ring of a
k-algebra is a Gerstenhaber algebra, which was first discovered by Gerstenhaber in [4]. Let us recall his construction here.
Given a k-algebra A, its Hochschild cohomology groups are defined as HHn(A) � Extn

Ae (A, A) for n � 0, where Ae = A ⊗ Aop

is the enveloping algebra of A. There is a projective resolution of A as an Ae-module

Bar∗(A) : · · · → A⊗(r+2) dr−→ A⊗(r+1) → ·· · → A⊗3 d1−→ A⊗2(
d0=μ−→ A),
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where Barr(A) := A⊗(r+2) for r � 0, the map μ : A ⊗ A → A is the multiplication of A, and dr is defined by

dr(a0 ⊗ a1 ⊗ · · · ⊗ ar+1) =
r∑

i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ ar+1

for all a0, . . . ,ar+1 ∈ A. This is usually called the (unnormalized) bar resolution of A. The normalized version B∗(A) is given
by Br(A) = A ⊗ A⊗r ⊗ A, where A = A/(k · 1A), and with the induced differential from that of Bar∗(A).

The complex which is used to compute the Hochschild cohomology is C∗(A) = HomAe (Bar∗(A), A). Note that for each
r � 0, Cr(A) = HomAe (A⊗(r+2), A) � Homk(A⊗r, A). We identify C0(A) with A. Thus C∗(A) has the following form:

C∗(A) : A δ0−→ Homk(A, A) → ·· · → Homk
(

A⊗r, A
)

δr−→ Homk
(

A⊗(r+1), A
) → ·· · .

Given f in Homk(A⊗r, A), the map δr( f ) is defined by sending a1 ⊗ · · · ⊗ ar+1 to

a1 · f (a2 ⊗ · · · ⊗ ar+1)

r∑
i=1

(−1)i f (a1 ⊗ · · · ⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ ar+1)

+ (−1)r+1 f (a1 ⊗ · · · ⊗ ar) · ar+1.

There is also a normalized version C∗(A) = HomAe (B∗(A), A) � Homk(A⊗∗, A).
The cup product α � β ∈ Cn+m(A) = Homk(A⊗(n+m), A) for α ∈ Cn(A) and β ∈ Cm(A) is given by

(α � β)(a1 ⊗ · · · ⊗ an+m) := α(a1 ⊗ · · · ⊗ an) · β(an+1 ⊗ · · · ⊗ an+m).

This cup product induces a well-defined product in Hochschild cohomology

� : HHn(A) × HHm(A) −→ HHn+m(A)

which turns the graded k-vector space HH∗(A) = ⊕
n�0 HHn(A) into a graded commutative algebra [4, Corollary 1].

The Lie bracket is defined as follows. Let α ∈ Cn(A) and β ∈ Cm(A). If n,m � 1, then for 1 � i � n, set α ◦i β ∈ Cn+m−1(A)

by

(α ◦i β)(a1 ⊗ · · · ⊗ an+m−1) := α
(
a1 ⊗ · · · ⊗ ai−1 ⊗ β(ai ⊗ · · · ⊗ ai+m−1) ⊗ ai+m ⊗ · · · ⊗ an+m−1

);
if n � 1 and m = 0, then β ∈ A and for 1 � i � n, set

(α ◦i β)(a1 ⊗ · · · ⊗ an−1) := α(a1 ⊗ · · · ⊗ ai−1 ⊗ β ⊗ ai ⊗ · · · ⊗ an−1);
for any other case, set α ◦i β to be zero. Now define

α ◦ β :=
n∑

i=1

(−1)(m−1)(i−1)α ◦i β

and

[α,β] := α ◦ β − (−1)(n−1)(m−1)β ◦ α.

Note that [α,β] ∈ Cn+m−1(A). The above [ , ] induces a well-defined Lie bracket in Hochschild cohomology

[ , ] : HHn(A) × HHm(A) −→ HHn+m−1(A)

such that (HH∗(A),�, [ , ]) is a Gerstenhaber algebra [4].
The complex used to compute the Hochschild homology HH∗(A) is C∗(A) = A ⊗Ae Bar∗(A). Notice that Cr(A) = A ⊗Ae

A⊗(r+2) � A⊗(r+1) and the differential ∂r : Cr(A) = A⊗(r+1) → Cr−1(A) = A⊗r sends a0 ⊗ · · · ⊗ ar to
∑r−1

i=0 (−1)ia0 ⊗ · · · ⊗
ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ · · · ⊗ ar + (−1)rara0 ⊗ a1 ⊗ · · · ⊗ ar−1.

There is a Connes’ B-operator in the Hochschild homology theory which is defined as follows. For a0 ⊗ · · · ⊗ ar ∈ Cr(A),
let B(a0 ⊗ · · · ⊗ ar) ∈ Cr+1(A) be

r∑
i=0

(−1)ir1 ⊗ ai ⊗ · · · ⊗ ar ⊗ a0 ⊗ · · · ⊗ ai−1 +
r∑

i=0

(−1)irai ⊗ 1 ⊗ ai+1 ⊗ · · · ⊗ ar ⊗ a0 ⊗ · · · ⊗ ai−1.

It is easy to check that B is a chain map satisfying B �B= 0, which induces an operator B : HHr(A) → HHr+1(A).
Given two algebras A and B , there is a shuffle product sh : HH∗(A) ⊗ HH∗(B) → HH∗(A ⊗ B). The definition needs some

notation. Let Ss,t denote the set of all (s, t)-shuffles, that is, the set of permutations σ in the symmetric group on s + t
letters such that σ(1) < σ(2) < · · · < σ(s) and σ(s + 1) < σ(s + 2) < · · · < σ(s + t). Let M = A ⊕ B , then there is a natural
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map F : M → A ⊗ B given by F (a) = a ⊗ 1 for a ∈ A, and F (b) = 1 ⊗ b for b ∈ B . It is easily seen that F is well defined. For
each σ ∈ Ss,t , we call

|σ | := 	
{
(i, j)

∣∣ 1 � i < j � s + t, but σ(i) > σ( j)
}

the degree of σ , and define

Fσ : M⊗(s+t) −→ (A ⊗ B)⊗(s+t),

x1 ⊗ x2 ⊗ · · · ⊗ xs+t 	→ F (xσ−1(1)) ⊗ F (xσ−1(2)) ⊗ · · · ⊗ F (xσ−1(s+t)).

The shuffle product is induced by the map sh : C p(A) ⊗ Cq(B) → C p+q(A ⊗ B) defined as follows:

sh
(
(a0 ⊗ a1 ⊗ · · · ⊗ ap) ⊗ (b0 ⊗ b1 ⊗ · · · ⊗ bq)

) =
∑

σ∈Sp,q

(−1)|σ |(a0 ⊗ b0)Fσ (a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq).

Connes’ B-operator is a derivation for the shuffle product; see [9, Corollary 4.3.4]. That is,

B
(
sh(x, y)

) = sh
(
B(x), y

) + (−1)|x|sh
(
x,B(y)

)
for homogeneous elements x ∈ HH∗(A) and y ∈ HH∗(B).

All the above constructions, the cup product, the Lie bracket, the Connes’ B-operator, carry over to normalized com-
plexes.

We define the tensor product of Gerstenhaber algebras in the following result. It extends slightly a result of Manin, where
he introduced the tensor product of Batalin–Vilkovisky algebras; see [11, 9.11.1]. Note that a Batalin–Vilkovisky algebra is a
special kind of a Gerstenhaber algebra; see Definition 2.4 for the notion of Batalin–Vilkovisky algebras.

