
Pattern Recognition 111 (2021) 107722

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Joint architecture and knowledge distillation in CNN for Chinese text

recognition

Zi-Rui Wang, Jun Du

∗

National Engineering Laboratory for Speech and Language Information Processing, University of Science and Technology of China, Hefei, Anhui, PR China

a r t i c l e i n f o

Article history:

Received 16 June 2020

Revised 10 October 2020

Accepted 23 October 2020

Available online 25 October 2020

Keywords:

Convolutional neural network

Acceleration and compression

Architecture and knowledge distillation

Offline handwritten Chinese text

recognition

a b s t r a c t

The distillation technique helps transform cumbersome neural networks into compact networks so that

models can be deployed on alternative hardware devices. The main advantage of distillation-based ap-

proaches include a simple training process, supported by most off-the-shelf deep learning software and

no special hardware requirements. In this paper, we propose a guideline for distilling the architecture and

knowledge of pretrained standard CNNs. The proposed algorithm is first verified on a large-scale task:

offline handwritten Chinese text recognition (HCTR). Compared with the CNN in the state-of-the-art sys-

tem, the reconstructed compact CNN can reduce the computational cost by > 10 ×and the model size by

> 8 ×with negligible accuracy loss. Then, by conducting experiments on two additional classification task

datasets: Chinese Text in the Wild (CTW) and MNIST, we demonstrate that the proposed approach can also

be successfully applied on mainstream backbone networks.

© 2020 Elsevier Ltd. All rights reserved.

1

i

C

r

p

n

n

n

t

s

l

m

b

t

t

e

r

c

i

a

g

9

D

p

p

b

e

k

C

r

t

l

i

d

i

m

B

n

s

f

a

a

s

f

h

0

. Introduction

Convolutional neural networks (CNNs) play an important role

n the new wave of artificial intelligence. Since the first-generation

NNs were proposed by LeCun [1,2] for handwritten character

ecognition, numerous CNNs have been emerging in different ap-

lications, such as (Alex, VGG, GoogLe, Res, and Dense)-Nets in

atural image recognition [3–7] , DCNN in offline handwritten Chi-

ese text recognition (HCTR) [8,9] , HCCR-CNN in handwritten Chi-

ese character recognition (HCCR) [10,11] , FaceNet in face recogni-

ion [12] and FCN in speech emotion recognition [13] . Such CNNs

hare the same basic components, i.e., convolutional layer, pooling

ayer and fully-connected layer. Although these networks have dra-

atically improved performance and CNN-based approaches have

ecome mainstream in a wide range of pattern recognition tasks,

he trend of going deeper and wider for CNNs makes them difficult

o be deployed on resource-limited devices e.g., mobile phones and

mbedded chips. Moreover, there is an evident fact that the cur-

ent state-of-the-art CNNs still mainly depend on massive hand-

rafted trail-and-error experiments. Both the architecture and the

nternal knowledge of a CNN should be valuable information for

cceleration and compression algorithms. Accordingly, in this pa-
∗ Corresponding author at: National Engineering Laboratory for Speech and Lan-

uage Information Processing, University of Science and Technology of China, No.

6, JinZhai Road, Hefei, Anhui, PR China.

E-mail addresses: cs211@mail.ustc.edu.cn (Z.-R. Wang), jundu@ustc.edu.cn (J.

u).

t

[

k

t

s

m

ttps://doi.org/10.1016/j.patcog.2020.107722

031-3203/© 2020 Elsevier Ltd. All rights reserved.
er, we focus on both architecture and knowledge distillation in

retrained standard CNNs.

The concept of knowledge distillation, which can be traced

ack to Caruana’s research in 2006 [14] , is to transfer the knowl-

dge from cumbersome models into smaller model. Different from

nowledge distillation, the research on architecture distillation in

NN focuses on inventing new efficient convolutions or units to di-

ectly replace standard convolutions of baseline CNN. A representa-

ive work was conducted in [15] where the authors reconstructed a

ightweight CNN by using multiple efficient compact blocks accord-

ng to the different locations of the baseline CNN. The realization of

istillation can be figuratively described as teacher-student learn-

ng in which a network with massive parameters and high perfor-

ance acts as a teacher and the compressed network is a student.

oth the architecture and the internal knowledge of the teacher

etwork should be learned by the student network. The single con-

ideration usually leads to a contradiction between optimal per-

ormance and satisfactory compression. Unlike previous distillation

lgorithms, in this paper, we propose a guideline for distilling the

rchitecture and knowledge of a pretrained CNN. Specifically, in-

tead of using multiple acceleration blocks [15] , we develop a uni-

orm block named the parsimonious convolution (ParConv) block

hat only consists of depthwise separable convolution (DSConv)

16] and pointwise convolution in a heterogeneous combination. In

nowledge distillation, a new solving procedure loss (SPL) is added

o further improve the performance of the student network. The

olving procedure is represented by the differences in attention

aps between two layers.

https://doi.org/10.1016/j.patcog.2020.107722
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2020.107722&domain=pdf
mailto:cs211@mail.ustc.edu.cn
mailto:jundu@ustc.edu.cn
https://doi.org/10.1016/j.patcog.2020.107722

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

s

H

d

[

l

r

i

v

s

I

w

o

C

d

w

o

l

S

o

r

2

2

v

p

w

t

a

p

Z

d

r

s

c

w

F

a

w

s

c

a

o

p

t

r

F

a

a

s

fi

r

i

fi

s

e

t

[

t

n

t

S

e

o

u

t

a

s

c

i

p

t

F

G

o

c

(

b

G

o

l

t

i

C

D

e

t

f

a

r

e

e

e

v

h

(

The effectiveness of the proposed algorithm is mainly demon-

trated on offline handwritten Chinese text recognition (HCTR). The

CTR can be widely used in many applications, such as mail ad-

ress recognition [17] , bank check [18] and document recognition

19] . Although the HCTR has made great progress owing to deep

earning [20] , it remains a challenging problem for the following

easons: 1) the text line must be considered as a whole rather than

solated characters, 2) more than 70 0 0 classes in common Chinese

ocabulary and large-scale training samples, and 3) the uncon-

trained writing condition. The experiments are conducted on the

CDAR 2013 competition task of the CASIA-HWDB databse [21,22] ,

hich is one of the most popular benchmark databases. To the best

f our knowledge, no acceleration and compression approaches in

NNs have been validated on the offline HCTR. Furthermore, in or-

er to display the generalization ability of the proposed algorithm,

e use the proposed method to reduce the resource consumption

f the mainstream backbone networks on CTW [23] and MNIST [2] .

The main contributions of this study can be summarized as fol-

ows:

• We propose a guideline for distilling the architecture and

knowledge of pretrained standard CNNs for fast deployability

on alternative hardware devices.
• In architecture distillation, we invent a parsimonious con-

volution block (ParConv) to directly replace vanilla convolu-

tion without other adjustments. Compared with LightweightNet

[15] and DSConv [16] , the proposed ParConv demonstrates its

superiority in recognition performance, computational cost and

storage overhead.
• In knowledge distillation, a new solving process loss (SPL) is

added to further improve the performance of compressed CNN.
• The effectiveness of the proposed approach is first verified on

offline HCTR. No study has investigated whether previous ac-

celeration and compression algorithms are still feasible in this

field.
• Compared with the baseline CNN in HCTR, our proposed joint

architecture and knowledge distillation can reduce the com-

putational cost by > 10 ×and model size by > 8 ×with negligi-

ble accuracy loss. Applying the algorithm to the mainstream

backbone networks Res50 and Res18 [6] on CTW and MNIST,

respectively, both of the reconstructed compact networks can

obtain an obvious reduction in resource consumption. Espe-

cially, the corresponding compact network of Res18 can obtain

a > 9 ×compression rate for both model size and computational

cost with almost no decrease in accuracy.

The remainder of this paper is organized as follows.

ection 2 reviews related work. Section 3 elaborates on the details

f the proposed approach. Section 4 reports the experimental

esults and analyses. Finally, Section 5 concludes.

