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a b s t r a c t 

In this paper, we propose a novel stroke constrained attention network (SCAN) which treats stroke as the 

basic unit for encoder-decoder based online handwritten mathematical expression recognition (HMER). 

Unlike previous methods which use trace points or image pixels as basic units, SCAN makes full use of 

stroke-level information for better alignment and representation. The proposed SCAN can be adopted in 

both single-modal (online or offline) and multi-modal HMER. For single-modal HMER, SCAN first employs 

a CNN-GRU encoder to extract point-level features from input traces in online mode and employs a CNN 

encoder to extract pixel-level features from input images in offline mode, then use stroke constrained 

information to convert them into online and offline stroke-level features. Using stroke-level features can 

explicitly group points or pixels belonging to the same stroke, therefore reduces the difficulty of symbol 

segmentation and recognition via the decoder with attention mechanism. For multi-modal HMER, other 

than fusing multi-modal information in decoder, SCAN can also fuse multi-modal information in encoder 

by utilizing the stroke based alignments between online and offline modalities. The encoder fusion is 

a better way for combining multi-modal information as it implements the information interaction one 

step before the decoder fusion so that the advantages of multiple modalities can be exploited earlier and 

more adequately. Besides, we propose an approach combining the encoder fusion and decoder fusion, 

namely encoder-decoder fusion, which can further improve the performance. Evaluated on a benchmark 

published by CROHME competition, the proposed SCAN achieves the state-of-the-art performance. Fur- 

thermore, by conducting experiments on an additional task: online handwritten Chinese character recog- 

nition (HCCR), we demonstrate the generality of our proposed method. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Handwritten mathematical expression recognition (HMER) is 

ne of the primary branches of document analysis and recogni- 

ion, which is widely used for the electronization of various scien- 

ific literatures. Different from online/offline character or text line 

ecognition [1] , HMER is much more challenging as it meets with 

he complicated two-dimensional structural analysis [2–4] . 

Generally, HMER consists of two major problems [5] , which 

re symbol recognition and structural analysis. Traditional meth- 

ds solve these problems sequentially or globally. Concretely, se- 

uential methods [6,7] first segment input expression into mathe- 

atical symbols and identify them separately. Then the structural 
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nalysis finds out the structure of the expression according to the 

ymbol recognition results. While global methods [8,9] deal with 

MER as a global optimization of symbol recognition and struc- 

ural analysis and the symbol segmentation is performed implic- 

tly. 

As deep learning came to prominence, attention based encoder- 

ecoder approaches are extensively adopted for HMER, which 

an be divided into online and offline cases. For online HMER, 

10,11] treat the handwritten mathematical expression (HME) as a 

oint sequence and extract point-level features from input traces. 

hile for offline HMER, [12,13] take the HME as a static image 

nd extract pixel-level features from the input image. Benefiting 

rom rich dynamic (spatial and temporal) information which is ex- 

remely helpful for handwritten recognition, online HMER tends to 

eet fewer difficulties caused by ambiguous handwriting. How- 

ver, the lack of global information in online HMER may lead 

o incorrect recognition coming from delayed strokes or inserted 

trokes [11,12] . On the contrary, offline HMER can easily handle 
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Fig. 1. The overall architecture of stroke constrained attention network (SCAN). 
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hese situations as its input is a static image which contains global 

nformation robust to stroke orders. Consequently, it is intuitive 

o utilize both dynamic traces and static images to build a more 

owerful recognition system, which is referred as multi-modal 

MER [14] . 

Although encoder-decoder approaches have greatly improved 

he performance of HMER, they still suffer from the difficulty of 

ymbol segmentation. Because an attention mechanism is utilized 

o implement symbol segmentation implicitly, the inaccurate at- 

ention will lead to the mis-recognition of the input expression. 

revious approaches always compute the attention coefficients on 

ow-level features, such as trace points for online modality and im- 

ge pixels for offline modality. However, for handwriting recogni- 

ion problems, handwritten input has a distinctive property that 

oints or pixels can be naturally grouped into higher-level basic 

nits, called strokes, formed by a pen-down and pen-up action. 

herefore, fully utilizing strokes as the basic units for attention 

ased encoder-decoder models will potentially improve the atten- 

ion based alignment and even enhance the representation ability 

f input features for online HMER. 

In this study, we propose a novel stroke constrained attention 

etwork (SCAN) for online HMER, which treats stroke as the basic 

nit for encoder-decoder models. It can be adopted in both single- 

odal and multi-modal HMER. Compared with previous encoder- 

ecoder based approaches [11,12] , SCAN has four major striking 

roperties: (i) It greatly improves the alignment generated by at- 

ention; (ii) The number of strokes is much smaller than the num- 

er of points or pixels, which helps accelerate the decoding pro- 

ess; (iii) For multi-modal recognition, SCAN provides oracle align- 

ents between online traces and offline images, which enables 

o fuse features from different modalities in encoder and signifi- 

antly improves the performance. (iiii) An approach combining the 

ncoder fusion and decoder fusion is proposed, which can utilize 

troke-level, point-level and pixel-level features at the same time. 

As shown in Fig. 1 , for online modality, we employ a convolu- 

ional neural network with gated recurrent units (CNN-GRU) based 

ncoder to extract point-level features from the input trace se- 

uence. Then the stroke constrained information, i.e., the corre- 

pondence between points and strokes, is utilized to convert point- 

evel features into online stroke-level features. Similarly, for offline 

odality, we adopt a CNN-based encoder to extract pixel-level fea- 

ures from the input image and then convert it into offline stroke- 

evel features. A decoder with attention is introduced to gener- 

te the recognition result, where attention actually achieves sym- 

ol segmentation implicitly. The stroke-level features as a higher- 

evel and more accurate representation extracted from the low- 

evel point/pixel features can potentially reduce the difficulty of 

ymbol segmentation and recognition. 

For multi-modal HMER, SCAN can play a more essential role 

s it not only groups points and pixels into strokes to generate 

a

2 
ore efficient symbol segmentation, but also makes fusing features 

rom different modalities in encoder become possible. On top of 

he stroke-level features from both online and offline modalities, 

e design two multi-modal fusion strategies, namely encoder fu- 

ion and decoder fusion. The decoder fusion is similar to our re- 

ent work [14] , where a multi-modal attention is equipped with 

e-attention mechanism to guide the decoding procedure by gen- 

rating a multi-modal stroke-level context vector with the infor- 

ation of both online and offline modalities. The proposed en- 

oder fusion has one advantage that it takes the information inter- 

ction one step before the decoder fusion so that the advantages of 

ultiple modalities can be exploited earlier and more adequately. 

s [14] treats point and pixel as the basic unit, it is difficult to im-

lement the encoder fusion with no explicit alignments between 

nline point-level features and offline pixel-level features. How- 

ver, as shown in Fig. 1 , SCAN treats stroke as the basic unit and

herefore there are oracle alignments between online and offline 

troke-level features. Accordingly, we can fuse them in encoder to 

btain multi-modal stroke-level features, which are then fed to the 

ecoder and an attention mechanism is adopted to guide the de- 

oding procedure and generate recognition result step by step. It 

an utilize both online and offline information to acquire more ac- 

urate attention results and significantly improve the performance 

f online HMER. Finally, we combine the encoder fusion and de- 

oder fusion to utilize stroke-level, point-level and pixel-level fea- 

ures with different lengths to further improve the performance. 

esides, we also evaluate all above methods on online handwritten 

hinese character recognition (HCCR) and prove that our methods 

an also acquire improvement in this application. 

The main contributions of this study are summarized as fol- 

ows: 

• A novel SCAN framework is proposed by fully utilizing the 

stroke information for encoder-decoder based online HMER and 

HCCR. 
• A single-modal SCAN approach is presented via the novel de- 

sign of online/offline stroke-level features. 
• A multi-modal SCAN approach is introduced with two fusion 

strategies, namely encoder fusion and decoder fusion. Further- 

more, these two strategies can be combined to achieve encoder- 

decoder fusion. 
• We demonstrate the effectiveness and efficiency of SCAN 

through complete experimental analysis and attention visual- 

ization. 

