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In this paper, we propose a visual embedding approach to improve embedding aware speech enhance-
ment (EASE) by synchronizing visual lip frames at the phone and place of articulation levels. We first
extract visual embedding from lip frames using a pre-trained phone or articulation place recognizer for
visual-only EASE (VEASE). Next, we extract audio-visual embedding from noisy speech and lip frames
in an information intersection manner, utilizing a complementarity of audio and visual features for
multi-modal EASE (MEASE). Experiments on the TCD-TIMIT corpus corrupted by simulated additive
noises show that our proposed subword based VEASE approach is more effective than conventional
embedding at the word level. Moreover, visual embedding at the articulation place level, leveraging
upon a high correlation between place of articulation and lip shapes, demonstrates an even better
performance than that at the phone level. Finally the experiments establish that the proposed MEASE
framework, incorporating both audio and visual embeddings, yields significantly better speech quality
and intelligibility than those obtained with the best visual-only and audio-only EASE systems.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Background noises considerably reduce the quality and intel-
igibility of the speech signal, thus limiting the performance of
peech-related applications in real-world conditions (e.g. auto-
atic speech recognition, dialog system and hearing aid, etc.).
he objective of speech enhancement (Loizou, 2013) is to gen-
rate enhanced speech with better speech quality and clarity by
uppressing background noise components in noisy speech.
Conventional speech enhancement approaches, such as

pectral subtraction (Boll, 1979), Wiener filtering (Lim & Op-
enheim, 1978), minimum mean squared error (MMSE) esti-
ation (Ephraim & Malah, 1985), and the optimally-modified

og-spectral amplitude (OM-LSA) speech estimator (Cohen, 2003;
ohen & Berdugo, 2001), have been extensively studied in the
ast. Recently, the application of deep learning technologies has
een successful in speech enhancement (Narayanan & Wang,
013; Wang & Chen, 2018; Xu, Du, Dai, & Lee, 2015).
Human auditory system can track a single target voice source

n extremely noisy acoustic environment like a cocktail party,
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uage Information Processing (NEL-SLIP), University of Science and Technology
f China, No. 96, JinZhai Road, Hefei, Anhui, PR China.

E-mail address: jundu@ustc.edu.cn (J. Du).
ttps://doi.org/10.1016/j.neunet.2021.06.003
893-6080/© 2021 Elsevier Ltd. All rights reserved.
which is also known as the cocktail party effect (Cherry, 1953).
This finding motivates us to design speech enhancement sys-
tems by drawing on the way humans perceive speech. McGurk
Effect (McGurk & MacDonald, 1976) suggests a strong influence
of vision on human speech perception. Other researches (Bern-
stein & Benoit, 1996; MacLeod & Summerfield, 1987; Massaro &
Simpson, 2014; Rosenblum, 2008) have shown visual cues such
as facial/lip movements can help speech perception, through sup-
plementing the acoustic information related to the corresponding
speaker, especially in noisy environments. Inspired by the afore-
mentioned discoveries, the speech enhancement method utilizing
both audio and visual signals, which is also known as audio-visual
speech enhancement (AVSE), has been developed.

The AVSE methods can be traced back to Girin, Feng, and
Schwartz (1995) and following work, e.g. Abdelaziz, Zeiler, and
Kolossa (2013), Deligne, Potamianos, and Neti (2002), Fisher III,
Darrell, Freeman, and Viola (2001), Girin, Schwartz, and Feng
(2001), Goecke, Potamianos, and Neti (2002) and Hershey and
Casey (2002). And recently numerous studies have attempted to
build deep neural network-based AVSE models. Gabbay, Ephrat,
Halperin and Peleg (2018) employed a video-to-speech method
to construct T-F masks for speech enhancement. An encoder–
decoder architecture was used in Gabbay, Shamir and Peleg
(2018) and Hou et al. (2018). These methods were merely
demonstrated under constrained conditions (e.g. the utterances
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onsisted of a fixed set of phrases, or a small number of known
peakers). Afouras, Chung, and Zisserman (2018) proposed a
eep AVSE network consisting of the magnitude and phase sub-
etworks, which enhanced magnitude and phase, respectively.
phrat et al. (2018) designed a model that hinged on the facial
mbedding of the source speaker and outputted the complex
ask. Ideli, Sharpe, Bajić, and Vaughan (2019) proposed a time-
omain AVSE framework based on Conv-tasnet (Luo & Mesgarani,
019). These methods all performed well in the situations of
nknown speakers and unknown noise types.
We briefly discuss the above-mentioned AVSE methods from

he following two perspectives: visual embedding and audio-
isual fusion method. Regrading the visual embedding, Gabbay,
phrat et al. (2018), Gabbay, Shamir et al. (2018) and Hou et al.
2018) made use of the image sequences of the lip region. For dis-
arding irrelevant variations between images, such as illumina-
ion, Ephrat et al. (2018) proposed using face embedding obtained
rom a pre-trained face recognizer and confirmed through abla-
ion experiments that the lip area played the most important role
or enhancement performance in the face area. Moreover, Afouras
t al. (2018) and Ideli et al. (2019) chose lip embedding via the
iddle layer output in a pre-trained isolated word recognition
odel.
In recent work, Wu et al. (2019) adopted the phone as the

lassification target instead of isolated word and provided a more
seful visual embedding for speech enhancement. In the term of
udio-visual fusion method, most AVSE methods focus on audio-
isual fusion that happens at the middle layer of the enhance-
ent network in the fashion of channel-wise concatenation.
These pioneering works are the foundation of this research

aper. A useful visual embedding should contain as much acoustic
nformation in the video as possible. But the acoustic information
n video is very limited, and there is also other information redun-
ancy. In the current classification-based embedding extracting
ramework, we could yield a more robust and generalized visual
mbedding by both reducing the information redundancy and
ncreasing the correlation between classification target and visual
coustic information. For the former, cutting out the lip area is
seful, while for the latter, finding a classification target that is
ore relevant to lip movements will be of help.
The superset of speech information called speech attributes