. Related work

.1. Acceleration and compression

Almost all acceleration and compression algorithms can be di-

ided into five groups: low-rank decomposition [24–28] , parameter

runing [10,29–33] , parameter quantization [34–39] , compact net-

ork design [40–44] and distillation [15,45–52]

As one of the first attempts for low-rank decompositions of fil-

ers, Denton et al. [24] proposed several decomposition designs

long different dimensions. In [25] , the k × k filters were decom-

osed into k × 1 and 1 × k filters. A representative work comes from

hang et al. [26] , where nonlinear units were considered in the

ecomposition algorithm based on the assumption that the filter

esponse lies in a low-rank subspace. In [27,28] , Tucker decompo-

ition is used to achieve compression. Such algorithms need to be
2
onducted layer by layer. Once a layer has been decomposed, the

hole network is retrained by the backpropagation (BP) algorithm.

or large-scale tasks, repeated decomposition and training are usu-

lly time consuming.

Parameter pruning is based on a reasonable idea that the low

eights in a neural network are not important so that they can be

afely removed. In [29,30] , the weights were kept or removed by

omparison with a fixed threshold. Xiao et al. [10] proposed the

daptive drop-weight (ADW) to dynamically increase the thresh-

ld. Liu et al. [31] proposed channel sparsity regularization to

rune channels with small scaling factors. At almost the same

ime, Luo et al. [32] pruned filters based on the reconstruction er-

or of the corresponding next layer by using a greedy algorithm.

ine-grained pruning [10,29] requires a special software/hardware

ccelerator. Although channel-level pruning [31,32] can be directly

pplied to existing software platforms, such as low-rank decompo-

ition based algorithms, the requirement of repeated pruning and

ne-tuning is time consuming for large-scale tasks. Besides, from

ecent research [53] , the pruned architecture, rather than a set of

nherited important weights, is more crucial to the efficiency in the

nal model. Compared with layerwise pruning, a global pruning

trategy [33] might be more valuable.

For parameter quantization, by using the hash algorithm, Han

t al. [34] divided network weights into different groups and used

he weights in the same group to share a value. Vanhoucke et al.

35] used an 8-bit type instead of the common 32-bit floating

ype in the network. Courbariaux et al. [36] proposed a binarized

eural network in which all weights and outputs are constrained

o {1, -1}, while Li et al. [37] quantized weights into {-1, 0,1}.

uch methods can save a significant number of resources. How-

ver, the approach in [34] requires additional space to store the

riginal positions for shared weights, and low-bit approximation

sually degrades network performance. Different from constraining

he weights to +1 or −1, Ding et al. [38,39] replaced the multiply-

ccumulate operation with one shift or a constrained number of

hifts and adds, which can make trade-offs between accuracy and

omputational consumption.

An efficient and effective network structure can save a signif-

cant amount of memory and computational cost and yield com-

etitive performance. Many compact blocks have been invented

o control the fast increase in network parameters, such as the

ire module in SqueezeNet [40] and the Inception module in

oogLeNet [54] . The basic unit in these networks still consists

f canonical convolution. As one low-consumption (storage and

omputational cost) substitute, depthwise separable convolution

DSConv) was first introduced in [16,55] and has become a key

uilding block in recent compact networks [41–44] . In addition,

uo et al. [56] proved that DSConv is the principal components

f standard convolution and can approximate the standard convo-

ution in closed form. Although the DSConv is far more efficient

han standard convolution, consistent observations can be found

n [15,16] , simple replacement by using DSConv is not effective.

hollet et al. [16] scaled up depthwise separable filters so that the

SConv-based network Xception with the same number of param-

ters as the Inception V3 [57] can outperform Inception V3.

The first distillation in a neural network was completed by Hin-

on et al. in [45] , i.e., knowledge distillation. In [45] , the soft labels

rom multiple neural networks were used to guide the training of

 single network. Soon after, Romero et al. [46] improved the algo-

ithm of knowledge distillation by using the outputs of hidden lay-

rs and the soft labels from a shallow network with more param-

ters as hints to instruct a thin deep network. Recently, Zagoruyko

t al. [47] attempted to transfer the defined attention map in con-

olutional layers from one network to another, inspired by the

uman visual experience. In [48] , the flow of solution procedure

FSP) matrix is defined to measure the change in information be-

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

Fig. 1. Overview of our DCNN-based offline handwritten Chinese text recognition system.

t

m

[

s

a

t

i

m

t

s

a

p

c

t

e

f

o

i

q

2

l

C

w

C

s

d

t

m

t

r

e

p

m

n

t

t

(

t

F

l

t

[

s

t

n

a

3

s

s

t

p

c

n

l

i

a

o

A

d

R

c

l

ween two different layers for a compressed network to imitate the

iddle products of the baseline network. More recently, Liu et al.

49] integrated pixelwise loss, pairwise loss and generative adver-

arial loss in knowledge distillation for semantic segmentation. At

lmost the same time, under the framework of knowledge distilla-

ion, He et al. [50] extracted more compact middle features by us-

ng a pretrained autoencoder and proposed an affinity distillation

odule to capture the long-range dependency. Both of them utilize

he relationship between pixels, which is important to semantic

egmentation. In contrast to the diversified knowledge distillation

pproaches, there are not many architecture distillation [15] ap-

roaches. Recent influential works about architecture distillation

an be found in [51,52] . They share a similar concept that the fea-

ure maps in the standard convolution layer are redundant. Singh

t al. [51] proposed heterogeneous convolution (HetConv) with dif-

erent kernel sizes in each layer to handle the corresponding parts

f input feature maps while the feature maps in [52] were factor-

zed into high frequency with fine spatial resolution and low fre-

uency with smaller spatial size.

.2. Offline HCTR

Offline HCTR can be formulated as a Bayesian decision prob-

em:

ˆ
 = arg max C p(C | X) (1)

here X is the feature sequence of a given text line image and

 = { C 1 , C 2 , . . . , C n } is the underlying n -character sequence. The re-

earch effort s f or addressing such sequence modeling t asks can be

ivided into three categories: oversegmentation [58–60] , connec-

ionist temporal classification (CTC) [61,62] and the hidden Markov

odel (HMM) [8,9,63] . Almost all of these approaches benefit from

he recent progress of deep learning [20] . The outputs of neu-

al networks in different modeling methods correspond to differ-

nt concepts. For example, in oversegmentation and CTC-based ap-

roaches, the outputs of the neural network are related to seg-

entation identification or character classes. The outputs of the

etwork used in HMM-based approaches are posterior probabili-

ies of states. In our recent work [9] , each character is modeled by

hree tied states on average and a deep CNN (DCNN) with 22,080

7360 × 3) output nodes is adopted as the character model and

rained by hundreds of millions of frame-level images. As shown in

ig. 1 , frame-level images are extracted from original images by a

eft-to-right sliding window and fed into the DCNN. Then, the pos-

erior probabilities of states are utilized in a WFST-based decoder
3
64] with/without language model (LM) for the final recognition re-

ults. In order to fit such massive training samples, the parame-

ers of DCNN have been up to 124.5 MB and 16.02 ×10 8 FLOPs are

eeded in each inference. More details and analyses of the DCNN

re shown in Section 4 .

. Architecture and knowledge distillation

Given a baseline CNN(W fc , W con), let W fc represents the weight

et of fully-connected layers and W con corresponds to the weight

et of convolutional layers. For fully-connected layers in CNN, only

he storage needs to be considered due to the relatively small com-

utational cost. We use � to denote the storage. All parameters and

alculations are based on a 32-bit floating point. Assuming the

umber of parameters is M, the storage is computed as follows:

 =

(
4 M

1 , 024 × 1 , 024

)
MB (2)

MB is the abbreviation for Mega Byte. The above equation

s only the statistics for theoretical analysis. In experiments, the

ctual network storage is reported. The ratio γ (W fc , W con) =

� (W fc)

� (W fc)+ � (W con)
is used to measure whether a strategy π is conducted

n the weights of fully-connected layers or not.

lgorithm 1 The guideline of joint architecture and knowledge

istillation.

equire:

Baseline CNN(W fc , W con).

Threshold T

1: Analyze the computational cost and storage overhead in base-

line CNN(W fc , W con) and compute γ (W fc , W con) .

2: if γ (W fc , W con) > T then

3: Find a strategy π(W fc) to construct a new

CNN(π(W fc) , W con) with γ (π(W fc) , W con) ≤ T and ne-

glected performance loss (even better).

4: end if

5: Build a CCNN by using ParConv blocks to replace the convolu-

tional layers in the CNN.

6: Distill the knowledge of the CNN into the CCNN.

7: return The CCNN

As summarized in Algorithm 1 , the guideline involves ar-

hitecture distillation and knowledge distillation. We first ana-

yze the computational cost and storage overhead of the base-

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

Fig. 2. The simplified framework of joint architecture and knowledge distillation.

l

T

l

r

n

n

t

i

t

v

t

b

v

r

t

w

v

l

t

M

s

3

t

n

e

F

f

s

b

Fig. 3. Using a bottleneck layer to reduce the parameters of fully-connected layers.