This work is an extension of our previous conference pa- 

er [14] in six ways: 1) The stroke as a high-level representation 

s adopted rather than the point/pixel as a low-level representa- 

ion in both single-modal and multi-modal HMER; 2) The stroke- 

evel features are used in multi-modal attention equipped with re- 

ttention to show the strength of the stroke constrained informa- 
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ion; 3) The online and offline stroke-level features are fully ex- 

loited in the encoder fusion strategy and this strategy can be 

ombined with the decoder fusion to achieve the encoder-decoder 

usion; 4) A stroke-level attention guider is proposed to help at- 

ention learn better; 5) A comprehensive set of experiments are 

esigned on the published benchmark of CROHME 2014/CROHME 

016/CROHME 2019; 6) The proposed method is also adopted in 

nline HCCR and can also achieve improvement. 

. Related work 

In this section, we first describe traditional approaches and 

hen discuss neural network based approaches for HMER. Finally 

e elaborate multi-modal machine learning approaches. 

.1. Traditional approaches for HMER 

One key property of online HMER is that the pen-tip move- 

ents (xy-coordinates) and pen states (pen-down and pen-up) can 

e acquired during the writing process. Traditional approaches for 

MER [15–17] usually utilize the pen states to group trajectory 

oints belonging to the same stroke in advance and treat stroke 

s the basic unit, i.e. representing mathematical expression as a 

et of strokes. The process of HMER can be divided into two steps: 

ymbol recognition and structural analysis. Symbol recognition in- 

olves symbol segmentation and classification. Symbol segmenta- 

ion is actually grouping the strokes belonging to the same symbol. 

hese two steps can be implemented separately or jointly, referring 

o sequential and global methods, respectively. Sequential meth- 

ds [6,7] first achieve symbol recognition by finding the best pos- 

ible groups of strokes and identifying the symbol corresponding 

o each stroke group. Then structural analysis is performed using 

yntactic models for representing spatial relations among symbols, 

uch as tree structure models [18] . In sequential methods, the con- 

extual information is not fully exploited and the symbol segmen- 

ation/recognition errors will be subsequently propagated to struc- 

ural analysis. On the contrary, global methods [8,9] optimize sym- 

ol recognition and structural analysis using the complete expres- 

ion simultaneously. However, global methods are computationally 

ore expensive as all the lower level hypotheses should be kept 

ntil the highest-level decision is made to achieve global decision. 

o efficient search strategies must be defined, e.g., [19] expands 

nterpretations layer by layer so that global interpretations are sys- 

ematically formed and evaluated, which can help accelerate the 

earch process. [20] introduces a data-driven organization of the 

ynamic programming beam search to avoid a full search. Besides, 

21] proposes a posterior probability-based confidence measure to 

uide the search. 

.2. Attention based encoder-decoder approaches for HMER 

Encoder-decoder framework has been extensively applied to 

any applications including machine translation [22–24] , speech 

ecognition [25,26] , image caption [27–29] and handwritten tra- 

ectory recovery [30] . Typically, an encoder is first employed to 

xtract high-level representations from input. Then, a decoder is 

pplied to generate a variable-length sequence as the output step 

y step. To address the issue that both input and output are of 

ariable length, attention mechanism [31–35] is usually incorpo- 

ated into decoder, which can generate a fixed-length context vec- 

or by weighted averaging the variable-length high-level represen- 

ations to guide the decoding procedure. With the development 

f deep learning, encoder-decoder based approaches with an at- 

ention mechanism are also widely used for HMER, which convert 

he output format from tree structure into LaTeX string and signif- 

cantly outperform the traditional methods. According to the dif- 
3 
erent input modalities of HMER, these approaches can be divided 

nto online and offline ones. Online approach treats the HMEs as 

ynamic traces while offline approach treats the HMEs as static 

mages. The online approach [10] employed GRU-based encoder 

nd GRU-based decoder with a spatial attention, which achieved 

ignificant improvements compared with traditional methods for 

MER. [11] introduced a TAP model with additional temporal at- 

ention and an attention guider to further improve the perfor- 

ance. Besides, [36] adopted residual connection in encoder and 

 transition probability matrix in decoder. As for the offline ap- 

roach, [12] utilized a WAP model, which adopted CNN-based 

ncoder to extract features from static images. [13] proposed a 

oarse-to-fine attention to improve efficiency. In addition, [37] in- 

roduced a PAL model and employed an adversarial learning strat- 

gy during training. 

.3. Multi-modal machine learning 

Recently, an increasing number of studies focus on multi-modal 

achine learning, which aims to utilize advantages and comple- 

entarities from multiple modalities [38–40] . Similiar with HMER, 

41] proposed a method to utilize both handwritten and audio 

odalities for improving the recognition performance. An essen- 

ial topic of multi-modal is how to fuse the information from dif- 

erent modalities [42,43] . Specific to features with varying length 

uch as sentences, videos and audio streams, one difficulty to 

ake a multi-modal fusion is the unaligned nature of different 

odalities. As encoder-decoder based framework is widely used 

or sequence machine learning, here we focus on the discussion 

f multi-modal fusion in the encoder stage or the decoder stage. 

or decoder fusion, [44] proposed a co-attention model to jointly 

eason about image and question attention for visual question an- 

wering. [45] developed a generalized multi-modal factorized high- 

rder pooling approach (MFH) to achieve more effective fusion of 

ulti-modal features by exploiting their correlations sufficiently. 

owever, encoder fusion can usually acquire better performance 

han decoder fusion, as information from different modalities can 

nteract earlier. Unfortunately, we usually lack of optimal map- 

ing between different modalities, which makes the encoder fusion 

hallenging. Although [46,47] utilized cross-modal self-attention to 

chieve the encoder fusion, the unaligned issue was still existed as 

he alignments acquired by cross-modal self-attention could not be 

uaranteed to be exactly accurate. 

Differently, for online HMER, we can obtain oracle alignments 

etween online and offline modalities by making full use of stroke 

onstrained information. Therefore, in this study, we propose SCAN 

o achieve the fusion of online and offline modalities in encoder, 

hich significantly improves the recognition performance. Besides, 

e combine the encoder fusion with the decoder fusion to achieve 

he encoder-decoder fusion, which can further improve the perfor- 

ance. 

. Single-modal SCAN 

In this section, we introduce the proposed SCAN for single- 

odal HMER, including online SCAN (OnSCAN) and offline SCAN 

OffSCAN). Different from previous single-modal approaches [11–

3] , we explicitly utilize the stroke constrained information in 

ncoder-decoder based HMER. Specifically, stroke-level features are 

dopted in SCAN rather than point-level and pixel-level features. 

urthermore, the attention mechanism in the decoder is to dis- 

over the alignments between the predicted mathematical sym- 

ol and input features. Therefore, the attention in SCAN actually 

roups strokes belonging to the same symbol, which is obviously 

uch easier and more efficient than grouping points or pixels 

n previous approaches as stroke-level features are a higher-level 
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epresentation to reduce the difficulty of attention than the local 

oint-level or pixel-level features. 

.1. Data preparation 

For online HMER, the raw input data is the handwritten traces, 

hich can be represented as a variable-length sequence: 

 ( x 1 , y 1 , s 1 ) , ( x 2 , y 2 , s 2 ) , · · · , ( x N , y N , s N ) ] (1) 

here x i and y i are the xy-coordinates of the pen movements and 

 i indicates which stroke the i th point belongs to. Please note that 

n this study the stroke constrained information { s i } is always used 

or both online and offline modalities. 