Proposition-Definition 2.2. Let (A•,�A, [ , ]A) and (B•,�B , [ , ]B) be two Gerstenhaber algebras over k. Then there is a new
Gerstenhaber algebra (L•,�, [ , ]) over k given as follows:

(i) Ln = ⊕
i+ j=n Ai ⊗ B j as a k-vector space for each n ∈ Z;

(ii) (a ⊗ b) � (a′ ⊗ b′) = (−1)|a′ ||b|(a �A a′) ⊗ (b �B b′);
(iii) [a ⊗ b,a′ ⊗ b′] = (−1)(|a|+|b|−1)|b′ |[a,a′]A ⊗ (b �B b′) + (−1)|a|(|a′ |+|b′|−1)(a �A a′) ⊗ [b,b′]B

where a,a′ ∈ A• and b,b′ ∈ B• are homogeneous elements. We call (L•,�, [ , ]) the tensor product of the two Gerstenhaber algebras
A• and B• , and denote it by A• ⊗ B• .

Since there is no detailed proof of the corresponding result in [11], we give in detail the hardest part of the proof.

Proof. The hardest part of the proof is to verify that the bracket of L• satisfies the Jacobi identity, whereas the remaining
part is routine. In what follows, we simplify the notation and abuse [ , ], [ , ]A and [ , ]B (also �, �A and �B respectively).

Let

S := (−1)(|a⊗b|−1)(|a′′⊗b′′|−1)
[[

a ⊗ b,a′ ⊗ b′],a′′ ⊗ b′′],
T := (−1)(|a′⊗b′|−1)(|a⊗b|−1)

[[
a′ ⊗ b′,a′′ ⊗ b′′],a ⊗ b

]
,

W := (−1)(|a′′⊗b′′|−1)(|a′⊗b′|−1)
[[

a′′ ⊗ b′′,a ⊗ b
]
,a′ ⊗ b′].

Using (iii) twice, we have

S = (−1)(|a|+|b|−1)(|a′′ |+|b′′|−1+|b′|)(−1)(|a|+|b|+|a′ |+|b′|−2)|b′′|[[a,a′],a′′] ⊗ ((
b � b′) � b′′)

+ (−1)(|a|+|b|−1)(|a′′|+|b′′|−1+|b′|)(−1)(|a|+|a′|−1)(|a′′|+|b′′|−1)
([

a,a′] � a′′) ⊗ [
b � b′,b′′]

+ (−1)(|a|+|b|−1)(|a′′|+|b′′|−1)(−1)|a|(|a′|+|b′|−1)(−1)(|a|+|b|+|a′ |+|b′|−2)|b′′|[a � a′,a′′] ⊗ ([
b,b′] � b′′)

+ (−1)(|a|+|b|−1)(|a′′|+|b′′|−1)(−1)|a|(|a′|+|b′|−1)(−1)(|a|+|a′ |)(|a′′|+|b′′|−1)
((

a � a′) � a′′) ⊗ [[
b,b′],b′′].

Write the equation above as S = S1 + S2 + S3 + S4. Similarly, we have the equations T = T1 + T2 + T3 + T4 and W =
W1 + W2 + W3 + W4.

Note that

S1 = (−1)|a||b′|+|b||b′|+|b||a′′ |+|a′||b′′|+|b′||b′′|−|b|−|b′|−|b′′|(−1)(|a|−1)(|a′′|−1)
[[

a,a′],a′′] ⊗ ((
b � b′) � b′′),

while
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T1 = (−1)|a′||b′′|+|b′||b′′|+|a||b′|+|b||a′′|+|b||b′′ |−|b|−|b′|−|b′′|(−1)(|a′|−1)(|a|−1)
[[

a′,a′′],a
] ⊗ ((

b′ � b′′) � b
)

= (−1)|a||b′ |+|b||b′|+|b||a′′|+|a′||b′′|+|b′||b′′|−|b|−|b′|−|b′′|(−1)(|a′|−1)(|a|−1)
[[

a′,a′′],a
] ⊗ ((

b � b′) � b′′),
and

W1 = (−1)|a′′||b|+|b||b′′ |+|a′||b′′|+|a||b′|+|b||b′|−|b|−|b′|−|b′′|(−1)(|a′′|−1)(|a′|−1)
[[

a′′,a
]
,a′] ⊗ ((

b′′ � b
)
� b′)

= (−1)|a||b′ |+|b||b′|+|b||a′′|+|a′||b′′|+|b′||b′′|−|b|−|b′|−|b′′|(−1)(|a′′|−1)(|a′|−1)
[[

a′′,a
]
,a′] ⊗ ((

b � b′) � b′′).
Then we get S1 + T1 + W1 = 0, since [ , ]A satisfies the Jacobi identity. In the same way, S4 + T4 + W4 = 0 because [ , ]B

satisfies the Jacobi identity.
For the remaining part, using Poisson rule of [ , ]B , we have

S2 = (−1)|b′||a|−|a′ |−|b′|+|a′||a′′|+|a′||b′′|+|a′′||b|+|b||b′ |([a,a′] � a′′) ⊗ (
(−1)|b||b′′ |−|b|[b,b′′] � b′ + b �

[
b′,b′′]),

T2 = (−1)|a||a′′ |+|b||a′′ |−|a′′|−|b′′|+|a||b′|+|a′||b′′|+|b′||b′′|([a′,a′′] � a
) ⊗ (

(−1)|b′||b|−|b′|[b′,b
]
� b′′ + b′ �

[
b′′,b

])
,

W2 = (−1)|b||a′′ |−|a|−|b|+|a||a′ |+|a||b′|+|a′||b′′|+|b||b′′ |([a′′,a
]
� a′) ⊗ (

(−1)|b′′||b′|−|b′′|[b′′,b′] � b + b′′ �
[
b,b′]).

On the other hand,

S3 + T3 + W3

= (−1)|b||a′′ |−|a|−|b|−|b′′ |+1+|a||a′|+|a||b′|+|a′||b′′|+|b′||b′′|([a′′,a
]
� a′) ⊗ ([

b,b′] � b′′)
+ (−1)|a||a′′ |+|b||a′′ |−|b|−|a′′|−|b′′|+1+|a||b′|+|a′||b′′|+|b′||b′′|([a′,a′′] � a

) ⊗ ([
b,b′] � b′′)

+ (−1)|b′||a|−|a′ |−|b′|−|b|+1+|a′||a′′|+|a′||b′′|+|a′′||b|+|b′′||b|([a,a′] � a′′) ⊗ ([
b′,b′′] � b

)
+ (−1)|a′||a|+|b′ ||a|−|b′|−|a|−|b|+1+|a′||b′′|+|a′′||b|+|b′′ ||b|([a′′,a

]
� a′) ⊗ ([

b′,b′′] � b
)

+ (−1)|b′′||a′|−|a′′|−|b′′|−|b′|+1+|a′′||a|+|a′′ ||b|+|a||b′ |+|b||b′|([a′,a′′] � a
) ⊗ ([

b′′,b
]
� b′)

+ (−1)|a′′||a′|+|b′′||a′|−|b′′|−|a′|−|b′|+1+|a′′||b|+|a||b′ |+|b||b′|([a,a′] � a′′) ⊗ ([
b′′,b

]
� b′)

= (−1)|b||a′′ |−|a|−|b|+1+|a||a′ |+|a||b′|+|a′||b′′|([a′′,a
]
� a′) ⊗ (

(−1)|b′||b′′|−|b′′|([b,b′] � b′′))
+ (−1)|b||b′′ |−|b′|([b′,b′′] � b

) + (−1)|a||a′′ |+|b||a′′|−|a′′|−|b′′|+1+|a||b′|+|a′||b′′|([a′,a′′] � a
)

⊗ (
(−1)|b′||b′′|−|b|([b,b′] � b′′) + (−1)|b′||b|−|b′|([b′′,b

]
� b′))