3

s

t

w

n

t

K

D

F

ine CNN(W fc , W con) and compute the corresponding γ (W fc , W con) .

hen, in architecture distillation, if the weights of fully-connected

ayers occupy non-ignorable consumption of a certain computing

esource (i.e., storage), we find a strategy π(W fc) to construct a

ew CNN(π(W fc) , W con) and ensure γ (π(W fc) , W con) ≤ T with the

eglected performance loss (even better). In most cases, it is easy

o find such a strategy for fully-connected layers, e.g., global pool-

ng [40] , low-rank decomposition [65] ,and low-dimensional fea-

ures [15] . Because we mainly focus on the compression of con-

olutional layers in this study, a naive solution π that depends on

he number of active output targets [65] to find an appropriate

ottleneck feature before the output layer is adopted. For con-

olutional layers, the proposed ParConv blocks are used as a di-

ect replacement to build a compact CNN (CCNN). Finally, in order

o maintain the performance of the CCNN, knowledge distillation

ith three kinds of losses, namely, the Kullback-Leibler (KL) di-

ergence loss, the cross entropy (CE) loss and solving process (SP)

oss, is adopted to transfer knowledge from the standard CNN into

he ParConv-based CCNN. Fig. 2 illustrates the proposed algorithm.

ore details of the respective parts are described in the following

ubsections.

.1. Bottleneck feature

As shown in Fig. 3 , if there are M-dimensional features from

he last conv layer, B -dimensional bottleneck features and O output

odes, the total computational costs (FLOPs) of fully-connected lay-

rs (FCs) is computed as :

 L FCs = M × B + B × O (3)

From the above equation, we can observe that the FLOPs in

ully-connected layers can be controlled by adjusting the dimen-

ion of the bottleneck feature. The FLOPs of fully-connected layers

ecomes smaller with the reduction of the dimension B .
4
.2. Parsimonious convolution

In a standard convolutional layer, assuming the input is a

quare feature map, it can be represented by a three-dimensional

ensor of size D × D × C in . Here, D is the spatial width and height,

hile C in is the number of input channels. Usually, (e.g., 3 ×3 ker-

el size and 1 padding), the corresponding output tensor with

he channels C out obtained by applying the C out filters of size K ×
 × C in has the same spatial size D × D, namely, the output size is

 × D × C out . Therefore, the FLOPs at this layer is:

 L Conv = D

2 × C × C out × K

2 (4)
in

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

t

l

c

C

p

b

t

n

K

F

c

e

a

r

v

b

p

t

p

c

p

e

c

t

n

t

s

a

s

t

T

F

F

l

c

l

Table 1

The FLOPs ratios of compact convolutions

to standard convolution.

Type FLOPs Ratio

DSConv 1
C out

+

1
K 2

ParConv 1
2 K 2

+

ω
2
(1

K 2
+

1
C out

+

C in
2 C out K 2

)

C

r

t

3

C

k

a

L

p

s

l

t

l

w

g

b

p

d

b

l

F

w

The depthwise separable convolution (DSConv) is made up of

wo components: channelwise convolution and pointwise convo-

ution. The fundamental hypothesis behind DSConv is that cross-

hannel correlations and spatial correlations can be decoupled.

hannelwise convolution is used to capture spatial correlations and

ointwise convolution is a 1 × 1 standard convolution that com-

ines information from different channels. In channelwise convolu-

ion, each output channel is only associated with one input chan-

el so that the convolutional filters are represented by a 3-D tensor

 × K × C in . The FLOPs of DSConv is computed as follows:

 L DSConv = D

2 × (C in × K

2 + C in × C out) (5)

Compared with standard convolution, DSConv is extremely effi-

ient in building units for many compact networks [41–44] . How-

ver, directly replacing standard convolution with DSConv leads to

n increase in network depth, which makes the optimization of the

econstructed network more difficult. This problem might be alle-

iated by using residual connections. Besides, simple replacement

y using DSConv in a standard CNN causes the network to suffer

erformance degradation, which may be the reason that the au-

hors in [16] had to scale up the number of filters in DSConv.

In the proposed parsimonious convolution (ParConv), the in-

ut channels are split into two branches, one with αC in (0 ≤ α ≤ 1)

hannels for DSConv and the other with (1 − α) C in channels for

ointwise convolution. And then, the output features from differ-

nt branches combine together by channel-wise addition. Specifi-

ally, before DSConv, a pointwise convolution with a channel mul-

iplier ωis added to deeply integrate the information among chan-

els, which is important for DSConv to extract features. In order

o promote the flow of information between branches, a channel

huffle operator [41] is conducted before the input feature maps

re split into two branches. The channel shuffle operator first re-

hapes the input channel dimension into (2,
C in
2), transposing and

hen flattening it back. For simplicity, αis set to 0.5 in all ParConvs.

he FLOPs of ParConv is:

 L ParConv = D

2 × 1

2

C in ×
ω

2

C in + D

2 × ω

2

C in × K

2

+ D

2 × ω

2

C in × C out + D

2 × 1

2

C in × C out (6)

Fig. 4 shows the structure of the ParConv and Table 1 lists the

LOPs ratios of different compact convolutions to standard convo-

ution. From Table 1 , it can be observed clearly that the DSConv

an approach K

2 times fewer computations than standard convo-

ution. For ParConv, under the reasonable assumption that C in =
ig. 4. The structure of the ParConv. The solid cube indicates that the kernel connects w

orks on the corresponding single input channel.

5
 out and C out >> K

2 , the FLOPs ratio to standard convolution can be

ewritten as follows:

1

2 K

2
+

3 ω

4 K

2
(7)

Obviously, the computational cost can be adjusted by changing

he value of the channel multiplier ω.

.3. Knowledge distillation with multiple losses

In order to reduce the performance gap between the standard

NN and the corresponding ParConv-based compact CNN (CCNN),

nowledge distillation is necessary. Three kinds of training losses

re included in the process of knowledge distillation, i.e., Kullback-

eibler (KL) divergence loss, cross entropy (CE) loss and solving

rocedure (SP) loss. The final loss is formulated as the weighted

um of these losses:

 = μl KL + β l CE + λl SP (8)

The CE loss with so-called hard labels is the most common

raining criterion in classification tasks and is defined as follows:

 CE = −
∑

t

log p(s t | x t) (9)

here log p(s t | x t) is the estimated posterior probability of the tar-

et class s t from the CNN output given the input x t .

The KL divergence is a measure of how one probability distri-

ution is different from another probability distribution. In our ap-

roach, it is used to compute the difference between the output

istribution of standard CNN p S (s | x t) and the corresponding distri-

ution from CCNN p C (s | x t) :

 KL =

∑

t

∑

s

p S (s | x t) log

(
p S (s | x t)

p C (s | x t)

)

=

∑

t

∑

s

[p S (s | x t) log p S (s | x t)

−p S (s | x t) log p C (s | x t)] (10)
ith all input channels, while the rectangle with a triangle indicates the kernel only

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

b

l

s

μ

f

t

t

p

h

w

t

t

b

t

p

s

e

p

A

S

l

w

i

b

4

fl

S

p

o

i

4

t

[

i

(

o

a

n

t

1

2

i

C

w

s

e

a

o

T

4

e

2

a

a

t

1

o

v

t

a

e

o

d

o

o

e

l

t

l

4

e

p

i

t

A

0

e

p

e

T

I

m

b

a

u

d

s

m

b

5

c

t

p

t

c

i

Because we only optimize the CCNN, the KL loss in Eq. (10) can

e rewritten to retain:

 KL = −
∑

t

∑

s

p S (s | x t) log p C (s | x t) (11)

Essentially, the KL loss in Eq. (11) is simplified to CE loss with

oft labels. The weighted sum of KL loss and CE loss is:

l KL + β l CE = −
∑

t

∑

s

μp S (s | x t) log p C (s | x t)

−
∑

t

β log p C (s t | x t)

= −
∑

t

[(β + μp S (s t | x t)) log p C (s t | x t)

+

∑

s � = s t
μp S (s | x t) log p C (s | x t)] (12)

From the above formula, it is clear that the CE helps the model

ocus on the important parts by providing prior knowledge (ground

ruth of inputs).