ncludes a series of fundamental speech sounds with their ar-
iculatory knowledge, linguistic interpretations, speaker charac-
eristics, and emotional state, etc. (Lee et al., 2007). In contrast
o phone models, a smaller number of universal attribute units
re needed for a complete characterization of any spoken lan-
uage (Li, Ma, & Lee, 2007). The place and manner of articulation
re two speech attributes based on articulatory phonology, which
ere widely used in automatic speech recognition (Li, Tsao, & Lee,
005), automatic spoken language recognition (Siniscalchi, Reed,
vendsen, & Lee, 2013) and non-native mispronunciation detec-
ion (Li, Siniscalchi, Chen, & Lee, 2016), etc. Early works (Livescu
t al., 2007; Saenko, Darrell, & Glass, 2004) also proposed to
se these articulatory features for visual and audio-visual speech
ecognition. We propose that the place and manner of articulation
ave a higher correlation with the visual acoustic information and
an provide a more useful supervisory signal in the stage of visual
mbedding extractor training.
One consensus in multimodal learning is that the data of

ach mode obeys an independent distribution conditioned on the
round truth label (Blum & Mitchell, 1998; Dasgupta, Littman, &
cAllester, 2002; Leskes, 2005; Lewis, 1998). Each mode captures

eatures related to ground truth tags from different aspects, so the
nformation extracted (labels excluded) is not necessarily related
o the other. This shows that the ground truth can be seen as

‘information intersection’’ between all modes (Sun et al., 2020), i
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i.e. the amount of agreement shared by all the modalities. Specif-
ically, in AVSE, there is a mismatch between the information
intersection and ground truth label. The intersection of audio
modal (noisy speech) and video modal (lip video) is not clean
speech which is ground truth.

In this paper, we extend the previous AVSE framework to
the embedding aware speech enhancement (EASE) framework.
The conventional AVSE methods are regarded as special EASE
methods, which only utilize visual embedding extracted from
lip frames, as known as visual embedding aware speech en-
hancement (VEASE) methods. In EASE framework, we propose
a VEASE model using a novel visual embedding, which is the
middle layer output in a pre-trained articulation place recognizer.
We adopt the same dataset in the stages of embedding extrac-
tor training and enhancement network training. A more effec-
tive visual embedding is obtained by utilizing a high correlation
between the designed classification target, i.e., the articulation
place, and the visual acoustic information rather than additional
video data. Moreover, we present a novel multimodal embedding
aware speech enhancement (MEASE) model which extends the
visual-only pre-trained embedding extractor to the audio-visual
pre-trained embedding extractor and yields significantly better
speech quality and intelligibility. In the MEASE model, the fusion
of audio and visual embeddings occurs in the stage of embedding
extractor training and is supervised by their information intersec-
tion at the articulation place label level, which is an early fusion.
In order to better understand the effect of audio-visual fusion
stage in a neural network on the enhancement performance, we
also perform a series of experiments which make the fusion take
place at different stages without changing the network structure.
And we observe better speech enhancement performance in early
fusion under the framework of a neural network.

The main contributions of this paper are:

(1) We explore the effectiveness of different visual embed-
dings pre-trained for various classification targets on en-
hancement performance. A novel classification target, i.e.,
the articulation place, is proposed for training visual em-
bedding extractor. The visual embedding utilizing a high
correlation between the articulation place and the acous-
tic information in video achieves the better enhancement
performance with no additional data used.

(2) We verify the complementarity between audio and visual
embeddings lies in different signal-to-noise ratio (SNR)
levels, as well as different articulation places by ablation
experiments. And based on the information intersection,
we adopt a novel fusion method integrating visual and
audio embeddings in the proposed MEASE model, as it
performs better in all SNR levels and all articulation places.

(3) We design experiments to study the effect of the stage
when audio-visual fusion occurs on the quality and intel-
ligibility of enhanced speech under the framework of a
neural network. And we observe that the early fusion of
audio and visual embeddings delivers better enhancement
performance.

Concurrently and independently from us, a number of groups
have proposed various methods from visual embedding and
audio-visual fusion for AVSE. Wang, Xing, Wang, Chen, and Sun
(2020) observed serious performance degradations when these
AVSE methods were applied with a medium or high SNR1 and
proposed a late fusion-based approach to safely combine visual

1 Performance degradation in Wang et al. (2020) may result from the
hanges in the network structure, but we have indeed observed reduction in
mprovements from our results of comparative experiment, as will be discussed
n Section 4.4.
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nowledge in speech enhancement. This is the opposite of our
ork. Iuzzolino and Koishida (2020) proposed a new mechanism

or audio-visual fusion. In this research, the fusion block was
daptable to any middle layers of the enhancement network. This
ind of multiple fusion in the enhancement network was better
han the standard single channel-wise concatenation. Lu, Duan,
nd Zhang (2019) proposed a novel audio-visual deep clustering
odel which employs a two-stage audio-visual fusion strategy
uring the speech separation training without the supervised
re-training. However, these two works differ from ours in that
udio-visual integration still occurs in the middle of the enhance-
ent/separation network. In Gu et al. (2020), audio and visual
mbeddings were extracted from video and noisy multi-channel
peech in the pre-training stage, respectively and fused in speech
nhancement training stage, which was supervised by the target
peech. This is different from our research that fuses audio and
isual embeddings in the pre-training stage, and where the audio-
isual fusion is supervised by their information intersection at
he articulation place label level. However, we also design a
imilar model in Section 3.3 and compare it with our method in
ection 4.4.
The rest of the paper is structured as follows. In Section 2

e describe the proposed VEASE method. The proposed MEASE
ethod is presented in Section 3. Section 4 has experimental
etup including dataset, audio and video preprocessing as well
s compares experimental results. Finally, we conclude this work
nd discuss future research directions in Section 5.