+ (−1)|b′||a|−|a′ |−|b′|+1+|a′||a′′|+|a′||b′′|+|a′′||b|([a,a′] � a′′)
⊗ (

(−1)|b′′||b|−|b|([b′,b′′] � b
) + (−1)|b||b′ |−|b′′|([b′′,b

]
� b′))

= (−1)|b||a′′ |−|a|−|b|+|a||a′ |+|a||b′ |+|a′||b′′|+|b||b′′|(−1)|b′||b′′|−|b′′|+1([a′′,a
]
� a′) ⊗ [

b′′ � b,b′]
+ (−1)|a||a′′ |+|b||a′′ |−|a′′|−|b′′|+|a||b′|+|a′||b′′|+|b′||b′′|(−1)|b||b′|−|b′|+1([a′,a′′] � a

) ⊗ [
b′ � b′′,b

]
+ (−1)|b′||a|−|a′ |−|b′|+|a′||a′′|+|a′||b′′|+|a′′||b|+|b||b′ |(−1)|b||b′′ |−|b|+1([a,a′] � a′′) ⊗ [

b � b′,b′′],
where the first equality uses the Poisson rule of [ , ]A , and the last equality uses the Poisson rule of [ , ]B . Writing the
sum above as U1 + U2 + U3, and applying the Poisson rule of [ , ]B once again, we have

S2 + U3 = 0, T2 + U2 = 0 and W2 + U1 = 0.

From this we have

S2 + T2 + W2 + S3 + T3 + W3 = 0,

therefore

S + T + W = (S1 + T1 + W1) + (S4 + T4 + W4) + (S2 + T2 + W2 + S3 + T3 + W3) = 0 + 0 + 0 = 0. �
Remark 2.3.

(1) Proposition–Definition 2.2 gives in fact the coproduct in the category of Gerstenhaber algebras.
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(2) In Proposition-Definition 2.2, if we define a new bracket [x, y]
 = [y, x] for x, y,∈ A•, B• or L• , then one verifies easily
that

[
a ⊗ b, a′ ⊗ b′]
 = (−1)(|a′|−1)|b|[a, a′]
 ⊗ (

b � b′) + (−1)|a′|(|b|−1)
(
a � a′) ⊗ [

b,b′]
,
which is exactly the definition given by Manin [11]. The difference between our definition and Manin’s comes from the
fact that we follow the original definitions of the cup product (and the Lie bracket) in [4].

Now we turn to Batalin–Vilkovisky algebras [5,11].

Definition 2.4. A Batalin–Vilkovisky algebra (BV algebra for short) is a Gerstenhaber algebra (A•,�, [ , ]) together with an
operator � : A• → A•−1 of degree −1 such that � � � = 0 and

[a,b] = −(−1)(|a|−1)|b|(�(a � b) − �(a) � b − (−1)|a|a � �(b)
)

for homogeneous elements a,b ∈ A• .

Remark 2.5. If we define [a,b]∗ = −[b,a], then we get

[a,b]∗ = (−1)|a|(�(a � b) − �(a) � b − (−1)|a|a � �(b)
)
,

which is the equality in the usual definition of a Batalin–Vilkovisky algebra in [5, Proposition 1.2] and [11, §5.1].

Tradler noticed that the Hochschild cohomology algebra of a symmetric algebra is a BV algebra [15], see also [13,3]. For a
symmetric algebra A, he showed that the �-operator on the Hochschild cohomology corresponds to the Connes’ B-operator
on the Hochschild homology via the duality between the Hochschild cohomology and the Hochschild homology.

Recall that a finite dimensional k-algebra A is called symmetric if A is isomorphic to its dual D A = Homk(A,k) as
Ae-modules, or equivalently, if there exists a symmetric associative non-degenerate bilinear form 〈 , 〉 : A × A → k. This
bilinear form induces a duality between the Hochschild cohomology and the homology. In fact,

Homk
(
C∗(A),k

) = Homk
(

A ⊗Ae Bar∗(A),k
) � HomAe

(
Bar∗(A),Homk(A,k)

) � HomAe
(
Bar∗(A), A

) = C∗(A).

Via this duality, for n � 1 we obtain an operator � : HHn(A) → HHn−1(A) which is the dual of Connes’ operator.
We recall the following theorem by Tradler.

Theorem 2.6. (See [15, Theorem 1].) With the notation above, together with the cup product, the Lie bracket and the �-operator
defined above, the Hochschild cohomology of A is a BV algebra. More precisely, for α ∈ Cn(A) = Homk(A⊗n, A), �(α) ∈ Cn−1(A) =
Homk(A⊗(n−1), A) is given by the equation

〈
�(α)(a1 ⊗ · · · ⊗ an−1), an

〉 =
n∑

i=1

(−1)i(n−1)
〈
α(ai ⊗ · · · ⊗ an−1 ⊗ an ⊗ a1 ⊗ · · · ⊗ ai−1),1

〉

for a1, . . . ,an ∈ A. The same formula holds also for the normalized complex C∗(A).

We mention that the �-operator depends on the choice of the non-degenerate bilinear form of A. With Theorem 2.6
at hand, in order to obtain the BV algebra structure over the Hochschild cohomology of a symmetric algebra, one needs to
know the cup product and the �-operator.

Let us recall the tensor product of two BV algebras defined in [11, Proposition in Section 5.8.1].

Definition 2.7. Let (A•,�A, [ , ]A,�A) and (B•,�B , [ , ]B ,�B) be two BV algebras. Then there is a new BV algebra
(L•,�, [ , ],�), where

(i) Ln = ⊕
i+ j=n Ai ⊗ B j as a k-vector space for n ∈ Z;

(ii) (a ⊗ b) � (a′ ⊗ b′) = (−1)|a′ ||b|(a �A a′) ⊗ (b �B b′);
(iii) [a ⊗ b,a′ ⊗ b′] = (−1)(|a|+|b|−1)|b′ |[a,a′]A ⊗ (b �B b′) + (−1)|a|(|a′ |+|b′|−1)(a �A a′) ⊗ [b,b′]B ;
(iv) �(a ⊗ b) = �A(a) ⊗ b + (−1)|a|a ⊗ �B(b)

where a,a′ ∈ A• and b,b′ ∈ B• are homogeneous elements. We call (L•,�, [ , ],�) the tensor product of the two BV algebras
A• and B• , and denote it by A• ⊗ B• .
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3. Tensor product

Let A and B be two k-algebras. In this section, we compare the Gerstenhaber structure of HH∗(A ⊗ B) with that of
HH∗(A) ⊗ HH∗(B). We compare further the BV structure of them when A and B are finite dimensional symmetric algebras.

We shall prove the following result, which is a combination of Lemma 3.1, Theorem 3.3 and Theorem 3.5.

Main Theorem. Let A and B be two k-algebras such that one of them is finite dimensional. Then there is an isomorphism of Gersten-
haber algebras

HH∗(A ⊗ B) � HH∗(A) ⊗ HH∗(B).

If furthermore, A and B are finite dimensional symmetric algebras, the above isomorphism becomes an isomorphism of BV algebras,
once we endow A ⊗ B with the non-degenerate bilinear form such that 〈a ⊗ b,a′ ⊗ b′〉 = 〈a,a′〉〈b,b′〉 for a,a′ ∈ A,b,b′ ∈ B.

Before proceeding to the technical proof of this result, let us explain the strategy. In the above isomorphism, the left-
handed side is computed by using the normalized bar resolution B∗(A ⊗ B), while the right-handed side can be obtained by
using B∗(A)⊗B∗(B). Both of these two resolutions are projective resolutions of A ⊗ B as bimodules. So in order to compare
the two sides, we need to construct comparison morphisms between these two resolutions. The following map AW∗ (resp.
EZ∗) is in fact the usual Alexander–Whitney map (resp. the Eilenberg–Zilber or shuffle maps); see [10, X.Theorem 7.4] or
[16, Exercise 8.6.5].