Furthermore, it is not enough to give the CCNN the answers

o problems from the standard CNN. A better teacher always ex-

lains the solving procedures of problems so that the students can

andle such problems from learning one certain example. In CNN,

e define a series of solving procedure matrices (SPMs). An SPM is

he result of elementwise subtraction between the extracted atten-

ion feature maps from two layers, which is intuitively reasonable

y using the change in outputs between two layers to represent

he solving procedure. The attention map in a layer needs to em-

hasize valuable information for the following flow. Naturally, as-

uming a convolutional layer has the output tensor O ∈ R D ×D ×C with

ach feature map O c ∈ R D ×D , the attention map can be simply com-

uted as [47] :

 =

C ∑

c=1

O c (13)

The SPM S for the i th layer and the jth layer (j > i) is:

 = A j − A i (14)

Finally, the SP loss can be obtained as follows:

 SP =

∑

t

N ∑

n =1

1

N

×
∥∥∥∥ S S n (x t)

‖

S S n (x t) ‖ F

− S C n (x t)

‖

S C n (x t) ‖ F

∥∥∥∥
2

F

(15)

here Nis the total number of SPMs in the CNN, S S n is the n th SPM

n the standard CNN, S C n is the corresponding SPM in the ParConv-

ased CCNN, and ‖ •‖ F is the standard Frobenius norm.

. Experiments

The proposed distillation algorithm is mainly validated on of-

ine handwritten Chinese text recognition (HCTR) using the CA-

IA database [21,22] . In addition, in order to accurately observe the

erformance changes of CNNs, a 5-gram LM [66] is only added in

ur final results. PyTorch [67] is used as a deep learning platform

n all experiments.

.1. DCNN on CASIA

The baseline DCNN architecture in [9] is adopted. Please note

hat except for the categories of output layers, the CNNs in

8,9] have the same architecture. According to the configuration

n [9] , both offline isolated handwritten Chinese character datasets

HWDB1.0, HWDB1.1 and HWDB 1.2) and the training sets of

ffline handwritten Chinese text datasets (HWDB2.0, HWDB2.1
6
nd HWDB2.2) are used. In total, there are 7360 classes (Chi-

ese characters, symbols, garbage) and 3,932,197 images. After ex-

racting frame-level images from the original datasets, there are

4 8,64 8,24 9 training samples for the training of DCNN. The ICDAR

013 competition set is adopted as the evaluation set [22] . The CER

s computed as:

ER =

N s + N i + N d

N

(16)

here Nis the total number of character samples in the evaluation

et. N s ,N i and N d denote the number of substitution errors, insertion

rrors and deletion errors, respectively. In this study, we do not use

dditional language models because we focus on the performance

f the CNN.

Each class is modeled by 3 tied HMM states on average.

he input of DCNN is a normalized frame-level image of size

0 × 40 extracted from original images, and then each frame is

xtended to 48 × 48 by adding the margin. The output layer has

2,080(7360 × 3) output nodes. In the DCNN architecture, there

re 14 convolutional layers that use standard 2D convolution and

re followed by batch normalization (BN) and nonlinearity activa-

ion ReLU. The number of channels continuously increases from

00 to 700. Except for the first and last convolutional layers with-

ut padding, other convolutional layers have the same padding

alue of 1. The stride is set to 1 for all convolutional layers, while

he stride of all max pooling layers is 2 with a 3 × 3 window.

According to our proposed guideline in Algorithm 1 , we first

nalyze the computational costs and storage of convolutional lay-

rs (Convs) and fully-connected layers (FCs) in DCNN. The details

f the DCNN and statistical results are shown in Table 2 . Here, we

o not consider the consumption of the batch normalization (BN)

peration and max-pooling (MaxPooling) operation because they

ccupy a negligible part. Based on the analyzed results, it is nec-

ssary to reduce the parameters in fully-connected layers due to a

arge proportion of the storage (35%). In addition, we can observe

hat almost all computational costs are generated by convolutional

ayers.

.2. Experiments on architecture distillation

In order to make a fair comparison, the setting of hyperparam-

ters in the training stage is the same for all experiments in this

art. The minibatch size is 10 0 0 in each iteration, the momentum

s 0.9 and the weight decay is 0.0 0 01. The learning rate is ini-

ially set to 0.1 and decreased by 0.92 after every 40 0 0 iterations.

fter two epochs are conducted, the learning rate is reduced to

.0 0 02 and the networks are convergent. For fully-connected lay-

rs, although many algorithms can be used, we choose the sim-

lest algorithm that controls the weights of fully-connected lay-

rs by adjusting the feature dimension before the output layer.

he effectiveness of this strategy has also been reported in [15] .

n Table 3 , different bottleneck features are compared. The 500 di-

ension corresponds to the baseline DCNN. Three observations can

e found. First, because the FLOPs of fully-connected layers occupy

 small proportion (less than 1%), the total FLOPs remains almost

nchanged when the dimension is below 100. Second, with the

imension changing from 500 to 50, the storage decreases con-

iderably and the CER has fluctuates slightly, which means that

ost parameters in fully-connected layers are redundant and can

e safely ignored [68] . Finally, when the dimension is smaller than

0, the storage tends to be stable, as most storage consumption is

aused by convolutional layers, however, it is reasonable to observe

hat the CER begins to increase due to the very small number of

arameters in the bottleneck feature leading to missing informa-

ion. Considering the tradeoff between storage ratio γ about fully-

onnect layers (see Algorithm 1) and CER, we choose dimension 50

n the following experiments.

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

Table 2

Architecture and quantitative analysis of DCNN character model. The abbreviations f, k, s, p represent the number of feature

maps, kernel size, stride length and padding size, respectively.

Layer Configurations Spatial Size FLOPs (×10 8) Fraction Storage (MB) Fraction

FC2 500 × 22080 1 × 1 0.1104 0.69% 42.1985 33.90%

FC1 700 × 500 1 × 1 0.0035 0.02% 1.3371 1.07%

Conv5 F:700, K:1 × 1, S:1, P:0 1 × 1 0.0049 0.03% 1.8826 1.51%

MaxPooling K:3 × 3, S:2 - - - - -

Conv4_4 F:700, K:3 × 3, S:1, P:1 4 × 4 0.7056 4.40% 16.8362 13.52%

Conv4_3 F:700, K:3 × 3, S:1, P:1 4 × 4 0.6048 3.78% 14.4329 11.59%

Conv4_2 F:600, K:3 × 3, S:1, P:1 4 × 4 0.4320 2.70% 10.3111 8.28%

Conv4_1 F:500, K:3 × 3, S:1, P:1 4 × 4 0.3600 2.25% 8.5926 6.90%

MaxPooling K:3 × 3, S:2 - - - - -

Conv3_4 F:500, K:3 × 3, S:1, P:1 10 × 10 2.2500 14.04% 8.5926 6.90%

Conv3_3 F:500, K:3 × 3, S:1, P:1 10 × 10 1.8000 11.23% 6.8760 5.52%

Conv3_2 F:400, K:3 × 3, S:1, P:1 10 × 10 1.0800 6.74% 4.1275 3.32%

Conv3_1 F:300, K:3 × 3, S:1, P:1 10 × 10 0.8100 5.06% 3.0956 2.49%

MaxPooling K:3 × 3, S:2 - - - - -

Conv2_4 F:300, K:3 × 3, S:1, P:1 22 × 22 3.9204 24.47% 3.0956 2.49%

Conv2_3 F:300, K:3 × 3, S:1, P:1 22 × 22 2.6136 16.31% 2.0657 1.66%

Conv2_2 F:200, K:3 × 3, S:1, P:1 22 × 22 0.8712 5.44% 0.6905 0.55%

Conv2_1 F:100, K:3 × 3, S:1, P:1 22 × 22 0.4356 2.72% 0.3452 0.28%

MaxPooling K:3 × 3, S:2 - - - - -

Conv1 F:100, K:3 × 3, S:1, P:0 46 × 46 0.0190 0.12% 0.0053 0.00%

Input Frame-level image 48 × 48 - - - -

Table 3

FLOPs (×10 8), STORAGE (MB), RATIO γ (%) and CER (%) comparison by using the dif-

ferent bottleneck features in fully-connected layers.