For the online modality, we normalize the traces and extract an 

-dimensional feature vector for each point i : 

 

on 
i = 

[
x i , y i , �x i , �y i , �

′ x i , �′ y i , strokeFlag1 , strokeFlag2 

]
(2) 

here �x i = x i +1 − x i , �y i = y i +1 − y i , �′ x i = x i +2 − x i , �′ y i =
 i +2 − y i . The last two terms are flags indicating the status of 

he pen, i.e., [ 1 , 0 ] means pen-down while [ 0 , 1 ] means pen-up. 

e refer to the trace point sequence after processing as X 

on = 

x on 
1 

, x on 
2 

, · · · , x on 
N 

}
, where N denotes the number of trace points. 

or the offline modality, we first calculate the heights of all strokes. 

hen we compute the average height of strokes with the height 

reater than one tenth of the maximum height. Furthermore, we 

ormalize xy-coordinates of all points in accordance with the av- 

rage height and simply line trace points of each stroke to convert 

races into static images, X 

off of size H in × W in . 

.2. Encoder with stroke masks 

We believe that the stroke constrained information plays an es- 

ential role in online HMER. In [11,14] , the stroke information is 

nly used as additional two dimensions of the input 8-dimensional 

eature vector. So we aim at fully utilizing the stroke information 

y defining the online and offline stroke masks, which is adopted 

o convert online point-level features and offline pixel-level fea- 

ures to the corresponding stroke-level features in the encoder 

tage. 

.2.1. Stroke masks 

Here we introduce how to generate online and offline stroke 

asks. Specifically, for one HME sequence, suppose it consists 

f M strokes and N points. We define online stroke masks as 

ask 

on = { mask 

on 
1 , mask 

on 
2 , · · · , mask 

on 
M 

} and offline stroke masks 

s Mask 

off = { mask 

off
1 , mask 

off
2 , · · · , mask 

off
M 

} . Each online stroke 

ask mask 

on 
j is a N-dimensional vector and the value of each ele- 

ent i is 1 or 0, indicating whether the i th point belongs to the j th 

troke or not by using the original stroke information { s i } . Each of-

ine stroke mask mask 

off
j is a matrix of size H in × W in and each el- 

ment (h, w ) is 1 or 0, indicating whether the pixel (h, w ) belongs

o the j th stroke or not by using the original stroke information 

 s i } . 

.3. Online encoder 

The online encoder is designed to extract the online stroke- 

evel features based on X 

on and Mask 

on 
. As shown in the left part 

f Fig. 2 , different from [10,11] , we employ 1-D DenseNet-20 fol- 

owing a fewer stack of GRUs, which can acquire better local in- 

ormation and improve the recognition performance. The convolu- 

ional layers of CNN are configured as densely connected layers in 

enseNet [48] . The output of CNN is a tensor of size 1 × L × D 

′ ,
hich is then transformed into a D 

′ -dimensional vector sequence 
4 
f length L , A 

′ = 

{
a ′ 

1 
, a ′ 

2 
, · · · , a ′ 

L 

}
. To capture the context informa- 

ion from input traces, a stack of GRUs are built on top of CNN. 

he hidden state of GRU can be calculated as: 

 

′ 
t = GRU 

(
a ′ t , h 

′ 
t−1 

)
(3) 

urthermore, as unidirectional GRU cannot exploit the future con- 

ext information, we actually adopt bidirectional GRU which can 

tilize both past and future context information. The detailed im- 

lementation of GRU can be found in [11] . 

The output of CNN-GRU encoder is a variable-length vector se- 

uence, namely point-level features, which can be represented as 

 = { a 1 , a 2 , · · · , a L } and each element is a D -dimensional vector. 

ote that N is a multiple of L based on the number of pooling 

ayers in CNN part. With the point-level features, we utilize on- 

ine stroke masks to convert point-level features into online stroke- 

evel features, which is illustrated in the right part of Fig. 2 . First,

he same number of downsampling as that in CNN part of on- 

ine encoder is used to process online stroke masks, which con- 

erts each online mask from a N-dimensional vector mask 

on 
j to 

 L -dimensional vector pmask 

on 
j . Then, the j th online stroke-level 

eature can be calculated as: 

 

on 
j = A 

T 
pmask 

on 
j 

|| pmask 

on 
j || 1 

S on = { s on 
1 , s 

on 
2 , · · · , s on 

M 

} (4) 

here || · || 1 is the vector 1-norm, s on 
j 

is a D -dimensional vector 

nd S on is the final output of online encoder. 

.4. Offline encoder 

The offline encoder is designed to extract the offline stroke- 

evel features based on X 

off and Mask 

off
. We first introduce a 

enseNet-99 to extract pixel-level features, which is illustrated in 

he left part of Fig. 3 . The output of CNN encoder is a tensor of

ize H × W × D . Note that H in and W in are multiples of H and W 

ased on the number of downsampling in CNN encoder, respec- 

ively. We transform this tensor into a variable-length vector se- 

uence B = { b 1 , b 2 , · · · , b H×W 

} as the pixel-level features and each 

lement is a D -dimensional vector. 

Similar to the online encoder, we utilize offline stroke masks to 

onvert pixel-level features into offline stroke-level features, which 

s illustrated in the right part of Fig. 3 . First, the same number of

ownsampling as that in CNN encoder is used to process offline 

troke masks, which converts each offline stroke mask from a ma- 

rix mask 

off
j of size H in × W in to a matrix pmask 

off
j of size H × W . 

hen we transform each offline mask into a (H × W ) -dimensional 

ector and offline stroke-level features are extracted from pixel- 

evel features as: 

 

off
j = B 

T 
pmask 

off
j 

|| pmask 

off
j || 1 

S off = 

{
s off

1 , s off
2 , · · · , s off

M 

}
(5) 

here s off
j 

is a D -dimensional vector and S off is the final output of 

ffline encoder. 

.5. Decoder with attention 

As online and offline stroke-level features ( S on and S off) are both 

ector sequences, we employ the same decoder architecture with a 

overage-based attention for both online and offline SCAN. But the 

arameters contained in decoder and attention are not shared. As 

hown in Fig. 4 , the decoder accepts online or offline stroke-level 

eatures and generates a LaTeX sequence for recognition: 

 = { y 1 , y 2 , · · · , y C } , y i ∈ R 

K (6) 

here K is the number of total math symbols in the vocabulary 

nd C is the length of LaTeX sequence. To address the problem 
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Fig. 2. The architecture of online encoder. The left part is point-level feature extraction from input traces using CNN-GRU. The right part is online stroke-level feature 

extraction from point-level features. 

Fig. 3. The architecture of offline encoder. The left part is pixel-level feature extraction from input images using a deep CNN. The right part is offline stroke-level feature 

extraction from pixel-level features. 

Fig. 4. The decoder architecture with two GRU layers and a coverage-based atten- 

tion. αpast denotes 
∑ t−1 

τ=1 ατ . 
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hat the stroke-level features have a variable length and the length 

f LaTeX string is not fixed, we employ an intermediate fixed-size 

ector c t , namely context vector generated by a unidirectional GRU 
5 
ith a coverage-based attention, which will be described later. 

hen another unidirectional GRU is adopted to produce the LaTeX 

equence symbol by symbol. The decoder structure can be denoted 

s: 

ˆ 
 t = GRU 1 ( y t−1 , h t−1 ) (7) 

 t = f att 

(
ˆ h t , S 

)
(8) 

 t = GRU 2 

(
c t , ̂  h t 

)
(9) 

here GRU 1 , GRU 2 indicate two GRU layers, f att denotes the 

overage-based attention, ˆ h t and h t represent the hidden states 

f the first and the second GRU layers, S denotes online or offline 

troke-level features. Besides, we utilize ˆ h t instead of h t−1 to calcu- 

ate attention coefficients as we believe that ˆ h t is a more accurate 

epresentation of the current alignment information than h t−1 . 