Let B∗(A) and B∗(B) be the normalized bar resolutions of A and B . Then the tensor product complex

B∗(A) ⊗B∗(B) : · · · →
r⊕

i=0

(
A ⊗ A⊗(r−i) ⊗ A ⊗ B ⊗ B⊗i ⊗ B

) → ·· · → A ⊗ A ⊗ B ⊗ B(→ A ⊗ B)

is a projective resolution of A ⊗ B as an (A ⊗ B)e-module. On the other hand, the normalized bar resolution of A ⊗ B

B∗(A ⊗ B) : · · · → A ⊗ B ⊗ A ⊗ B⊗r ⊗ A ⊗ B → ·· · → A ⊗ B ⊗ A ⊗ B(→ A ⊗ B)

is also a projective resolution of A ⊗ B as an (A ⊗ B)e-module. We are going to construct the maps AW∗ : B∗(A ⊗ B) →
B∗(A) ⊗ B∗(B) and EZ∗ : B∗(A) ⊗ B∗(B) → B∗(A ⊗ B) which are homotopy equivalences. Notice that a similar formula of
AW∗ has been considered by May [12].

The map AW∗ : B(A ⊗ B) → B(A) ⊗B(B) is defined as follows:

• AW0 : A ⊗ B ⊗ A ⊗ B → A ⊗ A ⊗ B ⊗ B is defined by twisting the middle two items;
• for r � 1,

AWr(1 ⊗ 1 ⊗ a1 ⊗ b1 ⊗ · · · ⊗ ar ⊗ br ⊗ 1 ⊗ 1)

=
r∑

t=0

(−1)t(r−t)a1a2 · · ·at ⊗ at+1 ⊗ · · · ⊗ ar ⊗ 1 ⊗ 1 ⊗ b1 ⊗ · · · ⊗ bt ⊗ bt+1 · · ·br,

where a1, . . . ,ar ∈ A and b1, . . . ,br ∈ B , and by convention for t = 0, a1 · · ·at = 1 and for t = r, bt+1 · · ·br = 1.

The chain map EZ∗ : B(A) ⊗B(B) → B(A ⊗ B) is given as follows:

• EZ0 : A ⊗ A ⊗ B ⊗ B → A ⊗ B ⊗ A ⊗ B is defined by twisting the middle two items;
• for r � 1, 0 � t � r,

EZr(1 ⊗ a1 ⊗ · · · ⊗ ar−t ⊗ 1 ⊗ 1 ⊗ b1 ⊗ · · · ⊗ bt ⊗ 1)

= 1 ⊗ 1 ⊗
( ∑

σ∈Sr−t,t

(−1)|σ | Fσ (a1 ⊗ · · · ⊗ ar−t ⊗ b1 ⊗ · · · ⊗ bt)

)
⊗ 1 ⊗ 1.

We are now in the position to compute the chain maps AW∗ = Hom(A⊗B)e (AW∗, A ⊗ B) and EZ∗ = Hom(A⊗B)e (EZ∗, A ⊗ B).
Applying the functor Hom(A⊗B)e (−, A ⊗ B) to B∗(A ⊗ B) and using the isomorphism

Hom(A⊗B)e
(

A ⊗ B ⊗ A ⊗ B⊗r ⊗ A ⊗ B, A ⊗ B
) � Homk

(
A ⊗ B⊗r, A ⊗ B

)
,

we obtain the complex C∗(A ⊗ B) = Hom(A⊗B)e (B∗(A ⊗ B), A ⊗ B):

A ⊗ B → Homk(A ⊗ B, A ⊗ B) → ·· · → Homk
(

A ⊗ B⊗r, A ⊗ B
) → Homk

(
A ⊗ B⊗(r+1), A ⊗ B

) → ·· · .
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Similarly, when at least one of two algebras is finite dimensional, we have the following sequence of isomorphisms

Hom(A⊗B)e
(

A ⊗ A⊗(r−t) ⊗ A ⊗ B ⊗ B⊗t ⊗ B, A ⊗ B
)

� HomAe
(

A ⊗ A⊗(r−t) ⊗ A, A
) ⊗ HomBe

(
B ⊗ B⊗t ⊗ B, B

)
� Homk

(
A⊗(r−t), A

) ⊗ Homk
(

B⊗t, B
)

which implies that the complex Hom(A⊗B)e (B∗(A) ⊗B∗(B), A ⊗ B) is isomorphic to

A ⊗ B → (
Homk(A, A) ⊗ B

) ⊕ (
A ⊗ Homk(B, B)

) → ·· · →
r⊕

t=0

Homk
(

A⊗(r−t), A
) ⊗ Homk

(
B⊗t, B

) → ·· ·

which is exactly the tensor product complex C∗(A) ⊗ C∗(B). From now on, since we suppose that one of the algebras is
finite dimensional, we shall identify Hom(A⊗B)e (B∗(A) ⊗B∗(B), A ⊗ B) with C∗(A) ⊗ C∗(B) without further explanation.

Accordingly, the map

AWr = Hom(A⊗B)e (AWr, A ⊗ B) :
r⊕

t=0

Homk
(

A⊗(r−t), A
) ⊗ Homk

(
B⊗t, B

) −→ Homk
(

A ⊗ B⊗r, A ⊗ B
)

is given as follows:

• AW0 = Hom(A⊗B)e (AW0, A ⊗ B) = id;
• for r � 1, 0 � t � r, and α ∈ Homk(A⊗(r−t), A), β ∈ Homk(B⊗t , B),

AWr(α ⊗ β)
(
(a1 ⊗ b1) ⊗ · · · ⊗ (ar ⊗ br)

)
= (−1)t(r−t)(a1 · · ·at · α(at+1 ⊗ · · · ⊗ ar)

) ⊗ (
β(b1 ⊗ · · · ⊗ bt) · bt+1 · · ·br

)
.

Before defining EZr , let us recall an isomorphism

ϑ : Homk
(

A⊗(r−t), A
) ⊗ Homk

(
B⊗t, B

) −→ Homk
(

A⊗(r−t) ⊗ B⊗t, A ⊗ B
)

α ⊗ β 	→ ϑ(α ⊗ β), (3.1)

where ϑ(α ⊗ β) sends a1 ⊗ · · · ⊗ ar−t ⊗ b1 ⊗ · · · ⊗ bt to α(a1 ⊗ · · · ⊗ ar−t) ⊗ β(b1 ⊗ · · · ⊗ bt). Then

EZr = Hom(A⊗B)e (EZr, A ⊗ B) : Homk
(

A ⊗ B⊗r, A ⊗ B
) −→

r⊕
t=0

Homk
(

A⊗(r−t), A
) ⊗ Homk

(
B⊗t, B

)

is given by

• EZ0 = Hom(A⊗B)e (EZ0, A ⊗ B) = idA⊗B ;
• for r � 1 and ϕ ∈ Homk(A ⊗ B⊗r, A ⊗ B), let EZr(ϕ) = (ϑ−1(ξ0),ϑ

−1(ξ1), . . . , ϑ
−1(ξr)), where ξt ∈ Homk(A⊗(r−t) ⊗

B⊗t , A ⊗ B) sends a1 ⊗ · · · ⊗ ar−t ⊗ b1 ⊗ · · · ⊗ bt to ϕ(
∑

σ∈Sr−t,t
(−1)|σ | Fσ (a1 ⊗ · · · ⊗ ar−t ⊗ b1 ⊗ · · · ⊗ bt)).

The following result is well known. However, we could not find a proof in the literature, so we supply a proof. We are
very grateful to the referee for suggesting to us the following simple conceptual proof, while our proof (see Remark 3.2) is
much more complicated using the maps AW∗ and EZ∗ .