. VEASE model utilizing articulation place label

In this section, we elaborate our proposed VEASE model, in-
luding two aspects, i.e. architecture and training process. The
isual embedding extractor is an important part of the VEASE
odel, which takes a sequence of lip frames as input and outputs
compact vector for every lip frame, known as visual embedding.
he VEASE model takes both noisy log-power spectra (LPS) fea-
ures and visual embeddings as inputs, and outputs ideal ratio
ask. The details of the visual embedding extractor and the
EASE model are elaborated as follows.

.1. Overview of visual embedding extractor

The visual embedding extractor fV(·) has a similar structure
o Petridis et al. (2018) and Stafylakis and Tzimiropoulos (2017),
hich is also used in previous AVSE studies (Afouras et al., 2018;

deli et al., 2019). The extractor consists of a spatiotemporal con-
olution followed by an 18-layer ResNet (He, Zhang, Ren, & Sun,
016a) which is the identity mapping version (He, Zhang, Ren,
Sun, 2016b), as shown in Fig. 1. A spatiotemporal convolution

onsists of a convolution layer with 64 3D-kernels of 5 × 7 × 7
time/width/height), a batch normalization, a ReLU activation and
spatiotemporal max-pooling layer.
For a sequence of lip frames V = {V t

∈ RH×W
; t =

, 1, . . . , TV −1}, the feature maps is extracted by the spatiotem-
oral convolution. Then, the feature maps are passed through the
8-layer ResNet. The spatial dimensionality shrinks progressively
n the ResNet until output becomes a LV-dimensional vector per
ime step, known as the visual embedding EV:

EV = {Et
V ∈ RLV; t = 0, 1, . . . , TV − 1} = fV(V )

= ResNet-18V(MaxPooling3D(BN(ReLU(Conv3D(V )))))
(1)

here TV, H and W denote the number and the size of lip frames,
espectively. In this study, we use LV = 256, H = 98 and W = 98
y default.
The visual embedding extractor is trained with a classification

ackend. E is fed to the classification backend and the posterior
V
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robability of each class Pclass is outputted, where the class can be
abeled as word, phone or place of articulation. We calculate the
ross entropy (CE) loss LCE between Pclass and the true distribution
f class P truth

class :

CE = CE(P truth
class ∥ Pclass) = −

∑
P truth
class log Pclass (2)

The objective function, LCE, is minimized by using Adam op-
timizer (Kingma & Ba, 2015) for 100 epochs and the mini-batch
size is set to 64. The initial learning rate is set to 0.0003 and is
decreased on log scale after 30 epochs. Data augmentation is per-
formed during training, by applying random cropping (±5 pixels)
and horizontal flips, that is the same across all lip frames of a
sequence. The best model is selected by the highest classification
accuracy on the validation set.

2.2. Word based visual embedding extraction

Conventional AVSE techniques (Afouras et al., 2018; Ideli et al.,
2019) often obtain the visual embedding extractor discussed ear-
lier based on an isolated word classification task by using a lip
reading dataset, such as the Lip Reading in the Wild (LRW).

We build our baseline model, known as VEASE-word that uses
the LRW corpus consisting of up to 1000 audio-visual speech
segments extracted from BBC TV broadcasts (News, Talk Shows,
etc.), totaling around 170 h. There are 500 target words and more
than 200 speakers. The LRW dataset provides a word-level label
for each audio-visual speech segment, i.e. the real distribution of
word P truth

word .
The posterior probability of each class representing each seg-

ment of lip frames Pword is calculated by the classification backend
f ′

C(·) on the right side of Fig. 1, consisting of a 2-layer BiGRU, a
ully connected layer followed by a SoftMax activation:

word = f ′

C(EV) = SoftMax(AverageT (FC(BiGRU(BiGRU(EV))))) (3)

2.3. Phone based visual embedding extraction

The isolated word classification task usually requires a word-
level dataset which is not easy to collect on a large scale. To alle-
viate this problem, we propose that the same data is used during
training visual embedding extractor and enhancement network
with different labels. Under the guidance of results in Wu et al.
(2019), we choose context-independent (CI) phones consisting of
39 units from CMU dictionary as classification labels, denoted as
VEASE-phone.

The TCD-TIMIT dataset is a high quality audio-visual speech
corpus labeled at both the phonetic and the word level. We can
directly get the frame-level real distribution of CI-phone P truth

phone.
EV is fed to a classification backend fC(·) which outputs the

osterior probability of each CI-phone for each specific time
rame Pphone. fC(·) has a same structure as f ′

C(·) which only lacks
n the average process along the temporal dimension:

phone = fC(EV) = SoftMax(FC(BiGRU(BiGRU(EV)))) (4)

.4. Articulation place based visual embedding extraction

As discussed earlier, we believe there is a high correlation
etween speech attributes and visual acoustic information. In
rder to verify our idea, we check the lip shapes belonging to
ifferent places and manners of articulation. We find that the
nfluences of various articulation places on the change of lip
hape vary, since the lip shape changes greatly in some utterance
egments belonging to specific articulation place. An example is
resented in Fig. 2. In contrast, we do not observe similar changes
n the term of articulation manner. Consequently we propose
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Fig. 1. Illustration of a visual embedding extractor (in color blue for ease of cross-referencing in Figs. 1, 3, 5 and 6). For every lip frame, the extractor outputs a
compact vector. We train visual embedding extractor by using 3 different classification labels, i.e., word, phone and place.
Fig. 2. 9 lip shapes corresponding to utterance segments representing 9 articulation positions: all lip shapes come from a single speaker starting with the lip closed.
The lip shape changes greatly in High, Mid and Labial than Dental, Velar and Glottal.
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Table 1
The mapping between articulation place classes and CI-phones as in Siniscalchi
and Lee (2009).
Articulation place classes CI-phones

Coronal d, l, n, s, t, z
High ch, ih, iy, jh, sh, uh, uw, y
Dental dh, th
Glottal hh
Labial b, f, m, p, v, w
Low aa, ae, aw, ay, oy
Mid ah, eh, ey, ow
Retroflex er, r
Velar g, k, ng
Silence sil

to train visual embedding extractor with the articulation place
label in this study, denoted as VEASE-place. We adopt 10 units as
in Lee and Siniscalchi (2013) and Siniscalchi and Lee (2009) for
articulation place set.