The probability of each predicted symbol is then computed by 

he context vector c t , the hidden state of the second GRU layer 

 t and one-hot vector of previous output symbol y t−1 using the 

ollowing equation: 

p ( y t ) = g ( W o φ( Ey t−1 + W h h t + W c c t ) ) (10) 

here g represents the softmax activation function and φ rep- 

esents the maxout activation function. W o ∈ R 

K× m 
2 , W h ∈ R 

m ×n , 

 c ∈ R 

m ×D , and E ∈ R 

m ×K denotes the embedding matrix. m and

 are dimensions of embedding and GRU decoder. 
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Attention mechanism is widely adopted in sequence learn- 

ng [31–33] . It is intuitive that for each predicted symbol, only 

arts of the input rather than the entire input is necessary to pro- 

ide the useful information, which means only a subset of feature 

ectors mainly contribute to the recognition. As shown in Fig. 4 , 

e introduce a coverage-based attention f att , which can be repre- 

ented as: 

 = Q ∗
∑ t−1 

τ=1 
ατ (11) 

 t j = νT 
att tanh 

(
W att ̂

 h t + U att s j + U f f j 

)
(12) 

here e t j denotes the energy of stroke-level feature vector s j in 

ecoding step t . F with its element f j as the coverage vector is 

omputed by feeding the past attention into a convolution layer Q 

ith q output channels, which can help alleviate the problem of 

tandard attention mechanism, namely lack of coverage [49] . Let 

 

′ denotes the dimension of the attention, then νatt ∈ R 

n ′ , W att ∈ 

 

n ′ ×n , U att ∈ R 

n ′ ×D , U f ∈ R 

n ′ ×q . 

The attention coefficients αt j can be obtained by feeding e t j 

nto a softmax function, which is utilized to calculate the context 

ector as: 

t j = 

exp 

(
e t j 

)
∑ M 

k =1 exp ( e tk ) 
c t = 

M ∑ 

j=1 

αt j s j (13) 

.6. Stroke-level attention guider 

For online HMER, the correspondence information between 

trokes and symbols is provided in the training stage. For exam- 

le, there is an expression “s + 2 ” which consists of four strokes: 

he first stroke for “s ”, the second and the third strokes for “ + ”

nd the last stroke for “2”. Obviously, when we predict the sym- 

ol “ + ”, the coverage-based attention should be supposed to only 

ttend the second and the third strokes. Generally for the sym- 

ol w t in time step t , we first introduce an oracle attention map, 

t = 

{
γt j | j = 1 , 2 , . . . , M 

}
with γt j = 

1 
M 

′ if the j th stroke belongs to 

he symbol w t , otherwise 0, where M denotes the number of all 

trokes and M 

′ denotes the number of strokes belonging to the 

ymbol w t . We can regard γt j and αt j as two probability distribu- 

ions because 
∑ M 

j=1 γt j = 

∑ M 

j=1 αt j = 1 and it is intuitive to employ 

he cross entropy function as the stroke-level attention guider: 

 t = −
∑ M 

j=1 
γt j log αt j (14) 

ote that for spatial structure, such as “∧ ”, “{ ” and “} ”, which are

sed to meet the requirement of LaTeX grammar, we simply re- 

ove the guider as they are lack of explicit alignments to strokes. 

his stroke-level attention guider is adopted as a regularization 

tem for parameter learning as elaborated in Section 5.1 . 

. Multi-modal SCAN 

In this section, we discuss multi-modal SCAN, which can take 

oth advantages of online and offline modalities for online HMER. 

irst, we employ a multi-modal encoder with both online and of- 

ine encoder to extract online stroke-level features S on and offline 

troke-level features S off, as shown in Section 3.3 and Section 3.4 . 

hen two fusion strategies are proposed for multi-modal SCAN, 

amely the decoder fusion (denoted as MMSCAN-D) and the en- 

oder fusion (denoted as MMSCAN-E). In the decoder fusion, sim- 

lar to our previous work [14] , a multi-modal attention equipped 

ith re-attention mechanism to fuse online and offline stroke-level 

eatures is introduced. More importantly, SCAN makes the fusion of 

nline and offline stroke-level features in encoder become possible 
6 
s it provides oracle alignments between online and offline modal- 

ties. Finally, we combine the encoder fusion and the decoder fu- 

ion to achieve the encoder-decoder fusion (denoted as MMSCAN- 

D), which can further improve the performance. 

.1. Decoder fusion 

To fully utilize the complementarities between online and of- 

ine modalities, a two-stage re-attention mechanism is designed 

ith pre-attention and fine-attention models, which is illustrated 

n Fig. 5 . Actually the decoder structure here is similar to the 

ingle-modal case as described in Eq. (7) , (8), (9) . The main dif- 

erence is that f att in Eq. (8) is replaced by the re-attention mech- 

nism, which accepts online and offline stroke-level features and 

enerates a multi-modal stroke-level context vector c mm 

t . In the 

rst stage, the pre-attention model can be represented as: 

  

on 
t = f on 

att 

(
ˆ h t , S 

on 
)

ˆ c off
t = f off

att 

(
ˆ h t , S 

off
)

(15) 

here ˆ c on 
t and ˆ c off

t denote two single-modal stroke-level context 

ectors. Note that the superscripts “on” and “off” in Eq. (15) are 

nly used to distinguish coverage-based attention f att over online 

nd offline stroke-level features as the attention parameters are 

ot shared. 

Based on the results of the pre-attention model, the fine- 

ttention model is employed to generate multi-modal stroke-level 

ontext vector c mm 

t in the second stage. Compared with the pre- 

ttention model, the fine-attention model adds the context vector 

f one modality from the pre-attention model as the auxiliary in- 

ormation to improve the attention of another modality, which is 

mplemented as: 

on 
t j = g 

(
νT 

att tanh 

(
W att ̂

 h t + U 

on 
att s 

on 
j + U 

on 
f f on 

j + U 

off
p ˆ c off

t 

))
(16) 

off
t j = g 

(
νT 

att tanh 

(
W att ̂

 h t + U 

off
att s 

off
j + U 

off
f f off

j + U 

on 
p ˆ c on 

t 

))
(17) 

here U 

on 
p ∈ R 

n ′ ×D , U 

off
p ∈ R 

n ′ ×D . Then the stroke-level context vec- 

ors of fine-attention model are calculated as: 

 

on 
t = 

∑ M 

j=1 
αon 

t j s 
on 
j c off

t = 

∑ M 

j=1 
αoff

t j s 
off
j (18) 

inally, the multi-modal stroke-level context vector c mm 

t can be ob- 

ained as: 

 

mm 

t = tanh 

(
W FC 

[
c on 

t 

c off
t 

])
(19) 

here W FC ∈ R 

D ×2 D . 

The re-attention can be also equipped with stroke-level atten- 

ion guider as described in Section 3.6 and the main difference is 

hat here we utilize oracle attention map γ t to supervise the learn- 

ng of both online and offline attention coefficients as: 

 t = −
(∑ M 

j=1 
γt j log αon 

t j + 

∑ M 

j=1 
γt j log αoff

t j 

)
(20) 

.2. Encoder fusion 

A key component of multi-modal learning is to fuse features 

rom different modalities. In our previous work [14] , point-level 

nd pixel-level features are extracted from the inputs of online 

nd offline modalities. On account of the problem that these two 

ypes of features are unaligned, we can only fuse online and offline 

odalities in decoder. 

However, as illustrated in Fig. 6 , SCAN converts point-level and 

ixel-level features into online and offline stroke-level features. In- 

erently, there are oracle alignments between online and offline 

odalities in terms of stroke-level features. Specifically, online 
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Fig. 5. The two-stage re-attention mechanism with pre-attention and fine-attention models. To simplify the illustration, we have omitted the coverage vectors and activation 

functions. 