Low-dimensional Feature FLOPs (×10 8) Storage (MB) γ (%) CER (%)

500 16.02 124.5 34.97 9.17

100 15.96 89.74 9.78 9.04

50 15.92 85.39 5.19 9.01

25 15.91 83.22 2.71 9.38

20 15.91 82.79 2.20 9.40

e

a

b

s

P

s

m

w

t

[

b

c

v

s

c

r

c

a

p

t

1

c

C

Table 4

The detailed results of using different compact blocks to directly replace standard

convolution without knowledge distillation.

Model FLOPs (×10 8) Storage (MB) CER (%)

DCNN_LF50 15.92 89.74 9.01

DSCNN [16] 1.84 15.46 19.44

DSCNN_Res 2.67 19.79 10.01

LightweightNet [15] 2.12 23.41 10.30

SParCNN 1.81 15.30 10.45

ParCNN_ ω0.5 1.56 14.14 10.44

ParCNN_ ω0.5_Res 2.38 18.46 10.03

ParCNN_ ω1 2.21 17.41 10.00

ParCNN_ ω1_Res 3.03 21.74 9.80

ParCNN_ ω2 3.50 23.95 9.72

ParCNN_ ω2 _Res 4.32 28.29 9.54

ParCNN_ ω4 6.07 37.04 9.59

ParCNN_ ω4 _Res 6.90 41.37 9.53

Table 5

The results of joint architecture and knowledge distillation for

DCNN.

Model FLOPs (×10 8) Storage (MB) CER (%)

DCNN 16.02 124.5 9.17

ParCNN_ ω0.5 1.56 14.14 10.44

+ KL 9.79

+ SP 9.94

+ KL+SP 9.68

Table 6

The results of the proposed approach for different acceleration and compression

ratios based on channel multiplier ω.

Model FLOPs (×10 8) Storage (MB) Without KD With KD

DCNN 16.02 124.5 9.17 -

ParCNN_ ω0.5 1.56 14.14 10.44 9.68

ParCNN_ ω1 2.21 17.41 10.00 9.37

ParCNN_ ω2 3.50 23.95 9.72 9.09
Based on the DCNN with bottleneck feature 50 (DCNN_LF50),

xcept for the initial and last convolutional layers, we replace

ll remaining 12 standard convolutional layers with our ParConv

locks (same channel multiplier ωfor all 12 layers). The recon-

tructed compact CNN is notated as ParCNN_ ω. For example, the

arCNN_ ω0 . 5 indicates that the value of ωin all ParConv blocks is

et to 0.5. In order to demonstrate that the proposed ParConv is a

ore efficient and effective replacement for standard convolution,

e compare it with depthwise separable convolution (DSConv) and

he architecture distillation algorithm LightweightNet proposed in

15] . Besides, we also construct the simplified ParConv (SParConv)

y removing the pointwise convolution before depthwise separable

onvolution block in ParConv to verify the role of pointwise con-

olution. We directly adopt DSConv and SParConv to replace the

ame 12 standard convolutional layers and build the corresponding

ompact CNN: DSCNN and SParCNN, respectively. Table 4 lists all

elated results. The notation

∗_Res indicates that we add residual

onnections for all corresponding compact blocks, namely, there is

nother path directly connecting the input and output of the com-

act block.

• Comparison with different values of ω

We changed the value of ωfrom 0.5 to 4. As shown in Table 4 ,

he CERs of ParCNN and ParCNN_Res consistently decrease from

0.44% to 9.59% and 10.03% to 9.53%, respectively. Naturally, the

omputational resources also increase with the increment of ω.

ompared with the network DCNN_LF50, the ParCNN without
7

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

Fig. 5. The comparison of multiple losses for ParCNN_ ω0.5, ParCNN_ ω1 and Par-

CNN_ ω2 when all losses are considered simultaneously in the training stage. For

simplicity, we use ω0.5, ω1, ω2 to represent respective networks in all figures.

r

p

r

s

P

n

t

(

c

b

A

a

r

i

u

c

i

o

w

p

T

r

t

i

(

p

1

w

a

t

p

P

c

T

p

P

p

w

L

4

c

I

a

t

μ

t

t

p

r

F

esidual connection can achieve 10.21 ×to 2.62 ×FLOPs based im-

rovement and 6.35 ×to 2.42 ×in storage reduction, while the cor-

esponding ParCNN_Res can reduce FLOPs from 6.69 ×to 2.31 ×and

torage overhead from 4.86 ×to 2.17 ×. By comparing the results of

arCNN and ParCNN_Res, we can observe that the residual con-
Table 7

The comparison of final results after adding the same 5-gram

Model FLOPs (×10 8) Storage (MB) GPU Ti

DCNN [9] 16.02 124.5 39.3

ParCNN_ ω0.5 1.56 14.14 19.0

8
ection always yields a performance improvement. Additionally,

he residual connection introduces extra computational resources

approximately 0.82 ×10 8 FLOPs and 4.33MB) due to the pointwise

onvolution necessary for the special situation where the num-

er of input and output channels of a compact block is different.

ctually, in most other typical CNNs where the number of input

nd output channels is the same for most convolutional layers, the

esidual connection does not lead to too much extra consumption.

• Comparison with depthwise separable convolution

First, from the DSCNN and DSCNN_Res results, an interest-

ng and reasonable observation can be made. Without the resid-

al connection, the recognition performance of DSCNN signifi-

antly declines with a CER of 19.44%. In essence, directly us-

ng DSConv to replace standard convolution doubles the depth

f the network, which easily leads to the degradation of net-

ork [6] . After adding the residual connection, the recognition

erformance of DSCNN_Res returns to a normal value (10.07%).

his phenomenon reflects another advantage of our ParConv, i.e.,

elaxing the residual connection requirement, which can reduce

he possibility of additional computations. In the case of sim-

lar CERs (10.0%), the proposed ParConv-based compact CNNs

ParCNN_ ω0.5_Res, ParCNN_ ω1) consume significantly fewer com-

uting resources (2.38 ×10 8 , 2.21 ×10 8 vs. 2.67 ×10 8 in FLOPs and

8.46MB, 17.41MB vs. 19.79MB in storage).

• Comparison with simplified parsimonious convolution

In SParConv, a quarter of the input channels are fed into depth-

ise separable convolution. Compared with the proposed ParCNN,

ll the performance indicators of SParCNN are worse than those of

he proposed ParCNN_0.5, which indicates the importance of the

ointwise convolution in the ParConv. Besides, the parameter ωin

arConv can be set to different values so that we can choose a

ompression rate that meets the performance requirements.

• Comparison with LightweightNet

We also reproduce the architecture distillation algorithm [15] .

he reconstructed LightweightNet needs 2.12 ×10 8 FLOPs and occu-

ies 23.41MB while the corresponding CER is 10.30%. The network

arCNN_ ω0.5 with a comparable recognition performance can ap-

arently outperform it in FLOPs and storage. Meanwhile, the net-

orks ParCNN_ ω0.5_Res and ParCNN_ ω1 have similar FLOPs with

ightweightNet, but lower storage and CERs.

.3. Experiments on architecture and knowledge distillation

As shown in Table 4 , a smaller value of ωcan obtain a larger

ompression ratio but suffer from worse recognition performance.

n order to reduce the performance gap between the baseline CNN

nd the compact CNN, it is necessary to introduce knowledge dis-

illation. In knowledge distillation, i.e., based on Eq. (8) , the weight

is set to 0.8, βequals 0.2 and λis 0.1. Except for the batch size set

o 700, all other initial training hyper parameters are the same as

he parameters in architecture distillation.

In order to excavate the best capability of the proposed ap-

roach, we first combine knowledge distillation to improve the

ecognition performance of the smallest network ParCNN_ ω0.5.

rom the results of Table 5 , we can observe that the knowledge
 LM.

me (ms/batch) GPU Occupancy (MB) CER (%)

3353 3.52

759 3.55

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

Fig. 6. Weight analysis for DCNN and ParCNN_ ω0.5.

d

t

L

n

D

c

c

i

p

t

c

1

r

t

2

a

(

b

d

F

i

e

C

i

o

w

D

o

i

p

r

C

s

G

7

t

c

s

c

b

P

a

i

i

Fig. 7. Some examples in the CTW dataset.

fl

a

t

m

r

s

a

4

e

c

t

r

i

m

[

a

o

c

fi

t

n

w

F

6

istillation can yield remarkable reductions of CER: from 10.44%

o 9.79% (+KL Loss), 9.94% (+SP Loss) and 9.68% (+KL Loss & +SP

oss), which demonstrates the effectiveness of the SP loss and the

ecessity of knowledge distillation. Compared with the baseline

CNN, our proposed joint architecture and knowledge distillation

an achieve a 10 ×reduction in computational cost and 9 ×storage

ompression with only a 0.51% increment in CER, i.e., a relative CER

ncrement of 5.6%.