Compared with the phone, the category granularity of articu-
ation place is coarser. Thus, the classification model can achieve
omparable performance with lower complexity. And the artic-
lation place has fewer categories, which reduces the labeling
osts. Moreover, the articulation place label is believed to be
ore language-independent than phones, which allows various

anguages to appear in training and testing.
P truth
phone is mapped into the frame-level real distribution of ar-

iculation place P truth
place by using Table 1. The same classification

ackend fC(·) takes EV as input and outputs the posterior proba-
ility of each articulation place class for each specific time frame
place.

.5. VEASE model

The VEASE model consists of three stacks of 1D-ConvBlocks
nd a frozen visual embedding extractor, as shown in Fig. 3.
ach 1D-ConvBlock includes a 1D convolution layer with a resid-
al connection, a ReLU activation, and a batch normalization, as
n Afouras et al. (2018). Some of the blocks contain an extra up-
ampling or down-sampling layer, because the number of audio
rames is different from that of the video frames.

Visual embedding EV is processed by the stack sE(·) at the bot-
om left consisting of NE 1D-ConvBlocks while noisy log-power
pectra (LPS) features A = {At

∈ RF
; t = 0, 1, . . . , T − 1}
LPS LPS A

174
are processed by the stack sLPS(·) at the bottom right consisting
of NLPS 1D-ConvBlocks:

RE = sE(EV) =

NE  
ConvBlock1D(· · · ConvBlock1D(EV)) (5)

LPS = sLPS(ALPS) =

NLPS  
ConvBlock1D(· · · ConvBlock1D( ALPS)) (6)

here TA and F denote the number of time frames and frequency
ins for spectrogram, respectively. In this study, we use F = 201
y default.
RE and RLPS, which denote outputs of different stacks, are then

oncatenated along the channel dimension and fed to the top
tack sF(·) consisting of NF 1D-ConvBlocks. The last convolution
ayer in the top stack projects the output’s dimension into the
ame one of noisy magnitude spectrogram. Then, the hidden
epresentation is activated by a sigmoid activation to obtain a
agnitude mask M ∈ RTA×F :

M = σ (sF([RE, RLPS]))

= σ (

NF  
ConvBlock1D(· · · ConvBlock1D([RE, RLPS])))

(7)

he values of M range from 0 to 1. In this study, we use NE =

0, NLPS = 5 and NF = 15 by default if there are no special
instructions.

To show the effectiveness of embedding on enhancement per-
formance, we also design a competitive no-embedding version of
the EASE model which lacks in the stack sE(·) at the bottom left
nd the frozen visual embedding extractor, denoted as NoEASE
odel. The NoEASE model computes M only using the noisy LPS

features as inputs:

M = σ (sF(sLPS(ALPS))) (8)

The ideal ratio mask (IRM) (Hummersone, Stokes, & Brookes,
014) is employed as the learning target, which is widely used
n monaural speech enhancement (Wang, Narayanan, & Wang,
014). IRM MIRM ∈ RTA×F is calculated as follows:

IRM =

(
CPS

CPS + DPS

) 1
2

(9)

where CPS ∈ RTA×F and DPS ∈ RTA×F denote power spectrograms
of clean speech and noise, respectively.

The mean square error (MSE) LMSE between M and MIRM is
calculated as the loss function:

L = MSE(M,M ) =

∑
∥M − M ∥

2 (10)
MSE IRM IRM 2
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Fig. 3. Illustration of the VEASE model. The VEASE model takes the visual embeddings as the auxiliary inputs except regular noisy LPS features. The visual embedding
xtractor is pre-trained separately with classification backend, following the steps introduced in the above-mentioned sections. In the training of the VEASE model,
he visual embedding extractor is kept frozen.
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We use Adam optimizer to train for 100 epochs with early
topping when there is no improvement on the validation loss
or 10 epochs. The batch size is 96. Initial learning rate is set
o 0.0001, which is found by ‘‘LR range test’’ proposed in Smith
2017), and halved during training if there is no improvement for
epochs on the validation loss. The best model is selected by the

owest validation loss.

. Proposed MEASE model

This section elaborates on the proposed MEASE model. The
EASE model takes the fused audio-visual embedding as the aux-

liary input instead of the visual-only embedding. As described
n Section 1, the MEASE model utilizes a complementarity of
udio and visual features in an information intersection manner.
n order to verify the complementarity between audio and visual
mbeddings, we design an EASE model that utilizes the audio
mbedding, which is denoted as AEASE model. For verifying the
ffectiveness of the information intersection-based audio-visual
usion manner on enhancement performance, we design an EASE
odel that utilizes the concatenation of audio and visual em-
eddings, which is denoted as cMEASE model. The details of
he AEASE model, the MEASE model and the cMEASE model are
laborated in the following.

.1. AEASE model

The AEASE model has a similar structure to the VEASE model
s shown in Fig. 3, with the main difference of employing an
udio embedding extractor, instead of the visual embedding ex-
ractor.