Fig. 6. Encoder fusion to generate multi-modal stroke-level features with the oracle alignments between online and offline stroke-level features. 
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nd offline stroke-level features are one-to-one correspondence, 

oth indicating the high-level representations of a certain stroke. 

herefore, we can fuse online and offline stroke-level features into 

ulti-modal stroke-level features as: 

 

mm = { s mm 

1 , s mm 

2 , . . . , s mm 

M 

} s mm 

j = 

[
s on 

j 

s off
j 

]
(21) 

With the multi-modal stroke-level features, we employ a de- 

oder with coverage-based attention and the stroke-level attention 

uider described in Section 3.6 to generate the recognition result. 

he structure is similar to that illustrated in Section 3.5 by replac- 

ng S on / S off with S mm , which can be denoted as: 

ˆ 
 t = GRU 1 ( y t−1 , h t−1 ) (22) 

 

mm 

t = f mm 

att 

(
ˆ h t , S 

mm 

)
(23) 
7 
 t = GRU 2 

(
c mm 

t , ̂  h t 

)
(24) 

By comparison of MMSCAN-E and MMSCAN-D, although 

MSCAN-D introduces re-attention to help information interac- 

ion between two modalities, it still only considers information 

rom one single modality in the pre-attention model. Moreover, 

he errors in the pre-attention model will be inherited by the fine- 

ttention model which might degrade the performance. Neverthe- 

ess, MMSCAN-E makes full use of stroke constrained information 

o obtain oracle alignments between online and offline stroke-level 

eatures and fuse them in encoder. Consequently, MMSCAN-E takes 

he fusion one step before MMSCAN-D, which can potentially im- 

rove the recognition performance of HMER. 
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Fig. 7. The architecture of DenseNet-20. 
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.3. Encoder-decoder fusion 

In this section, we propose an encoder-decoder fusion approach, 

hich combines the encoder fusion and decoder fusion. Specifi- 

ally, we first employ a multi-modal encoder to extract point-level 

eatures A and pixel-level features B and convert them into online 

troke-level features S on and offline stroke-level features S off. Based 

n online and offline stroke-level features, multi-modal stroke- 

evel features S mm can be acquired using the encoder fusion. Other 

han only feeding stroke-level features to the decoder like the en- 

oder fusion and decoder fusion in Section 4.1 and Section 4.2 , 

ere we feed multi-modal stroke-level, point-level and pixel-level 

eatures to the decoder at the same time. Then the decoder fusion 

s adopted to fuse these features with different lengths and gen- 

rate a multi-modal multi-level context vector c mmml 
t at each de- 

oding step. As there are three features to be processed, we mod- 

fy the calculation of context vector in Section 4.1 , which can be 

egarded as a more general and extended version of the decoder 

usion. 

In the first stage of the decoder fusion, the pre-attention model 

s employed to compute multi-modal stroke-level, point-level and 

ixel-level context vectors similar to Eq. (15) : 

  

mm 

t = f mm 

att 

(
ˆ h t , S 

mm 

)
ˆ c point 

t = f point 
att 

(
ˆ h t , A 

)
ˆ c pixel 

t = f pixel 
att 

(
ˆ h t , B

(25) 

In the second stage, the fine-attention model is employed to 

enerate the multi-modal multi-level context vector c mmml 
t . For the 

riginal fine-attention model, the context vector of another modal- 

ty computed in the pre-attention model will be considered. How- 

ver, as there are three context vectors now, we additionally con- 

atenate every two context vectors first: 

  

pmm 

t = 

[
ˆ c point 

t 

ˆ c pixel 
t 

]
ˆ c ppoint 

t = 

[
ˆ c mm 

t 

ˆ c pixel 
t 

]
ˆ c ppixel 

t = 

[
ˆ c mm 

t 

ˆ c point 
t 

]
(26) 

hen the fine-attention model can be represented as: 

mm 

t j = g 

(
νT 

att tanh 

(
W att ̂

 h t + U 

mm 

att s mm 

j + U 

mm 

f f mm 

j + U 

mm 

p ˆ c pmm 

t 

))
(27) 

point 
t j 

=g 

(
νT 

att tanh 

(
W att ̂

 h t + U 

point 
att a j + U 

point 

f 
f point 

j 
+ U 

point 
p ˆ c ppoint 

t 

))
(28) 

pixel 
t j 

=g 

(
νT 

att tanh 

(
W att ̂

 h t + U 

pixel 
att b j + U 

pixel 

f 
f pixel 

j 
+ U 

pixel 
p ˆ c ppixel 

t 

))
(29) 

inally, the multi-modal multi-level context vector c mmml 
t can be 

omputed as: 

 

mm 

t = 

∑ M 

j=1 
αmm 

t j s mm 

j c point 
t = 

∑ L 

j=1 
αpoint 

t j 
a j c pixel 

t = 

∑ H×W 

j=1 
αpixel 

t j 

(30) 

 

mmml 
t = tanh 

⎛ 

⎝ W FC 

⎡ 

⎣ 

c mm 

t 

c point 
t 
pixel 

⎤ 

⎦ 

⎞ 

⎠ (31) 
c t p

8 
. Training and testing procedures 

.1. Training 

Our models aim to maximize the predicted symbol probability 

s shown in Eq. (10) and employ cross entropy (CE) as the crite- 

ion. The objective function for optimization, which consists of CE 

riterion and the stroke-level attention guider, is shown as follows: 

 = −
∑ C 

t=1 
log p( w t | y t−1 , X 

on , X 

off) + λ
∑ C 

t=1 
G t (32) 

here w t represents the ground truth word at time step t , C is 

he length of output string in LaTeX format, G t is the stroke-level 

ttention guider, and λ is set to 0.2. Note that for single-modal 

MER, only one of X 

on and X 

off is used. Besides, we set weight 

ecay to 10 −5 for online modality and multi-modal, 10 −4 for offline 

odality to reduce overfitting. 

There are three kinds of encoders in this study, namely online 

ncoder, offline encoder and multi-modal encoder while multi- 

odal encoder is the combination of online encoder and offline 

ncoder with the parameters pretrained from single-modal cases. 

he online encoder is a CNN-GRU architecture. The CNN part is 

 DenseNet-20 as illustrated in Fig. 7 , with 5 dense blocks in the 

ain branch. 1 × 2 average pooling is applied after the third and 

fth dense blocks, which reduces the length of input point se- 

uence by a factor of 4. The growth rate is set to 24 and the com-

ression factor in transition layer is set to 1. As shown in the right 

art of Fig. 7 , each dense block without bottleneck structure has 

 convolutional layers with kernel size 1 × 3 and 24 output chan- 

els. The GRU part is two layers of bidirectional GRU and each GRU 

ayer has 250 forward and 250 backward units. 

The offline encoder is a DenseNet-99 as illustrated in Fig. 8 , 

ith 3 dense blocks in the main branch. 1 × 1 convolution fol- 

owed by 2 × 2 average pooling between every two contiguous 

ense blocks is used. The growth rate is set to 24 and the com- 

ression factor in transition layer is set to 0.5. As shown in the 
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Fig. 8. The architecture of DenseNet-99. 
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Table 1 

Performance comparison of different encoder-decoder approaches 

for the online modality using point-level features (TAP), online 

stroke-level features (OnSCAN), and feature fusion in decoder (On- 

SCAN+TAP) on CROHME 2014 and CROHME 2016 testing sets. 

System CROHME 2014 CROHME 2016 

ExpRate StruRate ExpRate StruRate 

TAP [14] 48.47% 67.24% 44.81% 63.12% 

OnSCAN 51.22% 70.49% 46.12% 65.30% 

OnSCAN + TAP 52.64% 70.89% 47.17% 66.78% 
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ight part of Fig. 8 , each dense block adopts the bottleneck struc- 

ure, i.e., a 1 × 1 convolution is introduced before each 3 × 3 con- 

olution to reduce the input to 96 feature maps and the total num- 

er of convolutional layers in each block is 32. Note that there are 

dditional fully connected layers on top of online and offline chan- 

els of multi-modal encoder to convert the output dimensions of 

hese two channels to be the same, namely D = 500 . 