Table 6 shows the results for different acceleration and com-

ression ratios based on channel multiplier ω. It can be observed

hat the value of ωcan effectively control the acceleration and

ompression ratio and recognition performance. When ωis set to

, compared with the baseline DCNN, the proposed approach can

educe the computational cost and model size by > 7 ×with a rela-

ive CER increment of 2.2%. If we further increase the value of ωto

, the compact network ParCNN_ ω2 with a > 4 ×acceleration ratio

nd > a 5 ×compression ratio can even obtain a better performance

9.09% vs. 9.17%).

In order to better understand why more parameters can yield

etter performance, we draw the learning curves of multiple losses

uring training for ParCNN_ ω0.5, ParCNN_ ω1 and ParCNN_ ω2 in

ig. 5 . It can be observed that all kinds of losses decrease with

ncreasing ω, which is in line with our expectations. Another inter-

sting observation is that the relative gap of SP loss between Par-

NN_ ω1 and ParCNN_ ω2 is larger than other kinds of losses. This

ndicates that SP loss should play an important role in the training

f ParCNN_ ω2.

Finally, considering that LM plays an important role in HCTR,

e add the same 5-gram LM [9] to compare the final results of

CNN and ParCNN_ ω0.5. As shown in Table 7 , it is reasonable to

bserve that the performance gap is almost fixed by LM, which

ndicates that the proposed algorithm can yield a remarkable com-

ression ratio with negligible accuracy loss. We also test the actual

untime (milliseconds per batch) for DCNN and the proposed Par-

NN_ ω0.5. All models with batch size 120 are run 10 times in the

ame machine that is equipped with PyTorch (version 1.0.1) with

eForce RTX 2080, CUDA version 10.0.130 and CUDNN [69] version

402. Although FLOPs reduction (theoretical) is amazing, the prac-

ical speedup (2 ×) is limited. The main reason is that the 1 × 1

onvolutions and depthwise convolutions in PyTorch are relatively

low, and the latest CUDNN library is specially optimized for 3 × 3

onvolutions. However, we observe that when running the same

atch, the DCNN consumes 3353 MB of GPU memory while the

arCNN_ ω0.5 only needs 759 MB.

Furthermore, in Fig. 6 , it is obvious that the weights of DCNN

re more concentrated around 0, which indicates massive weights

n DCNN may be unimportant. The utilization of weights greatly

mproves in ParCNN_ ω0.5, where the weight distribution becomes

0

9
atter. To some extent, this can explain why a small network can

lso achieve similar recognition accuracy. In order to demonstrate

hat the proposed approach can also be successfully applied on

ainstream backbone networks, in the following experiments, we

econstruct the corresponding compact networks according to the

tructures of Res50 and Res18 and conduct experiments on CTW

nd MNIST respectively.

.4. Experiments on CTW

The CTW dataset contains 1,019,402 Chinese character images

xtracted from 32,285 street view images. The number of Chinese

haracter categories is 3850. These character images are annotated

o different attributes: occlusion, complex background, distortion,

aised character, word art and handwritten character. Examples are

llustrated in Fig. 7 . The image preprocessing we use is approxi-

ately consistent with the method in [23] . We first train a Res50

6] network. As in [23] , only the top 10 0 0 frequent Chinese char-

cter categories are considered. As shown in Fig. 8 , the basic unit

f Res50 includes a 1 × 1 convolutional layer followed by a 3 × 3

onvolutional layer, and a 1 × 1 convolutional layer in the end. The

rst 1 × 1 convolutional layer can form a bottleneck to reduce the

otal parameters. We can easily build the corresponding compact

etwork ParRes50 by replacing the standard 3 × 3 convolution

ith the proposed ParConv with channel multiplier ω = 0 . 5 (see

ig. 4). In the training of Res50 and ParRes50, the minibatch size is

4, and the momentum is 0.9. The learning rate is initially set to

.01 and decreased by 0.1 when the training loss does not improve

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

Fig. 8. The comparison of basic units in Res50 and ParRes50.

Table 8

The comparison of different networks on CTW.

Model FLOPs (×10 9) Storage (MB) CER (%)

Res50 [23] 4.09 97.76 21.80

Res50 (Ours) 20.54

ParRes50 2.44 58.93 19.46

i

r

i

s

n

a

4

w

o

p

R

d

a

b

Table 9

The overall comparison for different networks on MNIST.

Model FLOPs (×10 7) Storage (MB) CER (%)

AlexNet [3] 2.15 77.57 1.02

VGG19 [4] 27.65 148.67 0.34

Res18 [6] 45.58 42.68 0.33

ParRes18 4.86 4.47 0.34

n

w

i

t

t

t

P

t

o

5

d

m

t

t

o

t

T

t

f

w

n

o

o

A

n ten consecutive observations. In Table 8 , we list the recognition

esults and resource consumption of different networks. Consider-

ng the large number of point convolutions used in Res50, it is rea-

onable to observe that the reduction in parameters and FLOPs is

ot very significant. On the other side, we obtain the recognition

ccuracy improvement by simple replacement.

.5. Experiments on MNIST

In this small dataset, according to the structure of Res18,

e build the corresponding compressed network ParRes18 based

n the proposed parsimonious convolution with channel multi-

lier ω = 0 . 5 . Fig. 9 shows the differences between Res18 and Par-

es18. Then, we conduct experiments on one of the most popular

atasets: the MNIST dataset that includes 60,0 0 0 training images

nd 10,0 0 0 test images. Each image is resized to 28 ×28 and la-

eled as a digit (0–9). We first train the three kinds of mainstream
Fig. 9. Using ParConvs to repl

10
eural networks, i.e., AlexNet [3] , VGG19 [4] , and Res18. These net-

ork prototypes are provided by PyTorch and batch normalization

s used for all convolutional layers. We use the same training cri-

erion to train all networks: the minibatch size is 64, the momen-

um is 0.9, the weight decay is 0.0 0 01 and the learning rate is set

o 0.01. From Table 9 , we can observe that compared with Res18,

arRes18 can obtain a > 9 ×acceleration ratio and compression ra-

io with a similar performance. Besides, it has obvious advantages

ver AlexNet and VGG19.

. Discussion and conclusion

As a plug-and-play convolution block, ParConv is proposed to

irectly replace the standard convolution without other adjust-

ents in the network. Unlike the Inception module in GoogLeNet

hat uses different kernel sizes in respective paths to extract mul-

iscale features, the idea of the proposed ParConv derives from the

pinion that the convolution filter needs not to have the same spa-

ial correlation on all input channels in an overparameterized CNN.

herefore, in ParConv, the information can be recovered through

he sum (not concatenation) of corresponding channels extracted

rom different kernels. In Fig. 10 , a particularly simplified example

here the input has four channels and the output has two chan-

els is used to illustrate the different convolutional blocks. We can

bserve that the ParConv implement the heterogeneous form with-

ut additional output channels, which is different from Inception.

lthough one path of the proposed ParConv is similar to the in-
ace the Convs in Res18.

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

Fig. 10. A particularly simplified example about ParConv and Inception.

v

s

i

b

e

a

s

t

t

g

n

l

o

b

t

p

M

s

c

t

b

s

p

c

D

w

e

o

c

e

C

A

g

N

a

P

K

R

[

[

[

[
erted residual block in MobileNetv2 [44] , they have a different

tarting point and use. For example, the first pointwise convolution

n the inverted residual block of MobileNetv2 increases the num-

er of input channels for extracting more abundant features. How-

ver, the ParConv is not perfect, and the accuracy drops when we

ttempt to achieve the highest compression rate, which is the rea-

on why we still need knowledge distillation. As important work in

he future, we will continue to develop more efficient convolution.