The audio embedding extractor fA(·) as shown in Fig. 4 has
the similar structure as the visual embedding extractor fV(·) in
Fig. 1. The 3D-kernels in spatiotemporal convolution are replaced
by 1D-kernels meanwhile the 3D-MaxPooling layer is dropped in
this case as the audio frame is a vector. We also use the ResNet-
18 with the main difference of employing 1D-kernels instead of
2D-kernels. Given noisy Mel Filter Bank (FBANK) features AFBANK ∈

RTA×Fmel , the audio embeddings EA ∈ RTA×LA are calculated as
follows:

EA = {Et
A ∈ RLA; t = 0, 1, . . . , TA − 1} = fA(AFBANK) (11)
= ResNet-18A(BN(ReLU(Conv1D(AFBANK))))
175
where, Fmel and LA are the number of triangular filters set for
FBANK features and the length of Et

A, respectively. In this study,
LA = LV = 256 and Fmel = 40 are used by default.

We use the same training process as training the visual em-
bedding extractor in Section 2.1 to train the audio embedding
extractor. Adam optimizer is used to minimize LCE, which is
calculated by Eq. (2). But Pplace is computed by using EA:

Pplace = fC (EA) (12)

The AEASE model takes both ALPS and EA as inputs and outputs
M:

M = σ (sF([sE(EA), sLPS(ALPS)])) (13)

he same optimization process as in Section 2.5 is also used to
inimize LMSE, which is calculated by Eq. (10).

.2. MEASE model

The most significant change in the MEASE model is that
he visual-only pre-trained embedding extractor evolves into
he audio-visual pre-trained embedding extractor. The audio-
isual embedding extractor takes not only lip frames but also
oisy FBANK features as inputs and outputs the fused audio-
isual embedding which is learned under the supervision of the
nformation intersection, i.e., the articulation place label.

The audio-visual embedding extractor consists of visual, audio
nd fused streams, as shown at the bottom left part of Fig. 5. The
isual stream has the same structure as the visual embedding
xtractor in Section 2.1 while the audio stream has the same
tructure as the audio embedding extractor in Section 3.1. V and
FBANK are processed by visual and audio streams, respectively:
V
AV = fV(V ) (14)

EA
AV = fA(AFBANK) (15)

where EV
AV ∈ RTV×LV and EA

AV ∈ RTA×LA denote the outputs of visual
and audio streams, respectively. The mismatch in the number of
frames between EV

AV and EA
AV, i.e. TA ̸= TV, is solved by repeating

a video frame for several audio frames:

ẼV
= {

TA/TV  
EV,0

, . . . , EV,0
, EV,1

· · ·} (16)
AV AV AV AV
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Fig. 4. Illustration of an audio embedding extractor (in color green for ease of cross-referencing in Figs. 4, 5 and 6). The audio embedding extractor has the similar
structure and the same training process as the visual embedding extractor in Section 2.1.
Fig. 5. Illustration of the proposed MEASE model. The previous visual embedding extractor evolves to the audio-visual embedding extractor, which consists of a
visual stream (in blue), an audio stream (in green) and a fused stream (in orange). The audio-visual embedding extractor fuses the audio and visual embeddings in
an information intersection manner.
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The fused stream consisting of a 2-layers BiGRU at the top
takes ẼV

AV and EA
AV as inputs and outputs the audio-visual embed-

ding EAV ∈ RTA×LAV :

EAV = {Et
AV; t = 0, 1, . . . , TA − 1} = BiGRU(BiGRU([ẼV

AV, E
A
AV]))

(17)

here LAV is the length of Et
AV. In this paper, we use LAV =

A + LV = 512 by default.
We also use the same training steps to minimize LCE, which is

alculated by Eq. (2), as these in Section 2.1. But Pplace is computed
y using EAV:

place = fC (EAV) (18)

he audio-visual classification model can achieve a better and
aster convergence, by initializing visual and audio streams with
he independently pre-trained params, which is a significant find-
ng.

The MEASE model takes both ALPS and EAV as inputs and
outputs M:

M = σ (sF([sE(EAV), sLPS(ALPS)])) (19)

We use the same optimization process as in Section 2.5 to mini-
mize L , which is calculated by Eq. (10).
MSE

176
3.3. cMEASE model

By ablating the fused stream in Fig. 5, another audio-visual
embedding, cEAV ∈ RTA×(LA+LV), which is the concatenation of
audio and visual embeddings, is designed:

cEAV = [EV, EA] = [fV(V ), fA(AFBANK)] (20)

where fA and fV are trained independently, following the steps
introduced in Sections 3.1 and 2.1, respectively.

The cMEASE model takes both ALPS and cEAV as inputs and
outputs M:

M = σ (sF([sE(cEAV), sLPS(ALPS)])) (21)

e use the same optimization process as in Section 2.5 to mini-
ize LMSE, which is calculated by Eq. (10).

.4. Fusion stage of audio and visual embeddings

To gain insight into the effect of the audio-visual fusion stage
n enhancement performance under the framework of a neural
etwork, we design a MEASE model that fuses visual and audio
mbeddings at the ith layer of the enhancement network, de-
oted as Middle-i model, as shown in Fig. 6. We change NE with
he fixed sum of N and N and use the same stack to process
E F
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Fig. 6. Illustration of the MEASE model with different fusion stages of audio and visual embeddings.
audio and visual embeddings, respectively:

REV =sE(EV) =

NE=i  
ConvBlock1D(· · · ConvBlock1D(EV)) (22)

REA =sE(EA) =

NE=i  
ConvBlock1D(· · · ConvBlock1D(EA)) (23)

LPS =sLPS(ALPS) =

NLPS  
ConvBlock1D(· · · ConvBlock1D(ALPS)) (24)

M =σ (sF([REV , REA , RLPS]))

=σ (

NF=25−i  
ConvBlock1D(· · · ConvBlock1D([REV , REA , RLPS])))

(25)

here sE(·) in Eq. (22) has the same params as that in Eq. (23),
s well as EA and EV are extracted by using fA(·) and fV(·) trained
ndependently. By modifying the value of i, we can make the fu-
ion take places at different stages without changing the network
tructure.