The decoder adopts 2 unidirectional GRU layers and each layer 

as 256 forward GRU units. The embedding dimension m and GRU 

ecoder dimension n are both set to 256 while the attention di- 

ension n ′ is 500. The kernel sizes of convolution layers Q are 

et to 1 × 7 for online modality and 11 × 11 for offline modality. 

e train our model by the adadelta algorithm [50] for optimiza- 

ion and the corresponding hyperparameters are set as ρ = 0 . 95 , 

 = 10 −8 for online modality, ρ = 0 . 9 , ε = 10 −6 for offline modal-

ty and ρ = 0 . 9 , ε = 10 −8 for multi-modal. 

.2. Testing 

In the recognition stage, we expect to obtain the most likely 

aTeX string as: 

ˆ  = arg max 
y 

log P ( y | x ) (33) 

ifferent from the training stage, we do not have the ground truth 

f the previous predicted symbol. Consequently, we employ a sim- 

le left-to-right beam search algorithm [51] to implement the de- 

oding procedure, beginning with the start-of-sentence token < 

os> . At each time step, we maintain a set of 10 partial hypothe-

es. Each hypothesis is expanded with every possible symbol and 

nly the hypotheses with 10 minimal scores are kept: 

 t = S t−1 − log p( y t | y t−1 , x ) (34) 

here S t−1 and S t represent the scores at time steps t − 1 and t ,

espectively. p( y t | y t−1 , x ) denotes the probability of all predicted 

ymbols in the dictionary. The prediction procedure for each hy- 

othesis ends when the output symbol meets the end-of-sentence 

oken < eos > . 
9 
. Experiments on online HMER 

In this section, we design a set of experiments to validate the 

ffectiveness of the proposed SCAN on online HMER by answering 

he following questions: 

Q1 Is the proposed single-modal SCAN effective for online 

HMER? 

Q2 Is the proposed multi-modal SCAN using the 

encoder/decoder/encoder-decoder fusion effective? 

Q3 How does SCAN improve the performance by attention vi- 

sualization? 

Q4 Can SCAN help accelerate the recognition speed? 

The experiments are all implemented with Pytorch 

.4.1 [52] and an NVIDIA GeForce GTX 1080Ti 11G GPU. 

.1. Dataset and metric 

Our experiments are conducted on CROHME competition 

atabase [53,54] , which is currently the most widely used dataset 

or HMER. The CROHME 2014 competition dataset consists of a 

raining set of 8836 HMEs and a testing set of 986 HMEs. The 

ROHME 2016 competition dataset only includes a testing set of 

147 HMEs. There are totally 101 math symbol classes and none 

f the handwritten expressions in the testing set appears in the 

raining set. We apply CROHME 2014 training set as our training 

et and evaluate the performance of our models on CROHME 2014 

esting set and CROHME 2016 testing set. Besides, we also evaluate 

ur models on the latest CROHME 2019 competition dataset [55] of 

199 HMEs. 

The main metric in this study is expression recognition rate 

ExpRate) [56] , i.e., the percentage of predicted mathematical ex- 

ressions matching the ground truth. Besides, we list the structure 

ecognition rate (StruRate) [56] , which only focuses on whether 

he structure is correctly recognized and ignores symbol recogni- 

ion errors. 

.2. Evaluation of single-modal SCAN (Q1) 

In this section, we examine the effectiveness of single-modal 

CAN. First, we investigate the performance of different encoder- 

ecoder approaches for the online modality as shown in Table 1 . 

AP refers to the improved version of encoder-decoder approach 

sing point-level features as in [14] . OnSCAN+TAP denotes the de- 

oder fusion of TAP using point-level features and OnSCAN using 

nline stroke-level features via the multi-modal attention in [14] . 

he ExpRate is increased from 48.47% to 51.22% on CROHME 2014 

esting set and from 44.81% to 46.12% on CROHME 2016 testing 

et after replacing point-level features (TAP) with online stroke- 

evel features (OnSCAN). By comparing OnSCAN with OnSCAN+TAP, 

he ExpRate is increased from 51.22% to 52.64% on CROHME 2014 

esting set and from 46.12% to 47.17% on CROHME 2016 testing 

et. Similar observations could be made for StruRate. All these re- 

ults demonstrate the superiority of online stroke-level features as 
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Table 2 

Performance comparison of different encoder-decoder approaches 

for the offline modality using pixel-level features (WAP), offline 

stroke-level features (OffSCAN), and feature fusion in decoder (Off- 

SCAN+WAP) on CROHME 2014 and CROHME 2016 testing sets. 

System CROHME 2014 CROHME 2016 

ExpRate StruRate ExpRate StruRate 

WAP [14] 48.38% 70.08% 46.82% 66.17% 

OffSCAN 47.67% 68.56% 46.64% 65.65% 

OffSCAN + WAP 49.39% 71.81% 49.60% 68.18% 

Table 3 

Performance comparison of different encoder-decoder approaches for both 

online and offline modalities on CROHME 2019 testing set. The expression 

recognition accuracies with one, two and three errors per expression are 

represented by “≤ 1 ”, “≤ 2 ” and “≤ 3 ”. 

System ExpRate ≤ 1 ≤ 2 ≤ 3 StruRate 

TAP [14] 44.20% 58.80% 62.72% 63.55% 63.64% 

OnSCAN 46.46% 62.47% 66.14% 67.14% 66.31% 

OnSCAN + TAP 47.62% 62.64% 67.06% 67.72% 67.22% 

WAP [14] 48.12% 63.47% 67.22% 67.97% 67.97% 

OffSCAN 47.62% 63.14% 67.06% 67.56% 67.81% 

OffSCAN + WAP 49.62% 66.89% 69.97% 70.73% 70.56% 
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Table 4 

Performance comparison of different multi-modal approaches on 

CROHME 2014 and CROHME 2016 testing sets. 

System CROHME 2014 CROHME 2016 

ExpRate StruRate ExpRate StruRate 

MAN [14] 52.43% 71.60% 49.87% 68.18% 

E-MAN [14] 54.05% 72.11% 50.56% 67.39% 

MMSCAN-D 55.38% 71.30% 52.22% 68.35% 

MMSCAN-E 57.20% 73.94% 53.97% 70.62% 

MMSCAN-ED 58.11% 74.24% 54.29% 69.89% 

Table 5 

Performance comparison of different multi-modal approaches on CROHME 

2019 testing set. The expression recognition accuracies with one, two and 

three errors per expression are represented by “≤ 1 ”, “≤ 2 ” and “≤ 3 ”. 

System ExpRate ≤ 1 ≤ 2 ≤ 3 StruRate 

MAN 52.21% 66.64% 69.97% 70.39% 70.56% 

E-MAN 52.88% 67.64% 70.81% 71.06% 71.06% 

MMSCAN-D 53.88% 68.31% 70.56% 71.14% 70.98% 

MMSCAN-E 56.21% 69.47% 71.64% 72.06% 71.73% 

MMSCAN-ED 57.38% 71.61% 73.98% 74.48% 74.14% 

USTC-iFLYTEK 80.73% 88.99% 90.74% - 91.49% 

Samsung R&D 1 79.82% 87.82% 89.15% - 89.32% 

MyScript 79.15% 86.82% 89.82% - 90.66% 
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 higher-level representation over the point-level features and the 

omplementarity between them. 