In conclusion, we propose a guideline for distilling the architec-

ure and knowledge of pretrained standard CNNs. The proposed al-

orithm is first verified on offline handwritten Chinese text recog-

ition. In architecture distillation, we invent a parsimonious convo-

ution block (ParConv) to directly replace vanilla convolution with-

ut any other adjustments. To further reduce the gap between the

aseline CNN and the corresponding compact CNN, knowledge dis-

illation with multiple losses is adopted. Then, by conducting ex-

eriments on two additional classification task datasets, CTW and

NIST, we demonstrate that the proposed approach can also be

uccessfully applied on mainstream backbone networks. However,

onsidering that the 1 × 1 convolutions and depthwise convolu-

ions in PyTorch are relatively slow and that the latest CUDNN li-

rary is specially optimized for 3 × 3 convolutions, the practical

peedup is limited. For future work, we will combine other com-

ression and acceleration algorithms to optimize the underlying

ode and complete the actual deployment.

eclaration of Competing Interest

We declare that we have no financial and personal relationships

ith other people or organizations that can inappropriately influ-

nce our work, there is no professional or other personal interest

f any nature or kind in any product, service and company that

ould be construed as influencing the review of the manuscript

ntitled “Joint Architecture and Knowledge Distillation in CNN for

hinese Text Recognition”.

cknowledgment

This work was supported in part by the National Key R&D Pro-

ram of China under contract No. 2017YFB1002202 , the National

atural Science Foundation of China under Grant Nos. 61671422

nd U1613211 , the Key Science and Technology Project of Anhui

rovince under Grant No. 17030901005, and the MOE-Microsoft

ey Laboratory of USTC.

eferences

[1] Y. LeCun , B. Boser , J.S. Denker , D. Henderson , R.E. Howard , W. Hubbard ,
L.D. Jackel , Backpropagation applied to handwritten zip code recognition, Neu-

ral Comput. 1 (4) (1989) 541–551 .
11
[2] Y. LeCun , L. Bottou , Y. Bengio , P. Haffner , et al. , Gradient-based learning applied
to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 .

[3] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep con-
volutional neural networks, in: Advances in Neural Information Processing Sys-

tems, 2012, pp. 1097–1105 .
[4] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, arXiv: 1409.1556 (2014).

[5] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-
houcke , A. Rabinovich , Going deeper with convolutions, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9 .
[6] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 770–778 .

[7] G. Huang , Z. Liu , L. Van Der Maaten , K.Q. Weinberger , Densely connected con-

volutional networks, in: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2017, pp. 4700–4708 .

[8] Z.-R. Wang , J. Du , W.-C. Wang , J.-F. Zhai , J.-S. Hu , A comprehensive study of
hybrid neural network hidden Markov model for offline handwritten Chinese

text recognition, Int. J. Doc. Anal.Recognit. (IJDAR) 21 (4) (2018) 241–251 .
[9] Z.-R. Wang , J. Du , J.-M. Wang , Writer-aware CNN for parsimonious HMM-based

offline handwritten Chinese text recognition, Pattern Recognit. (2019) 107102 .
[10] X. Xiao , L. Jin , Y. Yang , W. Yang , J. Sun , T. Chang , Building fast and compact

convolutional neural networks for offline handwritten Chinese character recog-

nition, Pattern Recognit. 72 (2017) 72–81 .
[11] X.-Y. Zhang , Y. Bengio , C.-L. Liu , Online and offline handwritten Chinese charac-

ter recognition: a comprehensive study and new benchmark, Pattern Recognit.
61 (2017) 348–360 .

[12] F. Schroff, D. Kalenichenko , J. Philbin , FaceNet: a unified embedding for face
recognition and clustering, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2015, pp. 815–823 .

[13] Y. Zhang , J. Du , Z. Wang , J. Zhang , Y. Tu , Attention based fully convolutional
network for speech emotion recognition, in: 2018 Asia-Pacific Signal and Infor-

mation Processing Association Annual Summit and Conference (APSIPA ASC),
IEEE, 2018, pp. 1771–1775 .

[14] C. Bucilu ̌a , R. Caruana , A. Niculescu-Mizil , Model compression, in: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, ACM, 2006, pp. 535–541 .

[15] T.-B. Xu , P. Yang , X.-Y. Zhang , C.-L. Liu , LightweightNet: toward fast and
lightweight convolutional neural networks via architecture distillation, Pattern

Recognit. 88 (2019) 272–284 .
[16] F. Chollet , Exception: deep learning with depthwise separable convolutions, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2017, pp. 1251–1258 .

[17] Q. Fu , X. Ding , T. Liu , Y. Jiang , Z. Ren , A novel segmentation and recogni-

tion algorithm for Chinese handwritten address character strings, in: 18th In-
ternational Conference on Pattern Recognition (ICPR’06), vol. 2, IEEE, 2006,

pp. 974–977 .
[18] M. Yu , P.C. Kwok , C.H. Leung , K. Tse , Segmentation and recognition of Chinese

bank check amounts, Int. J. Doc. Anal. Recognit. 3 (4) (2001) 207–217 .
[19] H. Fujisawa , Forty years of research in character and document recognition—an

industrial perspective, Pattern Recognit. 41 (8) (2008) 2435–2446 .

20] Y. LeCun , Y. Bengio , G. Hinton , Deep learning, Nature 521 (7553) (2015) 436 .
[21] C.-L. Liu , F. Yin , D.-H. Wang , Q.-F. Wang , CASIA online and offline Chinese

handwriting databases, in: 2011 International Conference on Document Analy-
sis and Recognition, IEEE, 2011, pp. 37–41 .

22] F. Yin , Q.-F. Wang , X.-Y. Zhang , C.-L. Liu , ICDAR 2013 Chinese handwriting
recognition competition, in: 2013 12th International Conference on Document

Analysis and Recognition, IEEE, 2013, pp. 1464–1470 .

23] T.-L. Yuan, Z. Zhu, K. Xu, C.-J. Li, S.-M. Hu, Chinese text in the wild, arXiv: 1803.
0 0 085 (2018).

24] E.L. Denton , W. Zaremba , J. Bruna , Y. LeCun , R. Fergus , Exploiting linear struc-
ture within convolutional networks for efficient evaluation, in: Advances in

Neural Information Processing Systems, 2014, pp. 1269–1277 .

https://doi.org/10.13039/501100013290
https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0003
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0022
http://arxiv.org/abs/1803.00085
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0024

Z.-R. Wang and J. Du Pattern Recognition 111 (2021) 107722

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

s

L

25] M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural net-
works with low rank expansions, arXiv: 1405.3866 (2014).

26] X. Zhang , J. Zou , K. He , J. Sun , Accelerating very deep convolutional networks
for classification and detection, IEEE Trans. Pattern Anal. Mach. Intell. 38 (10)

(2016) 1943–1955 .
27] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep

convolutional neural networks for fast and low power mobile applications,
arXiv: 1511.06530 (2015).

28] H. Ding , K. Chen , Y. Yuan , M. Cai , L. Sun , S. Liang , Q. Huo , A compact CN-

N-DBLSTM based character model for offline handwriting recognition with
Tucker decomposition, in: 2017 14th IAPR International Conference on Doc-

ument Analysis and Recognition (ICDAR), vol. 1, IEEE, 2017, pp. 507–512 .
29] S. Han , J. Pool , J. Tran , W. Dally , Learning both weights and connections for ef-

ficient neural network, in: Advances in Neural Information Processing Systems,
2015, pp. 1135–1143 .

30] Y. Guo , A. Yao , Y. Chen , Dynamic network surgery for efficient DNNs, in: Ad-

vances In Neural Information Processing Systems, 2016, pp. 1379–1387 .
[31] Z. Liu , J. Li , Z. Shen , G. Huang , S. Yan , C. Zhang , Learning efficient convolutional

networks through network slimming, in: Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2736–2744 .

32] J.-H. Luo , J. Wu , W. Lin , ThiNet: a filter level pruning method for deep neural
network compression, in: Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 5058–5066 .

33] A. Gordon , E. Eban , O. Nachum , B. Chen , H. Wu , T.-J. Yang , E. Choi , MorphNet:
fast & simple resource-constrained structure learning of deep networks, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2018, pp. 1586–1595 .

34] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding, arXiv: 1510.

00149 (2015).

35] V. Vanhoucke, A. Senior, M.Z. Mao, Improving the speed of neural networks on
CPUs(2011).

36] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural
networks: training deep neural networks with weights and activations con-

strained to +1 or -1, arXiv: 1602.02830 (2016).
37] F. Li, B. Zhang, B. Liu, Ternary weight networks, arXiv: 1605.04711 (2016).

38] R. Ding , Z. Liu , R. Shi , D. Marculescu , R. Blanton , LightNN: filling the gap

between conventional deep neural networks and binarized networks, in:
Proceedings of the on Great Lakes Symposium on VLSI 2017, ACM, 2017,

pp. 35–40 .
39] R. Ding, Z. Liu, T.-W. Chin, D. Marculescu, et al., FLightNNs: lightweight quan-

tized deep neural networks for fast and accurate inference, arXiv: 1904.02835
(2019).

40] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,

SqueezeNet: alexnet-level accuracy with 50x fewer parameters and < 0.5 MB
model size, arXiv: 1602.07360 (2016).

[41] X. Zhang , X. Zhou , M. Lin , J. Sun , ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices, in: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2018, pp. 6 84 8–6 856 .
42] N. Ma , X. Zhang , H.-T. Zheng , J. Sun , ShuffleNet v2: practical guidelines for effi-

cient CNN architecture design, in: Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 116–131 .

43] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, H. Adam, MobileNets: efficient convolutional neural networks for mo-
bile vision applications, arXiv: 1704.04861 (2017).

44] M. Sandler , A. Howard , M. Zhu , A. Zhmoginov , L.-C. Chen , MobileNetv2: in-
verted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520 .
45] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network,

arXiv: 1503.02531 (2015).

46] A. Romero, N. Ballas, S.E. Kahou, A. Chassang, C. Gatta, Y. Bengio, FitNets: hints
for thin deep nets, arXiv: 1412.6550 (2014).

[47] S. Zagoruyko, N. Komodakis, Paying more attention to attention: improv-
ing the performance of convolutional neural networks via attention transfer,

arXiv: 1612.03928 (2016).
48] J. Yim , D. Joo , J. Bae , J. Kim , A gift from knowledge distillation: fast optimiza-

tion, network minimization and transfer learning, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017, pp. 4133–4141 .
49] Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, J. Wang, Structured knowledge distillation

for semantic segmentation, arXiv: 1903.04197 (2019).
50] T. He, C. Shen, Z. Tian, D. Gong, C. Sun, Y. Yan, Knowledge adaptation for effi-

cient semantic segmentation, arXiv: 1903.04688 (2019).
[51] P. Singh, V.K. Verma, P. Rai, V.P. Namboodiri, HetConv: heterogeneous kernel-

based convolutions for deep CNNs, arXiv: 1903.04120 (2019).

52] Y. Chen, H. Fang, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, J. Feng, Drop
an octave: reducing spatial redundancy in convolutional neural networks with

octave convolution, arXiv: 1904.05049 (2019).
12
53] Z. Liu, M. Sun, T. Zhou, G. Huang, T. Darrell, Rethinking the value of network
pruning, arXiv: 1810.05270 (2018).

54] C. Szegedy , S. Ioffe , V. Vanhoucke , A .A . Alemi , Inception-v4, inception-resnet
and the impact of residual connections on learning, in: Thirty-First AAAI Con-

ference on Artificial Intelligence, 2017 .
55] L. Sifre , S. Mallat , Rigid-motion scattering for image classification, PhD thesis,

Ph. D. thesis 1 (2014) 3 .
56] J. Guo, Y. Li, W. Lin, Y. Chen, J. Li, Network decoupling: from regular to depth-

wise separable convolutions, arXiv: 1808.05517 (2018).

57] C. Szegedy , V. Vanhoucke , S. Ioffe , J. Shlens , Z. Wojna , Rethinking the inception
architecture for computer vision, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 2818–2826 .
58] Q.-F. Wang , F. Yin , C.-L. Liu , Handwritten Chinese text recognition by inte-

grating multiple contexts, IEEE Trans. Pattern Anal. Mach. Intell. 34 (8) (2012)
1469–1481 .

59] S. Wang , L. Chen , L. Xu , W. Fan , J. Sun , S. Naoi , Deep knowledge training and

heterogeneous CNN for handwritten Chinese text recognition, in: 2016 15th In-
ternational Conference on Frontiers in Handwriting Recognition (ICFHR), IEEE,

2016, pp. 84–89 .
60] Y.-C. Wu , F. Yin , C.-L. Liu , Improving handwritten Chinese text recognition us-

ing neural network language models and convolutional neural network shape
models, Pattern Recognit. 65 (2017) 251–264 .

61] R. Messina , J. Louradour , Segmentation-free handwritten Chinese text recog-

nition with LSTM-RNN, in: 2015 13th International Conference on Document
Analysis and Recognition (ICDAR), IEEE, 2015, pp. 171–175 .

62] Y.-C. Wu , F. Yin , Z. Chen , C.-L. Liu , Handwritten Chinese text recognition using
separable multi-dimensional recurrent neural network, in: 2017 14th IAPR In-

ternational Conference on Document Analysis and Recognition (ICDAR), vol. 1,
IEEE, 2017, pp. 79–84 .

63] T.-H. Su , T.-W. Zhang , D.-J. Guan , H.-J. Huang , Off-line recognition of realistic

Chinese handwriting using segmentation-free strategy, Pattern Recognit. 42 (1)
(2009) 167–182 .

64] M. Mohri , F. Pereira , M. Riley , Weighted finite-state transducers in speech
recognition, Comput. Speech Lang. 16 (1) (2002) 69–88 .

65] T.N. Sainath , B. Kingsbury , V. Sindhwani , E. Arisoy , B. Ramabhadran , Low-rank
matrix factorization for deep neural network training with high-dimensional

output targets, in: 2013 IEEE International Conference on Acoustics, Speech

and Signal Processing, IEEE, 2013, pp. 6655–6659 .
66] S. Katz , Estimation of probabilities from sparse data for the language model

component of a speech recognizer, IEEE Trans. Acoust. 35 (3) (1987) 400–401 .
67] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, A. Lerer, Automatic differentiation in PyTorch(2017).
68] M. Denil , B. Shakibi , L. Dinh , N. De Freitas , et al. , Predicting parameters in

deep learning, in: Advances in Neural Information Processing Systems, 2013,

pp. 2148–2156 .
69] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, E. Shel-

hamer, cuDNN: efficient primitives for deep learning, arXiv: 1410.0759 (2014).

Zi-Rui Wang received B.Eng. and Ph.D. degrees from the
Department of Electronic Engineering and Information

Science, University of Science and Technology of China

(USTC), in 2015 and 2020, respectively. His current re-
search area includes artificial intelligence, deep learning

and handwritten Chinese text recognition. Jun Du recei

Jun Du received B.Eng. and Ph.D. degrees from the De-

partment of Electronic Engineering and Information Sci-
ence, University of Science and Technology of China

(USTC), in 2004 and 2009, respectively. From 2004 to
2009, he was with the iFlytek Speech Lab of USTC. Dur-

ing the above period, he worked as an Intern twice for
9 months at Microsoft Research Asia (MSRA), Beijing.

In 2007, he also worked as a Research Assistant for 6
months in the Department of Computer Science at the

University of Hong Kong. From July 2009 to June 2010, he

worked at iFlytek Research on speech recognition. From

July 2010 to January 2013, he joined MSRA as an Associate

Researcher, working on handwriting recognition, OCR and
peech recognition. Since February 2013, he has been with the National Engineering

aboratory for Speech and Language Information Processing (NEL-SLIP) of USTC.

http://arxiv.org/abs/1405.3866
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0026
http://arxiv.org/abs/1511.06530
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0033
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1605.04711
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0038
http://arxiv.org/abs/1904.02835
http://arxiv.org/abs/1602.07360
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0042
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0044
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1612.03928
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0048
http://arxiv.org/abs/1903.04197
http://arxiv.org/abs/1903.04688
http://arxiv.org/abs/1903.04120
http://arxiv.org/abs/1904.05049
http://arxiv.org/abs/1810.05270
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0054
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0055
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0055
http://arxiv.org/abs/1808.05517
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0057
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0058
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0059
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0060
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0061
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0061
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0061
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0062
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0063
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0064
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0065
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0066
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0068
http://refhub.elsevier.com/S0031-3203(20)30525-2/sbref0068
http://arxiv.org/abs/1410.0759

	Joint architecture and knowledge distillation in CNN for Chinese text recognition
	1 Introduction
	2 Related work
	2.1 Acceleration and compression
	2.2 Offline HCTR

	3 Architecture and knowledge distillation
	3.1 Bottleneck feature
	3.2 Parsimonious convolution
	3.3 Knowledge distillation with multiple losses

	4 Experiments
	4.1 DCNN on CASIA
	4.2 Experiments on architecture distillation
	4.3 Experiments on architecture and knowledge distillation
	4.4 Experiments on CTW
	4.5 Experiments on MNIST

	5 Discussion and conclusion
	Declaration of Competing Interest
	Acknowledgment
	References