Lemma 3.1. Let A and B be two k-algebras such that one of them is finite dimensional. Then there is an isomorphism of graded algebras

HH∗(EZ∗) : HH∗(A ⊗ B) � HH∗(A) ⊗ HH∗(B) : HH∗(AW∗).
Proof. The isomorphism HH∗(A) ⊗ HH∗(B) � HH∗(A ⊗ B) is given by HH∗(AW∗). So given bimodule homomorphisms α :
B(A) → A and β : B(B) → B , write α × β = (α ⊗ β) ◦ AW∗ : B(A ⊗ B) → A ⊗ B . What we need to prove is that

(α � β) × (
α′ � β ′) = (−1)|β||α′|(α × α′) �

(
β × β ′)

for α,α′ : B(A) → A and β,β ′ : B(B) → B .
Since εA : B(A) → A and εA ⊗A εA : B(A) ⊗A B(A) → A are projective resolutions of A as bimodules, there exists a com-

parison morphism �A : B(A) → B(A) ⊗A B∗(A) lifting the identity of A, which is unique up to homotopy of A-bimodules.
Hence there is a commutative triangle:
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B(A)
�A

εA

B(A) ⊗A B(A)

εA⊗AεA

A

Let α : B(A) → A and β : B(A) → A be two bimodule maps. By definition, the cup product of α and β is α � β =
�A(α ⊗A β). If α and β are cocycles, then α � β is a cocycle and its cohomological class is independent of the choice of
�A . A possible choice of �A is given by (for a0, . . . ,an ∈ A)

�A(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ an+1) =
n∑

p=0

(a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ 1) ⊗A (1 ⊗ ap+1 ⊗ · · · ⊗ an ⊗ an+1).

With this map, we recover the usual definition of cup product.
The Alexander–Whitney map AW∗ and the Eilenberg–Zilber map EZ∗ fit also into the commutative triangles:

B(A ⊗ B)
AW∗

εA⊗B

B(A) ⊗B(B)

εA⊗εB

B(A) ⊗B(B)
EZ∗

εA⊗εB

B(A ⊗ B)

εA⊗B

A ⊗ B A ⊗ B.

Therefore, combining several commutative triangles as above, we obtain a diagram with all triangles commutative:

B(A ⊗ B)
AW∗

�A⊗B
εA⊗B

B(A) ⊗B(B)

εA⊗εB
�A⊗�B

B(A ⊗ B) ⊗A⊗B B(A ⊗ B)

AW∗⊗A⊗B AW∗

εA⊗B⊗A⊗BεA⊗B A ⊗ B (B(A) ⊗A B(A)) ⊗ (B(B) ⊗B B(B))

τ

(εA⊗AεA)⊗(εB⊗BεB )

(B(A) ⊗B(B)) ⊗A⊗B (B(A) ⊗B(B))

(εA⊗εB )⊗A⊗B (εA⊗εB )

where τ is the middle four interchange isomorphism sending x1 ⊗ x2 ⊗ y1 ⊗ y2 to (−1)|x2||y1|x1 ⊗ y1 ⊗ x2 ⊗ y2. Since both
τ ◦ (�A ⊗ �B) ◦ AW∗ and (AW∗ ⊗A⊗B AW∗) ◦ �A⊗B lift the identity of A ⊗ B , they are homotopy equivalent. The outer
pentagon of the above diagram is hence commutative up to homotopy. By composing with (α ⊗ β) ⊗A⊗B (α′ ⊗ β ′), we
deduce that

(−1)|β||α′|(α × α′) �
(
β × β ′) = (α ⊗ β) ⊗A⊗B

(
α′ ⊗ β ′) ◦ τ ◦ (�A ⊗ �B) ◦ AW∗

= (α ⊗ β) ⊗A⊗B
(
α′ ⊗ β ′) ◦ (AW∗ ⊗A⊗B AW∗) ◦ �A⊗B

= (α � β) × (
α′ � β ′).

We have proved that

H∗(AW∗) : HH∗(A) ⊗ HH∗(B) → HH∗(A ⊗ B)

is an isomorphism of graded algebras. �
Remark 3.2. The outer pentagon of the diagram in the proof of Lemma 3.1 is only commutative up to homotopy and it is
NOT strictly commutative, as one may readily verify (even with the specified choice of �A , etc.). However, if we replace
AW∗ by EZ∗ in the first row of the diagram, then a tedious computation shows that the outer pentagon is commutative:

B(A ⊗ B)

�A⊗B

B(A) ⊗B(B)
EZ∗

�A⊗�B

B(A ⊗ B) ⊗A⊗B B(A ⊗ B)

AW⊗A⊗B AW

(B(A) ⊗A B(A)) ⊗ (B(B) ⊗B B(B))

τ

(B(A) ⊗B(B)) ⊗A⊗B (B(A) ⊗B(B))

.

This enables us to obtain a formula on the cochain level. Let α ∈ Homk(A⊗n, A), β ∈ Homk(B⊗m, B), α′ ∈ Homk(A⊗s, A) and
β ′ ∈ Homk(B⊗t, B) with n,m, s, t ∈ Z�0. We obtain the equality
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EZn+m+s+t(AWn+m(α ⊗ β) � AWs+t(α′ ⊗ β ′)) = (−1)ms(α � α′) ⊗ (
β � β ′) (3.2)

on the cochain level, which implies the isomorphism on the cohomological level.
We remark also that AW∗ ◦ EZ∗ = Id, but EZ∗ ◦ AW∗ �= Id, as B(A) ⊗ B(B) is much smaller than B(A ⊗ B). This also

explain the outer pentagon of the diagram in the proof of Lemma 3.1 is only commutative up to homotopy, since the above
pentagon in this remark is strictly commutative.

We investigate further the Gerstenhaber algebra structure over the Hochschild cohomology of the tensor product of two
k-algebras. We have reviewed the tensor product of two Gerstenhaber algebras in Proposition-Definition 2.2.

Theorem 3.3. Let A and B be two k-algebras such that one of them is finite dimensional. Then there is an isomorphism of Gerstenhaber
algebras

HH∗(A ⊗ B) � HH∗(A) ⊗ HH∗(B).

Proof. It is sufficient to prove that the isomorphism in Lemma 3.1 preserves Lie bracket. In fact, we show a little bit more. To
be precise, given α ∈ Homk(A⊗n, A), β ∈ Homk(B⊗m, B), α′ ∈ Homk(A⊗s, A) and β ′ ∈ Homk(B⊗t , B), we have the following
equation on the cochain level

EZn+m+s+t−1([AWn+m(α ⊗ β),AWs+t(α′ ⊗ β ′)])
= (−1)t(n+m−1)

[
α,α′] ⊗ (

β � β ′) + (−1)n(s+t−1)
(
α � α′) ⊗ [

β,β ′] − (−1)n(s+t)δ
((

α′ ◦ α
) ⊗ (

β ◦ β ′))
− (−1)(n−1)(s+t−1)

(
α′ ◦ α

) ⊗ (
δ(β)◦β ′ − (−1)tβ ◦ δ

(
β ′)) − (−1)n(s+t−1)

(
δ
(
α′) ◦ α − (−1)nα′ ◦ δ(α)

)
⊗ (

β ◦ β ′). (3.3)

Then we deduce the desired formula on the cohomological level, since α,β,α′ and β ′ lie in the corresponding cocycle, and
δ((α′ ◦ α) ⊗ (β ◦ β ′)) lies in the coboundary.