. Experiments

.1. Dataset

To evaluate the performance of our proposed method, we
reated a simulation dataset of noisy speech based on the TCD-
IMIT audio-visual corpus (Harte & Gillen, 2015). The TCD-TIMIT
onsisted of 59 volunteer speakers with around 98 videos each,
s well as 3 lipspeakers who specially were trained to speak
n a way that helped the deaf understand their visual speech.
he speakers were recorded saying various sentences from the
IMIT corpus (Garofolo, Lamel, Fisher, Fiscus, & Pallett, 1993)
y using both front-facing and 30-degree cameras. However, the
tterances of 3 lipspeakers and 30-degree videos were not used in
his paper. With a view to test the robustness to unseen speaker
ondition, we divided these videos and audios into a train–clean
et which consisted of 57 speakers (31 male and 26 female) and a
est–clean set which consisted of 2 speakers (1 male and 1 female)
who were not in the train–clean set.

We chose the TCD-TIMIT dataset for two main reasons:

(1) TCD-TIMIT was recorded in a controlled environment, and
provided near-field signals collected by a microphone close

to the mouth, which can ensure that the utterances do not W

177
contain background noise. While other large-scale in-the-
wild audio-visual datasets, such as BBC-Oxford LipRead-
ing Sentences 2 (LRS2) dataset (Chung, Senior, Vinyals, &
Zisserman, 2017), AVSpeech dataset (Ephrat et al., 2018),
etc, were collected from real-world sources using auto-
mated pipeline, and none of them was checked whether
background noise exists.2 When testing an enhancement
system, if the ground truth contains background noise, the
metrics will be severely distorted and cannot well measure
the performance of the system.

(2) The utterances consisted of various phrases in the TCD-
TIMIT dataset, and thus they were more suitable for ac-
tual scenarios than the utterances consisting of a fixed set
of phrases in the GRID dataset (Cooke, Barker, Cunning-
ham, & Shao, 2006). The TCD-TIMIT dataset also contained
phonetic-level transcriptions, which provided available la-
bels for the embedding extractor training.

A total of 115 noise types, including 100 noise types in Hu
and Wang (2010) and 15 homemade noise types, were adopted
for training to improve the robustness to unseen noise types. The
5600 utterances from train–clean set were corrupted with the
above-mentioned 115 noise types at five levels of SNRs, i.e. 15 dB,
10 dB, 5 dB, 0 dB and −5 dB, to build a 35-hour multi-condition
training set consisting of pairs of clean and noisy utterances.
The other 43 utterances from train–clean set were corrupted
with 3 unseen noise types at above-mentioned SNR levels to
build a validation set, i.e. Destroyer Operations, Factory2 and F-
16 Cockpit. The 198 utterances from test–clean set were used to
construct a test set for each combination of 3 other unseen noise
type and above SNR levels, i.e. Destroyer Engine, Factory1 and
Speech Babble. All unseen noise were collected from the NOISEX-
92 corpus (Varga & Steeneken, 1993). The five levels of SNRs in
the training set were also adopted for testing and validating.

For audio preprocessing, all speech signals were resampled
to 16 kHz. A 400-point short-time Fourier transform was used
to compute the spectra of each overlapping windowed frame.
Here, a 25-ms Hanning window and a 10-ms window shift were
adopted. In the experiments, 201-dimensional LPS vectors were
generated to train the EASE network and 40-dimensional FBANK
vectors were generated to train the embedding extractor, i.e.

2 We manually listen to the test and verification sets of the LRS2 dataset.
e find more than half of sentences can be clearly perceived as noisy.
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verage performance comparison of VEASE models with different visual em-
eddings on the test set at different SNRs averaged over 3 unseen noise
ypes.
Model PESQ STOI (in %)

SNR (in dB) −5 0 5 10 15 −5 0 5 10 15

Noisy 1.70 1.97 2.26 2.56 2.86 54.34 65.11 75.33 84.48 90.88
NoEASE 2.07 2.34 2.64 2.92 3.21 58.79 70.29 80.24 87.83 92.57
VEASE-word 2.16 2.45 2.72 2.99 3.25 66.26 75.11 82.57 88.75 92.98
VEASE-phone 2.14 2.42 2.69 2.96 3.23 66.29 74.89 82.22 88.45 92.79
VEASE-place 2.21 2.47 2.73 3.00 3.26 66.57 75.27 82.64 88.80 92.96

F = 201, Fmel = 40. Mean and variance normalizations were
applied to the noisy LPS and FBANK vectors.

As for video preprocessing, a given video clip was downsam-
pled from 29.97 fps to 25 fps, i.e. TA = 4 × TV . For every video
frame, 68 facial landmarks were extracted by using Dlib (King,
2009) implementation of the face landmark estimator described
in Kazemi and Sullivan (2014), then we cropped a lip-centered
window of size 98 × 98 pixels by using the 20 lip landmarks
from the 68 facial landmarks. The frames were transformed to
grayscale and normalized with respect to the overall mean and
variance.

4.2. Evaluation protocol

In this experiment, we adopt Perceptual Evaluation of Speech
Quality (PESQ) (Rix, Beerends, Hollier, & Hekstra, 2001) and
Short-Time Objective Intelligibility (STOI) (Taal, Hendriks, Heus-
dens, & Jensen, 2011) as major means to evaluate models. Both
metrics are commonly used to evaluate the performance of speech
enhancement system. PESQ, which is a speech quality estimator,
is designed to predict the mean opinion score of a speech quality
listening test for certain degradations. Moreover, STOI was cal-
culated to show the improvement in speech intelligibility. The
STOI score is typically between 0 and 1, and the PESQ score is
between −0.5 and 4.5. For both metrics, higher scores indicate
better performance.