Then we compare the performance of different encoder-decoder 

pproaches for the offline modality as shown in Table 2 . WAP 

efers to the improved version of encoder-decoder approach using 

ixel-level features as in [14] . OffSCAN+WAP denotes the decoder 

usion of WAP using pixel-level features and OffSCAN using offline 

troke-level features via the multi-modal attention in [14] . Com- 

ared with WAP, the ExpRate of OffSCAN is slightly decreased from 

8.38% to 47.67% on CROHME 2014 testing set and from 46.82% to 

6.64% on CROHME 2016 testing set. This observation is different 

rom that in online modality by the comparison between TAP and 

nSCAN. The reason might be that the pooling operation of 2D 

mages in offline modality leads to higher misalignment between 

ach stroke and the corresponding pixels (or points) than that of 

D sequence in online modality. However, performance improve- 

ents could be achieved by OffSCAN+WAP over both WAP and Off- 

CAN, e.g., with ExpRate increasing from 48.38%/47.67% to 49.39% 

n CROHME 2014 testing set and from 46.82%/46.64% to 49.60% 

n CROHME 2016 testing set, which indicates the strong comple- 

entarity between the offline stroke-level features and pixel-level 

eatures. 

To further confirm the generalization of single-modality SCAN, 

e also evaluate on the latest CROHME 2019 competition database 

s shown in Table 3 . For online modality, OnSCAN can achieve bet- 

er performance than TAP while OnSCAN+TAP can achieve the best 

erformance. As for offline modality, OffSCAN slightly underper- 

orms WAP but OffSCAN+WAP still yields the best performance. All 

hese variation trends on CROHME 2019 testing set are the same 

s those on CROHME 2014 and 2016 testing sets, which verify the 

ffectiveness of single-modal SCAN for online HMER in both online 

odality and offline modality. 

.3. Evaluation of multi-modal SCAN (Q2) 

In Table 4 , we show the performance comparison of different 

ulti-modal approaches on CROHME 2014 and CROHME 2016 test- 

ng sets. Please note that MAN and E-MAN are our previously pro- 

osed work [14] using the decoder fusion of point-level features 

nd pixel-level features. And E-MAN is an enhanced version of 

AN by adopting the re-attention mechanism. E-MAN can be con- 

idered as the decoder fusion of TAP and WAP while MMSCAN- 
10 
 is the decoder fusion of OnSCAN and OffSCAN. So from the 

oint-level/pixel-level feature fusion to online/offline stroke-level 

eature fusion (E-MAN vs. MMSCAN-D), the ExpRate is increased 

rom 54.05% to 55.38% on CROHME 2014 testing set and from 

0.56% to 52.22% on CROHME 2016 testing set, still demonstrating 

he superiority of treating stroke as the basic modeling unit rather 

han point or pixel in the multi-modal case. Besides, as SCAN 

rovides oracle alignments between online and offline modali- 

ies, MMSCAN-E using the encoder fusion outperforms MMSCAN- 

 using the decoder fusion, i.e., with the ExpRate increasing from 

5.38% to 57.20% on CROHME 2014 testing set and from 52.22% 

o 53.97% on CROHME 2016 testing set, which confirms that the 

arly-stage encoder fusion is better than the late-stage decoder 

usion in the SCAN framework. Finally, MMSCAN-ED can achieve 

he best ExpRate results (58.11% on CROHME 2014 testing set and 

4.29% on CROHME 2016 testing set), which demonstrates that 

ombining the encoder fusion and decoder fusion is useful. 

Furthermore, we evaluate the above approaches on CROHME 

019 testing set in Table 5 to show that the improvements are 

ignificant and stable. Note that the best system MMSCAN-ED can 

chieve more significant gains over MMSCAN-E and MMSCAN-D 

ompared with CROHME 2014 and 2016 datasets. Overall, in com- 

arison to single-modal approaches OnSCAN and OffSCAN, the best 

erforming multi-modal approach MMSCAN-ED yields large perfor- 

ance gains, e.g., with an absolute ExpRate gain of 9.76% and an 

bsolute StruRate gain of 6.33% on CROHME 2019 testing set (Off- 

CAN in Table 3 vs. MMSCAN-ED in Table 5 ). Besides, we list the 

op three systems in CROHME 2019 competition [55] and all these 

ystems can achieve very high performance but they use data aug- 

entation (or external data) and other strategies. 

Finally, we make a comparison of our best approach MMSCAN- 

D and other state-of-the-art approaches on both CROHME 2014 

nd CROHME 2016 testing sets, as shown in Table 6 . The sys- 

em Wiris, Tokyo and S ̃ a o Paulo denote the top three systems in 

ROHME 2016 competition using only official dataset (note that 

iris actually used an additional large corpus to train a strong lan- 

uage model) and the details can be seen in [54] . WYGIWYS [13] is

n encoder-decoder model with a coarse-to-fine attention to im- 

rove efficiency. PAL [37] introduced a paired adversarial learning 

ethod to help solve difficulties in HMER due to writing styles. 

lease note that the results of the end-to-end approaches are not 
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Fig. 9. The attention visualization and recognition result comparison between OnSCAN and TAP for one handwritten mathematical expression with the LaTeX ground truth 

“ \ frac { 9 } { 9 + \ sqrt { 9 } } ”. 

Table 6 

Overall performance comparison on CROHME 2014 and CROHME 

2016 testing sets. 

System CROHME 2014 CROHME 2016 

ExpRate StruRate ExpRate StruRate 

Wiris - - 49.61% 74.28% 

Tokyo - - 43.94% 61.55% 

S ̃ a o Paulo - - 33.39% 57.02% 

WYGIWYS [13] 35.90% - - - 

PAL [37] 39.66% - - - 

TAP 48.47% 67.24% 44.81% 63.12% 

WAP 48.38% 70.08% 46.82% 66.17% 

PGS [57] 48.78% - 45.60% - 

Res-BiRNN [58] 53.35% - 47.95% - 

MAN 52.43% 71.60% 49.87% 68.18% 

E-MAN 54.05% 72.11% 50.56% 67.39% 

MMSCAN-ED 58.11% 74.24% 54.29% 69.89% 
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xactly comparable with traditional approaches in the submitted 

ystems to CROHME competitions as the segmentation error is not 

xplicitly considered. Obviously, the proposed MMSCAN-ED signif- 

cantly outperforms other end-to-end approaches with an ExpRate 

f 58.11% on CROHME 2014 testing set and an ExpRate of 54.29% 

n CROHME 2016 testing set. 

.4. Attention visualization (Q3) 

In Section 6.2 and Section 6.3 , we have demonstrated that SCAN 

an improve the performance of online HMER in both single-modal 

nd multi-modal cases. In this section, we further show that SCAN 

an acquire more accurate symbol segmentation which is per- 

ormed by attention. Moreover, the advantage of encoder fusion 

ver the decoder fusion is explained by attention visualization. 

We first compare the attention and recognition results of On- 

CAN and TAP of one handwritten mathematical expression with 

he LaTeX ground truth “ \ frac { 9 } { 9 + \ sqrt { 9 } } ” in Fig. 9 . It

s obvious that OnSCAN correctly recognizes the example expres- 

ion while TAP fails. Specifically, OnSCAN can focus on the exact 

oints of the current predicted symbol at each time step, which 

n fact achieves accurate symbol segmentation and thus generates 
11 
orrect recognition result. As for TAP, it can only focus on parts of 

he points belonging to the current symbol. Besides, it will improp- 

rly focus on some redundant points belonging to other symbols. 

herefore, TAP mistakenly recognizes the first “9” as “s” and the 

econd/third “9” as “g”. It is reasonable as the attended parts can 

e regraded as a part of “9”, “s” or “g”. 