We only show the case n,m, s, t � 1, since the cases when some of them are zero are easier.
Recall that

[
AWn+m(α ⊗ β),AWs+t(α′ ⊗ β ′)] = AWn+m(α ⊗ β) ◦ AWs+t(α′ ⊗ β ′)

− (−1)(n+m−1)(s+t−1)AWs+t(α′ ⊗ β ′) ◦ AWn+m(α ⊗ β),

where

AWn+m(α ⊗ β) ◦ AWs+t(α′ ⊗ β ′) =
n+m∑
i=1

(−1)(i−1)(s+t−1)
(
AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′)).

Now let

EZn+m+s+t−1(AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′)) = (
ϑ−1(ξ i

0

)
, . . . , ϑ−1(ξ i

n+m+s+t−1

))
with ξ i

j ∈ Homk(A⊗(n+m+s+t−1− j) ⊗ B⊗ j, A ⊗ B). Then for a1, . . . ,an+m+s+t−1− j ∈ A and b1, . . . ,b j ∈ B ,

ξ i
j(a1 ⊗ · · · ⊗ an+m+s+t−1− j ⊗ b1 ⊗ · · · ⊗ b j)

=
∑

σ∈Sn+m+s+t−1− j, j

(−1)|σ |(AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′))(Fσ (a1 ⊗ · · · ⊗ an+m+s+t−1− j ⊗ b1 ⊗ · · · ⊗ b j)
)
.

Suppose that

Fσ (a1 ⊗ · · · ⊗ an+m+s+t−1− j ⊗ b1 ⊗ · · · ⊗ b j) = (
xσ

1 ⊗ yσ
1

) ⊗ · · · ⊗ (
xσ

n+m+s+t−1 ⊗ yσ
n+m+s+t−1

)
,

with xσ
1 , . . . , xσ

n+m+s+t−1 ∈ A and yσ
1 , . . . , yσ

n+m+s+t−1 ∈ B . We have two cases.

Case 1: If m + 1 � i � n + m, then
(
AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′))((xσ

1 ⊗ yσ
1

) ⊗ · · · ⊗ (
xσ

n+m+s+t−1 ⊗ yσ
n+m+s+t−1

))
= AWn+m(α ⊗ β)

((
xσ

1 ⊗ yσ
1

) ⊗ · · · ⊗ (
xσ

i−1 ⊗ yσ
i−1

) ⊗ AWs+t(α′ ⊗ β ′)((xσ
i ⊗ yσ

i

) ⊗ · · ·
⊗ (

xσ
i+s+t−1 ⊗ yσ

i+s+t−1

)) ⊗ (
xσ

i+s+t ⊗ yσ
i+s+t

) ⊗ · · · ⊗ (
xσ

n+m+s+t−1 ⊗ yσ
n+m+s+t−1

))
= (−1)nm+st(xσ

1 · · · xσ
m · α(

xσ
m+1 ⊗ · · · ⊗ xσ

i−1 ⊗ (
xσ

i · · · xσ
i+t−1 · α′(xσ

i+t ⊗ · · · ⊗ xσ
i+t+s−1

)) ⊗ xσ
i+t+s ⊗ · · ·

⊗ xσ
)) ⊗ (

β
(

yσ ⊗ · · · ⊗ yσ
m

) · yσ · · · yσ · β ′(yσ ⊗ · · · ⊗ yσ
) · yσ · · · yσ

)
.
n+m+s+t−1 1 m+1 i−1 i i+t−1 i+t n+m+s+t−1
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Observe that the only non-zero case is when j = m + t and σ ∈ Sn+s−1,m+t is the following permutation:

(
1, . . . , i − m − 1, i − m, . . . ,n + s − 1, n + s, . . . ,n + s + m − 1, n + s + m, . . . ,n + m + s + t − 1

m + 1, . . . , i − 1, i + t, . . . ,n + m + s + t − 1, 1, . . . ,m, i, . . . , i + t − 1

)
,

hence

EZn+m+s+t−1(AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′)) = (
0, . . . ,0,ϑ−1(ξ i

m+t

)
,0, . . . ,0

)
.

We identify (0, . . . ,0, ϑ−1(ξ i
m+t),0, . . . ,0) with ϑ−1(ξ i

m+t), and obtain that

ξ i
m+t(a1 ⊗ · · · ⊗ an+s−1 ⊗ b1 ⊗ · · · ⊗ bm+t)

= (−1)m(n+s−1)+t(n+m+s−i)(AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′))((1 ⊗ b1) ⊗ · · · ⊗ (1 ⊗ bm) ⊗ (a1 ⊗ 1) ⊗ · · ·
⊗ (ai−m−1 ⊗ 1) ⊗ (1 ⊗ bm+1) ⊗ · · · ⊗ (1 ⊗ bm+t) ⊗ (ai−m ⊗ 1) ⊗ · · · ⊗ (an+s−1 ⊗ 1)

)
= (−1)m(n+s−1)+t(n+m+s−i)(−1)nm+stα

(
a1 ⊗ · · · ⊗ ai−m−1 ⊗ α′(ai−m ⊗ · · · ⊗ ai−m+s−1) ⊗ ai−m+s ⊗ · · ·

⊗ an+s−1
) ⊗ β(b1 ⊗ · · · ⊗ bm)β ′(bm+1 ⊗ · · · ⊗ bm+t)

= ϑ
(
(−1)m(s−1)+t(n+m−i)((α ◦i−m α′) ⊗ (

β � β ′)))(a1 ⊗ · · · ⊗ an+s−1 ⊗ b1 ⊗ · · · ⊗ bm+t).

Therefore

ϑ−1(ξ i
m+t

) = (−1)m(s−1)+t(n+m−i)((α ◦i−m α′) ⊗ (
β � β ′)).

Case 2: Similarly, for 1 � i � m, the only non-zero case is when j = m + t − 1 and σ ∈ Sn+s,m+t−1 is the permutation as
follows:

(
1, . . . , s, s + 1, . . . ,n + s, n + s + 1, . . . , i + n + s + t − 1, i + n + s + t, . . . ,n + m + s + t − 1

i + t, . . . , i + s + t − 1, m + s + t, . . . ,n + m + s + t − 1, 1, . . . , i + t − 1, i + s + t, . . . ,m + s + t − 1

)
.

We have

EZn+m+s+t−1(AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′)) = (
0, . . . ,0,ϑ−1(ξ i

m+t−1

)
,0, . . . ,0

)
and

ϑ−1(ξ i
m+t−1

) = (−1)s(i−1)+n(t−1)
(
α′ � α

) ⊗ (
β ◦i β ′).

Now it follows that

EZn+m+s+t−1(AWn+m(α ⊗ β) ◦ AWs+t(α′ ⊗ β ′))

=
n+m∑
i=1

(−1)(i−1)(s+t−1)EZn+m+s+t−1(AWn+m(α ⊗ β) ◦i AWs+t(α′ ⊗ β ′))

=
n+m∑

i=m+1

(−1)(i−1)(s+t−1)ϑ−1(ξ i
m+t

) +
m∑

i=1

(−1)(i−1)(s+t−1)ϑ−1(ξ i
m+t−1

)

=
n+m∑

i=m+1

(−1)t(n+m−1)+(i−m−1)(s−1)
(
α ◦i−m α′) ⊗ (

β � β ′) +
m∑

i=1

(−1)n(t−1)+(i−1)(t−1)
(
α′ � α

) ⊗ (
β ◦i β ′)

= (−1)t(n+m−1)
(
α ◦ α′) ⊗ (

β � β ′) + (−1)n(t−1)
(
α′ � α

) ⊗ (
β ◦ β ′).

Exchanging α with α′ and n with s, and in the meanwhile, exchanging β with β ′ and m with t , we obtain another
equation

EZn+m+s+t−1(AWs+t(α′ ⊗ β ′) ◦ AWn+m(α ⊗ β)
)

= (−1)m(s+t−1)
(
α′ ◦ α

) ⊗ (
β ′ � β

) + (−1)s(m−1)
(
α � α′) ⊗ (

β ′ ◦ β
)
.