4.3. Results of VEASE models utilizing different visual embeddings

In Section 2, we proposed two VEASE models with different
visual embeddings, i.e. VEASE-phone and VEASE-place. To com-
pare their effectiveness with the baseline model, i.e. VEASE-word
(LRW), on enhancement performance, a series of experiments
was conducted for the unprocessed system denoted as Noisy,
NoEASE, VEASE-word (LRW), VEASE-phone and VEASE-place. We
present the learning curves of the MSEs among NoEASE, VEASE-
word (LRW) and VEASE-phone and VEASE-place on the validation
set in Fig. 7. The corresponding evaluation metrics are shown in
Table 2. We evaluate the average performance of two measures
at different SNRs across 3 unseen noise types.

Based on Fig. 7 and Table 2, we find following observations.

(1) The learning curves of the MSEs indicate that all VEASE
models consistently generate smaller MSEs on the valida-
tion set than NoEASE. This result implies that the visual
embedding is useful for speech enhancement. As shown in
Table 2, all VEASE models yield improvements in PESQ and
STOI over NoEASE in all SNRs. In particular, the improve-
ment is more significant at low SNRs cases.

(2) VEASE-phone yields a slower convergence and similar MSE
values than VEASE-word (LRW), which is consistent with
the comparison of the objective evaluation metrics on the
test set shown in Table 2. Even though the visual embed-

ding extractor in VEASE-word (LRW) is trained with a large v
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amount of additional video data (around 170h), it does not
yield a significant improvement on the enhancement per-
formance. The data mismatch between embedding learn-
ing and enhancement task brings information redundancy,
which reduces the effectiveness of representation. This ob-
servation supports us to adopt the matched data to training
the embedding extractor and the enhancement network.

(3) VEASE-place clearly achieves a better and faster conver-
gence than VEASE-phone and VEASE-word (LRW). This im-
plies that VEASE-place provides more useful and quick-fit
visual embedding for speech enhancement. By compar-
ing the evaluation metrics in Table 2, we also observe
that VEASE-place not only yields remarkable gains over
VEASE-phone across all evaluation metrics and on all SNR
levels, but also outperforms VEASE-word (LRW) in most
cases with only one exception for the STOI at 15 dB SNR.
The results are still close, despite the situation being an
exception. These results suggest that our proposed VEASE-
place model achieves a better generalization capability, and
at the same time reduces mismatch between embedding
learning and enhancement task.

Overall, the high correlation between the articulation place
label and the acoustic information in video is beneficial to the ex-
traction of visual embedding, which is useful for speech enhance-
ment, even if no requirement of additional data. Therefore, we
select articulation place as the default classification target in all
subsequent experiments and use VEASE to refer to VEASE-place
in all subsequent sections.

4.4. Results of proposed MEASE model

In this section, the goal is to examine the effectiveness of
the proposed MEASE model on enhancement performance, and
obtain a better understanding about the contribution of different
parts of the MESAE model. We present an average performance
comparison between NoEASE, VEASE, AEASE, cMEASE and MEASE
in Table 3. The last row of this table marked with ‘‘p-value’’ is
the minimum value of p where a significant difference can be
observed at the level of p in the statistical significance tests for
MEASE and VEASE models. Here we adopt the ‘‘Matched Pair
Test’’ method mentioned in Pallet, Fisher, and Fiscus (1990). The
significance test is a two-tailed test with the null hypothesis that
there is no performance difference between the two models. The
smaller the ‘‘p-value’’ is, the bigger the significant differences
between two models are.

Based on the results in Table 3, we can observe that MEASE
shows significant improvements over VEASE across all evaluation
metrics, and larger gains are observed at high SNRs. By comparing
the results of VEASE with NoEASE, the improvement yielded by
visual embedding decreases as SNR increases, for example, the
PESQ of VEASE increased from 2.07 to 2.21 at −5 dB SNR and
from 3.21 to 3.26 at 15 dB SNR. This observation is consistent
with that in Wang et al. (2020). In contrast, MEASE shows stable
improvements over NoEASE for high SNRs. For example, the PESQ
of MEASE increased from 2.07 to 2.29 at −5 dB SNR and from
3.21 to 3.42 at 15 dB SNR. All these results indicate that MEASE
is more robust against the change of noise level and yields better
generalization capability than VEASE.

Table 3 also shows the results of AEASE. By comparing its re-
sults with NoEASE, we can observe that the improvement yielded
by audio embedding increases as SNR grows, for example, the
PESQ of AEASE increased from 2.07 to 2.09 at −5 dB SNR and
rom 3.21 to 3.27 at 15 dB SNR. This suggests that the com-
lementarity between audio and visual embeddings lies in the

ariation tendencies of metric improvement with respect to SNR
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Fig. 7. A comparison of learning curves among NoEASE, VEASE-word (LRW), VEASE-phone and VEASE-place on the validation set.
able 3
verage performance comparison of NoEASE model, VEASE model, AEASE model, cMEASE model and MEASE model on the test set at different SNRs averaged over
unseen noise types. The p-value row indicates significance test results between VEASE model and MEASE model.
Model PESQ STOI (in %)

SNR (in dB) −5 0 5 10 15 −5 0 5 10 15

NoEASE 2.07 2.34 2.64 2.92 3.21 58.79 70.29 80.24 87.83 92.57
VEASE 2.21 2.47 2.73 3.00 3.26 66.57 75.27 82.64 88.80 92.96
AEASE 2.09 2.39 2.69 2.98 3.27 60.84 72.24 81.58 88.39 92.76
cMEASE 2.27 2.55 2.81 3.08 3.34 67.60 76.26 83.26 89.13 93.12
MEASE 2.29 2.59 2.88 3.16 3.42 68.96 77.64 84.43 89.99 93.64
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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level. Nevertheless by directly comparing AEASE and VEASE on
the evaluation metrics as shown in Table 3, we cannot observe
that AEASE performs better than VEASE at high SNRs, i.e. SNR = 5,
10 and 15 dB, especially at 5 dB SNR.