The attention and recognition results of MMSCAN-E and 

MSCAN-D for one handwritten mathematical expression are 

hown in Fig. 10 . As the decoder of MMSCAN-D accepts both on- 

ine and offline stroke-level features, accordingly attention results 

or both online and offline modalities are given. Ideally, the atten- 

ion results of MMSCAN-D online and MMSCAN-D offline should 

e the same, namely the same attended strokes belonging to the 

ymbol at each decoding step. However, as MMSCAN-D generates 

ttention results over online and offline stroke-level features sep- 

rately in the decoder, the attention results for online and offline 

odalities might be different leading to incorrect recognition. For 

xample, at the first three steps of MMSCAN-D, the different atten- 

ion results of online and offline modalities lead to a deletion error, 

amely incorrectly recognizing “ (- \ infty ” as “ ( \ infty ” with the 

ymbol “-” missing. On the contrary, MMSCAN-E generates exactly 

ccurate attention results at each step and correctly recognizes the 

xample expression. This indicates the superiority of early-stage 

usion by better utilizing the alignments between online and of- 

ine modalities. 

One main motivation of multi-modal fusion for online HMER 

s to overcome problems in single modality by using information 

rom both online and offline modalities. For example, a very com- 

on problem is caused by delayed strokes. As shown in Fig. 11 , 

e take one expression with the LaTeX ground truth “ B + B = B 

as an example. The difficulty of recognizing this sample is that 

he writing order of this expression is different from the normal 

riting order. This expression consists of ten strokes with the cor- 

esponding writing order in Fig. 11 . In general, after writing the 

econd “B”, we will write the “= ” by two strokes. However, in this 

xample, one stroke (marked red) of the symbol “= ” is delayed to 

e written as the final stroke, which makes online modality diffi- 

ult to correctly recognize. Although MMSCAN-D has information 

f two modalities and adopts re-attention to implement informa- 

ion interaction, it only has single modality information in pre- 
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Fig. 10. Attention and recognition results of MMSCAN-E and MMSCAN-D for one handwritten mathematical expression with the LaTeX ground truth “ (- \ infty, \ infty) ”. 

Table 7 

Comparison of time efficiency between SCAN and local (point-level or 

pixel-level) feature based approaches in both single-modal and multi- 

modal cases. 

Modality System ExpRate StruRate Time Cost 

Online TAP 48.47% 67.24% 1 

OnSCAN 51.22% 70.49% 0.91 

Offline WAP 48.38% 70.08% 1.51 

OffSCAN 47.67% 68.56% 1.28 

Multi-modal E-MAN 54.05% 72.11% 2.66 

MMSCAN-D 55.38% 71.30% 1.94 

MMSCAN-E 57.20% 73.94% 1.32 

MMSCAN-ED 58.11% 74.24% 3.34 
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ttention and still meets problems as the errors caused by pre- 

ttention will be inherited in fine-attention. Therefore, MMSCAN-D 

ncorrectly recognizes this expression as “ B + B - B”. Nevertheless, 

MSCAN-E fuses two modalities in encoder, which authentically 

as both online and offline information when performing atten- 

ion in the decoder. As a result, the global information in offline 

odality can help solve the delayed stroke problem and MMSCAN- 

 correctly recognizes this expression. 

.5. Comparison of recognition speed (Q4) 

We compare the computational costs of whether employing 

CAN in single-modal and multi-modal cases by investigating the 

est speed in this section. We present the total time cost (normal- 

zed by the time cost of TAP system) for recognizing the CROHME 

014 testing set in Table 7 . For the single modality, it is obvious

hat converting point-level/pixel-level features (TAP/WAP) into on- 

ine/offline stroke-level features (OnSCAN/OffSCAN) can accelerate 

he testing procedure as the number of strokes is much smaller 

han the number of points/pixels, which reduces the computa- 

ion cost of the decoder part. Similarly, in the multi-modal case, 

MSCAN-D is faster than E-MAN as MMSCAN-D replaces both 

oint-level and pixel-level features with online and offline stroke- 
12 
evel features at the same time. MMSCAN-E with the better Ex- 

Rate and StruRate can also achieve the better efficiency compared 

ith MMSCAN-D and E-MAN due to the early-stage fusion. Besides, 

MSCAN-E system only uses a half of time cost of E-MAN system 

nd is even faster than offline WAP system. The system MMSCAN- 

D achieves the best recognition performance but demands the 

ighest computational cost. 

. Experiments on online HCCR 

In this section, we employ the proposed SCAN in online HCCR 

o evaluate the generalization and robustness. We use CASIA 

ataset [59] , including OLHWDB1.0 and OLHWDB1.1 as our training 

et and ICDAR 2013 Chinese handwritten recognition competition 

ataset [60] as our testing set. The raw data is handwritten traces 

ith stroke constrained information and we employ the same data 

reparation as HMER to acquire online input, online stroke masks, 

ffline input and offline stroke masks. Note the difference here is 

e resize each offline input (a static image) as 64 × 64 . 

Instead of treating a Chinese character as a single character 

ategory, we treat each character as a composition of radicals as 

AN [61] . Then, the recognition of handwritten Chinese character 

ecomes a sequential problem rather than a classification prob- 

em and can be solved by encoder-decoder frameworks. We use 

he same training criterion as in HMER except stroke-level atten- 

ion guider as there is no such information in online HCCR. The 

xperimental results are shown in Table 8 . 

For single-modal part, OnSCAN can achieve better performance 

han TAP while OffSCAN is slightly worse than WAP, which has the 

ame trendency as in HMER. Note that WAP here is called RAN 

n [61] for unified description. As for multi-modal part, MMSCAN-E 

an achieve better performance while MMSCAN-D outperforms E- 

AN, which proves the effectiveness of encoder fusion and stroke- 

evel representation. Besides, MMSCAN-ED can still achieve the 

est performance, which further proves the effectiveness of the 

ncoder-decoder fusion. The results of these experiments demon- 
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Fig. 11. Attention visualization and recognition results of MMSCAN-E and MMSCAN-D for one handwritten mathematical expression with the LaTeX ground truth “ B + B = 

B ”. The problem of delayed strokes exists in this example. 

Table 8 

The comparison of different models on online hand- 

written Chinese character recognition. 

Single-modal Multi-modal 

System Accuracy System Accuracy 

TAP 96.55% E-MAN 96.91% 

OnSCAN 96.67% MMSCAN-D 97.04% 

WAP 94.89% MMSCAN-E 97.11% 

OffSCAN 94.57% MMSCAN-ED 97.16% 
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trate that SCAN can also be adopted in online HCCR and achieve 

etter performance. 

. Conclusion and future work 

In this study, we introduce a novel stroke constrained atten- 

ion network (SCAN) for online handwritten mathematical expres- 

ion recognition and online handwritten Chinese character recog- 

ition. The proposed model can be applied in both single-modal 

nd multi-modal cases. For single modal case, SCAN can help at- 

ention learn easily and better than TAP or WAP, as SCAN adopts 

troke as the basic unit, which is a high-level representation than 

oint (TAP) or pixel (WAP). Specifically, by using this high-level 

epresentation, attention becomes to achieve the new alignment, 

.e., which strokes belonging to each symbol, rather than which 

oints or pixels belonging to each symbol. Besides, as discussed in 

ection 4 , SCAN achieves the feasibility of encoder fusion as SCAN 

an provide oracle alignment between online and offline modal- 

ties, which is very important in multi-modal machine learning. 

y combining the encoder fusion and decoder fusion, we achieve 

he encoder-decoder fusion with the best performance. We demon- 

trate through experimental results that SCAN can significantly im- 
13 
rove the recognition performance and accelerate the testing pro- 

edure. Moreover, we verify that SCAN greatly improves the align- 

ent via the attention visualization. In the future, we aim to inves- 

igate a better approach for fusing features from different modal- 

ties to acquire a more reasonable representation and we will in- 

estigate the explicit symbol segmentation by using attention re- 

ults, which can be utilized as stroke-level attention guider. Fur- 

hermore, we will consider more complex situations such as re- 

eating strokes or cross-out while writing [62] . 
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