Consequently,
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EZn+m+s+t−1([AWn+m(α ⊗ β),AWs+t(α′ ⊗ β ′)])
= (−1)t(n+m−1)

(
α ◦ α′) ⊗ (

β � β ′) + (−1)n(t−1)
(
α′ � α

) ⊗ (
β ◦ β ′) − (−1)(n−1)(s+t−1)

(
α′ ◦ α

) ⊗ (
β ′ � β

)
− (−1)n(s+t−1)+(m−1)(t−1)

(
α � α′) ⊗ (

β ′ ◦ β
)

= (−1)t(n+m−1)
[
α,α′] ⊗ (

β � β ′) + (−1)n(s+t−1)
(
α � α′) ⊗ [

β,β ′]
− (−1)(n−1)(s+t−1)

(
α′ ◦ α

) ⊗ (
β ′ � β − (−1)mtβ � β ′) − (−1)n(s+t−1)

(
α � α′ − (−1)nsα′ � α

) ⊗ (
β ◦ β ′).

To finish the proof, we apply [4, Theorem 3] to obtain

(−1)n(α � α′ − (−1)nsα′ � α
) = δ

(
α′ ◦ α

) − (−1)n−1δ
(
α′) ◦ α − α′ ◦ δ(α)

and

(−1)t(β ′ � β − (−1)mtβ � β ′) = δ
(
β ◦ β ′) − (−1)t−1δ(β) ◦ β ′ + β ◦ δ

(
β ′).

Here δ is the differential of the complexes C∗(A) and C∗(B). Denote by δ also the differential of the complex C∗(A)⊗ C∗(B),
we have

δ
((

α′ ◦ α
) ⊗ (

β ◦ β ′)) = δ
(
α′ ◦ α

) ⊗ (
β◦β ′) + (−1)n+s−1(α′ ◦ α

) ⊗ δ
(
β ◦ β ′).

From these, we finally deduce Eq. (3.3). �
Let us include an immediate consequence of Theorem 3.3 which generalizes slightly [1, Theorem 7.1]. Recall that

HH0(A) = Z(A) the center of A, and HH1(A) � Der(A)/InnDer(A), where Der(A) is the space of derivations of A and
InnDer(A) is the subspace of inner derivations of A. We have

Corollary 3.4. Let A and B be two k-algebras such that one of them is finite dimensional. Then there is an isomorphism of Lie algebras(
Der(A)

InnDer(A)
⊗ Z(B)

)
×

(
Z(A) ⊗ Der(B)

InnDer(B)

)
� Der(A ⊗ B)

InnDer(A ⊗ B)
.

In the remaining part of this section, we assume that A and B are finite dimensional symmetric k-algebras with bilinear
forms 〈 , 〉A and 〈 , 〉B respectively. Then both HH∗(A) and HH∗(B) have induced BV algebra structures as in Theorem 2.6.
The tensor product A ⊗ B is a symmetric algebra; indeed, its symmetric bilinear form might chose to be as follows

〈 , 〉 : A ⊗ B × A ⊗ B −→ k,(
a ⊗ b,a′ ⊗ b′) 	→ 〈a,a〉A

〈
b,b′〉

B .

We shall investigate the BV structure over HH∗(A ⊗ B) induced by this bilinear form; see Theorem 2.6. In Definition 2.7,
we have reviewed the tensor product of two BV algebras. We have the following isomorphism.

Theorem 3.5. Let A and B be two finite dimensional symmetric algebras. Then there is an isomorphism of BV algebras

HH∗(A ⊗ B) � HH∗(A) ⊗ HH∗(B).

Proof. Since the cup product and the �-operator can determine the Lie bracket, it follows from Lemma 3.1 that we only
need to prove that the isomorphism above preserves the �-operator. By Definition 2.7, it suffices to show that �-operator

is a derivation under the identification given by the isomorphism HH∗(AW∗) : HH∗(A ⊗ B)
�→ HH∗(A) ⊗ HH∗(B).

For a symmetric algebra A, for any n � 0 there is an isomorphism between HHn(A) and Homk(HHn(A),k) induced by
the following canonical isomorphisms

θA : C∗(A) � HomAe
(
Bn(A), A

) � HomAe
(
Bn(A), D(A)

) � Homk
(

A ⊗Ae Bn(A),k
) � Homk

(
C∗(A),k

)
.

This induces a non-degenerate pairing 〈 , 〉 : C∗(A) × C∗(A) → k inducing 〈 , 〉 : HH∗(A) × HH∗(A) → k.
Via this duality, even on the cochain level, EZ∗ is dual to the shuffle product, that is, we have a commutative diagram

C∗(A) ⊗ C∗(B)

θA⊗θB

C∗(A ⊗ B)
EZ∗

θA⊗B

Homk(C∗(A),k) ⊗ Homk(C∗(B),k)

�
ψ

Homk(C∗(A ⊗ B),k)

Homk(sh,k)

Hom (C (A) ⊗ C (B),k).
k ∗ ∗
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In fact, let f ∈ Cn(A ⊗ B) = Homk(A ⊗ B⊗n, A ⊗ B). Write EZ∗( f ) = ∑
i+ j=n gi ⊗h j ∈ ⊕

i+ j=n C i(A)⊗ C j(B). Then for p +q =
n, ϑ( f p ⊗ gq) : A⊗p ⊗ B⊗q → A ⊗ B sends a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq to

∑
σ∈Sp,q

(−1)|σ | f ◦ Fσ (a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq),

where ϑ is defined in formula (3.1). The map ψ ◦ (θA ⊗ θB) ◦ EZ∗( f ) sends a0 ⊗ · · · ⊗ ap ⊗ b0 ⊗ · · · ⊗ bq to
〈
a0, f p(a1 ⊗ · · · ⊗ ap)

〉
A

〈
b0, gq(b1 ⊗ · · · ⊗ bq)

〉
B

= 〈
a0 ⊗ b0, f p(a1 ⊗ · · · ⊗ ap) ⊗ gq(b1 ⊗ · · · ⊗ bq)

〉
A⊗B

=
∑

σ∈Sp,q

(−1)|σ |〈a0 ⊗ b0, f ◦ Fσ (a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq)
〉
A⊗B .

On the other hand, on sees easily that the map Homk(sh,k) ◦ θA⊗B( f ) sends a0 ⊗ · · · ⊗ ap ⊗ b0 ⊗ · · · ⊗ bq to
∑

σ∈Sp,q

(−1)|σ |〈a0 ⊗ b0, f ◦ Fσ (a1 ⊗ · · · ⊗ ap ⊗ b1 ⊗ · · · ⊗ bq)
〉
A⊗B .

The above diagram is thus commutative.
Since Connes’ B-operator is a derivation for the shuffle product [9, Corollary 4.3.4], its dual: the �-operator is also a

derivation via the isomorphism HH∗(AW∗) : HH∗(A) ⊗ HH∗(B) � HH∗(A ⊗ B). This completes the proof. �
Remark 3.6. Using a tedious computation similar to the proof of Theorem 3.3, we could obtain an equality on the cochain
level. Let α ∈ Homk(A⊗(r−t), A) and β ∈ Homk(B⊗t , B), with r � 1, 0 � t � r. Denote by �A , �B and �A⊗B the �-operator
of the complexes C∗(A), C∗(B) and C∗(A ⊗ B) respectively. We obtain that

EZr−1�A⊗B
r AWr(α ⊗ β) = �A

r−t(α) ⊗ β + (−1)r−tα ⊗ �B
t (β) (3.4)

on the cochain level, which deduces the isomorphism on the cohomological level.