To further explore the complementarity between audio and vi-
sual embeddings, we present an average performance comparison
between utterance segments belonging to different articulation
places in Table 4. Because the utterance segment does not have
actual semantics, we only examine the average performance of
PESQ at different SNRs across 3 unseen noise types. Table 4
illustrates that VEASE and AEASE play a major role in different
articulation places, respectively, at the same SNR level. Even at
high SNRs, VEASE still yields improvement than AEASE in some
articulation places. For example, VEASE’s PESQ values are 2.23,
2.73, 2.42, while AEASE’s PESQ values are 2.18, 2.72, 2.39 in Labial,
Mid, High at 5 dB SNR level. This result explains why AEASE
does not outperform VEASE at high SNR levels. Relating to the
lip shapes belonging to different articulation places, as shown in
Fig. 2, we find VEASE yields greater improvement at articulation
places where the lip shapes change greatly, i.e. Labial, Mid and
High, while AEASE is on the contrary. Therefore we can conclude
that the complementarity between audio and visual embeddings
lies in different SNR levels, as well as different articulation places.
More specifically, in the cases where the SNR level is low and the
articulation place has high visual correlation, visual embedding
performs better. And audio embedding is better on articulation
places with low visual correlation at high SNR levels. Based on
these observations, our proposed MEASE model takes the ad-
vantages of visual and audio embeddings, and achieves the best
performance in all SNRs and all articulation places.

The information intersection-based audio-visual fusion man-
ner in the MEASE model is our another contribution. From
Table 3, we can observe that MEASE consistently outperforms
cMEASE at all SNR levels in terms of all 2 measures, especially
179
at high SNRs. This observation demonstrates that the informa-
tion intersection-based audio-visual fusion method has better
information integration capability for audio and visual embed-
dings than channel-wise concatenation which is widely used in
previous works.

4.5. Results of different audio-visual fusion stages

One of the most significant differences between our method
and previous methods is that the proposed MEASE model fuses
audio and visual modes in the stage of embedding extractor
training. It is an early fusion in contrast to previous methods that
fuse audio and visual modes in the middle of the enhancement
network, which is also known as the middle fusion. With the aim
of verifying the effectiveness of the early fusion on enhancement
performance under the framework of neural network, we design
an experimental comparative study described in Section 3.4 and
conduct a set of experiments using five different i, i.e. i =

, 10, 15, 20, 25.
As we can see from Fig. 8, MEASE achieves the best results

ver all models utilizing the middle fusion across all evaluation
etrics for all SNR levels. By comparing the results of different
iddle fusion-based models, the variation tendencies of all ob-

ective metrics with respect to different fusion stages get worse
s the stage moves back. These results suggest that early fusion
trategy can better integrate useful information for the neu-
al network-based speech enhancement from both modalities
han the standard fusion which happens at the middle layer of
nhancement network.

. Conclusion

In this study, we extend the previous audio-visual speech
nhancement (AVSE) framework to embedding aware speech
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Fig. 8. Average performance comparison among different audio-visual fusion stages for the PESQ/STOI measures at different SNRs averaged over 3 unseen noise
types. The top figure shows the PESQ measure. The bottom figure shows the STOI measure.
Table 4
Average performances of different models on the test set at different SNRs and different articulation places averaged over 3 unseen noise types.
SNR (in dB) −5 0 5

Place Model

NoEASE AEASE VEASE MEASE NoEASE AEASE VEASE MEASE NoEASE AEASE VEASE MEASE

Labial 1.28 1.38 1.58 1.76 1.57 1.75 1.81 2.06 2.05 2.18 2.23 2.50
Mid 1.54 1.68 1.86 2.02 2.03 2.21 2.29 2.45 2.58 2.72 2.73 2.96
High 1.38 1.52 1.65 1.81 1.79 1.95 1.99 2.17 2.28 2.39 2.42 2.62
Low 1.63 1.89 2.00 2.29 2.17 2.48 2.46 2.69 2.84 2.99 2.93 3.20
Retroflex 1.46 1.66 1.75 2.00 1.95 2.15 2.12 2.32 2.44 2.57 2.54 2.77
Coronal 1.59 1.74 1.80 1.93 1.92 2.07 2.05 2.23 2.30 2.39 2.35 2.56
Glottal 1.02 1.22 1.36 1.70 1.42 1.71 1.59 1.92 1.95 2.10 2.05 2.30
Velar 1.31 1.44 1.41 1.49 1.48 1.64 1.68 1.86 1.86 2.01 2.00 2.22
Dental 0.94 1.22 1.25 1.64 1.32 1.62 1.36 2.05 1.98 2.21 1.98 2.44
enhancement (EASE). We first propound visual embedding to
enhance speech, leveraging upon the high correlation between
articulation place labels and acoustic information in videos. Next,
we propose multi-modal audio-visual embedding obtained by
fusing audio and visual embeddings in the stage of embedding
extractor training under the supervision of their information in-
tersection at the articulation place label level.

Extensive experiments empirically validate that our proposed
isual embedding consistently yields improvements over the con-
entional word-based approaches. And our proposed audio-visual
mbedding achieves even greater performance improvements by
tilizing the complementarity of audio and visual embeddings in
n information intersection-based way, with higher information
ntegration capabilities and better speech enhancement perfor-
ance in early fusion.
Future work will include exploring more modeling units for

raining embedding extractor, especially visme-based unit, and
esearching effective training methods for the joint training of
he embedding extractor and enhancement network, e.g. (1) ini-
ialization with respective pre-trained parameters, and (2) multi-
ask learning. In addition, we plan to build a larger audio-visual
ataset and conduct an evaluation for our method.
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