4. Application: Hochschild cohomology of the group algebra of a finite abelian group

In this section, we indicate how to compute the BV structure over the Hochschild cohomology of the group algebra of a
finite abelian group.

Let k be a field of characteristic p > 0 and let G be a finite abelian group such that p divides the order of G . Now G can
be decomposed as follows:

G = C pn1 × C pn2 × · · · × C pnr × H

with r � 0, 1 � n1 � n2 � · · · � nr , where C ps denotes the cyclic group of order ps and p does not divide the order of H .
Now

kG � kC pn1 ⊗ kC pn2 ⊗ · · · ⊗ kC pnr ⊗ kH

and thus

HH∗(kG) � HH∗(kC pn1 ) ⊗ HH∗(kC pn2 ) ⊗ · · · ⊗ HH∗(kC pnr ) ⊗ HH∗(kH)

which is an isomorphism of BV algebras by Theorem 3.5. We point out that the Hochschild cohomology ring of a finite
abelian group is studied in [2] and [6].

As kH is semi-simple by Maschke’s theorem, HH∗(kH) = HH0(kH) = kH , so we only need to consider abelian p-groups.
By Theorem 3.5, in order to compute the BV structure over HH∗(kG), one needs to compute the BV structure over HH∗(kC ps ),
but this is well-known, as kC ps � k[X]/(X ps

).

Lemma 4.1. (See [17, Theorems 4.7 and 4.8].) Let k be a field of characteristic p > 0 and A = k[X]/(X ps
) with s � 1.

(1) If p �= 2, then as a BV algebra, HH∗(A) = k[x, y, z]/(xps
, y2) with |x| = 0, |y| = 1 and |z| = 2 and the �-operator is given by

�(xr yε zs) = εlxl−1zk for 0 � r � ps − 1, ε ∈ {0,1} and s � 0.
(2) If p = 2, then as a BV algebra, HH∗(A) = k[x, y, z]/(x2s

, y2 − 2s−1x2s−2z) with |x| = 0, |y| = 1 and |z| = 2 and the �-operator
is given by �(xr yε zs) = εlxl−1zk for 0 � r � ps − 1, ε ∈ {0,1} and s � 0.

Let us isolate the case where the group is C p , the cyclic group of order p for later use.
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Corollary 4.2. (See [17].) Let k be a field of characteristic p > 0.

(1) If p �= 2, then as a BV algebra, HH∗(kC p) = k[x, y, z]/(xp, y2) with |x| = 0, |y| = 1 and |z| = 2 and the �-operator over
HH∗(kC p) is given by �(xr yε zs) = εrxr−1zs for r ∈ Z/p, ε ∈ Z/2 and s � 0. As a consequence, the Gerstenhaber Lie bracket
is generated (using the Poisson rule) by

[x, y] = 1, [y, z] = 0 = [z, y].
More generally, for r, r′ ∈ Z/p, ε, ε′ ∈ Z/2 and s, s′ � 0, we have

[
xr yε zs, xr′

yε′
zs′] = (−1)1+(ε−1)ε′((

ε + ε′)(r + r′)xr+r′−1 − εrxr+r′−1 yε′ − (−1)εε′r′xr+r′−1 yε
)
zs+s′ .

(2) If p = 2, then as a BV algebra, HH∗(kC2) = k[x, y]/(x2) with |x| = 0 and |y| = 1. The �-operator over HH∗(kC2) is given by
�(xr ys) = εrxr−1 y2[ s

2 ] for r ∈ Z/2 and s � 0, where [x] denotes the biggest integer not bigger than x and ε = s − 2[ s
2 ].

As a consequence, the Gerstenhaber Lie bracket is generated (using the Poisson rule) by [x, y] = 1. More generally, for r, r′ ∈ Z/p
and s, s′ � 0, set ε = s − 2[ s

2 ] and ε′ = s′ − 2[ s′
2 ], then we have

[
xr ys, xr′

ys′] = ((
ε + ε′)(r + r′)xr+r′−1 − εrxr+r′−1 yε′ − ε′r′xr+r′−1 yε

)
y2[ s

2 ]+2[ s′
2 ].

We refrain from giving here a rather complicated formula for the BV structure over HH∗(kG) for a finite abelian group G .
On the contrary, we consider as examples elementary abelian p-groups. In this case, we give the precise formula for the
�-operator and the Gerstenhaber Lie algebra structure can be obtained accordingly.

Theorem 4.3. Let k be a field of characteristic p > 0 and G = Cn
p be the elementary abelian group of rank n � 1.

(1) If p �= 2, then

HH∗(kCn
p

) � k[x1, . . . , xn, z1, . . . , zn]/
(
xp

1 , . . . , xp
n
) ⊗ Λ(y1, . . . , yn)

with |xi | = 0, |yi | = 1, |zi | = 2 for any 1 � i � n and where �(y1, . . . , yn) is the exterior algebra with n generators.
The �-operator on the right-hand side is given by the following formula: for r1, . . . , rn, s1, . . . , sn � 0 and ε1, . . . , εn ∈ {0,1},

�
(
xr1

1 yε1
1 zs1

1 xr2
2 yε2

2 zs2
2 · · · xrn

n yεn
n zsn

n
)

= ε1r1xr1−1
1 zs1

1 xr2
2 yε2

2 zs2
2 · · · xrn

n yεn
n zsn

n

+ (−1)ε1ε2r2xr1
1 yε1

1 zs1
1 xr2−1

2 zs2
2 · · · xrn

n yεn
n zsn

n

+ · · ·
+ (−1)ε1+···+εn−1εnrnxr1

1 yε1
1 zs1

1 xr2
2 yε2

2 zs2
2 · · · xrn−1

n zsn
n .

The Gerstenhaber Lie bracket is generated (using the Poisson rule) by

[xi, x j] = 0, [yi, y j] = 0, [xi, y j] = δi j

and zi are central for 1 � i, j � n.
(2) If p = 2, then

HH∗(kCn
2

) � k[x1, . . . , xn, y1, . . . , yn]/
(
x2

1, . . . , x2
n

)
with |xi | = 0, |yi | = 1 for any 1 � i � n.
The �-operator on the right-hand side is given by the following formula: for r1, . . . , rn, s1, . . . , sn � 0, set εi = si − 2[ si

2 ] for each
1 � i � n, where [x] denotes the biggest integer not bigger than x, and we have

�
(
xr1

1 ys1
1 xr2

2 ys2
2 · · · xrn

n ysn
n

)
= ε1r1xr1−1

1 y
2[ s1

2 ]
1 xr2

2 ys2
2 · · · xrn

n ysn
n

+ ε2r2xr1
1 ys1

1 xr2−1
2 y

2[ s2
2 ]

2 · · · xrn
n ysn

n

+ · · ·
+ εnrnxr1

1 ys1
1 xr2

2 ys2
2 · · · xrn−1

n y
2[ sn

2 ]
n .

The Gerstenhaber Lie bracket is generated (using the Poisson rule) by

[xi, x j] = 0, [yi, y j] = 0, [xi, y j] = δi j.
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Proof. This follows from Corollary 4.2 and Theorem 3.5. The formula for the �-operator uses the formula

�(a ⊗ b) = �(a) ⊗ b + (−1)|a|a ⊗ �(b).

The Gerstenhaber Lie bracket is computed using the formula

[a,b] = −(−1)(|a|−1)|b|(�(a � b) − �(a) � b − (−1)|a|a � �(b)
)
. �

Remark 4.4. In the paper [14], Sélène Sanchez-Flores computed the Lie bracket over the Hochschild cohomology of a cyclic
group, using a method different from ours. For a cyclic group, it is not difficult to see that we obtain the same result, but
our method can deal with any abelian group instead of cyclic ones. The paper [17] also considered cyclic group case using
the BV formalism.
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