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Abstract—Recently, an effective segmentation-free approach
via deep neural network based hidden Markov model (DNN-
HMM) was proposed and successfully applied to offline hand-
written Chinese text recognition. In this study, to further improve
the modeling capability, we adopt deep convolutional neural
networks (DCNN) to calculate the HMM state posteriors. First,
on the frame basis, the DCNN-HMM can automatically learn the
features from the raw image of the handwritten text line via the
convolutional architecture rather than the handcrafted gradient
features using in the DNN-HMM. Second, we examine several
important factors of DCNN to the recognition performance,
namely the kernel size, the number of blocks and convolutional
layers. We also improve the language modeling by using more text
data and high-order N-gram. Tested on ICDAR 2013 competition
task of CASIA-HWDB database, the proposed DCNN-HMM
could achieve a character error rate (CER) of 4.07%, yielding a
relative CER reduction of 30.8% over the DNN-HMM approach.
To the best of our knowledge, this is the best published result
of the segmentation-free approaches. Furthermore, we explain
why DCNN-HMM is more effective than DNN-HMM via the
visualization of feature learning and the error pattern analysis.

I. INTRODUCTION

With the new wave of artificial intelligence, handwritten

Chinese character recognition is becoming more and more

important in real applications, which has been intensively stud-

ied for many years [1], [2]. Due to the large vocabulary and

different writing styles, it is a challenging problem. In terms of

the task complexity, all the research efforts can be divided into

four categories [3], [4], namely online/offline isolated Chinese

character recognition, and online/offline handwritten Chinese

text recognition. Obviously, the offline handwritten Chinese

text recognition (OHCTR) is the most challenging task due to

the lack of trajectory information and the free writing style,

which is also the topic of this study.

For OHCTR, most existing techniques can be classified

into two classes: oversegmentation-based and segmentation-

free approaches. Oversegmentation-based approaches [5], [6],

[7] often need to explicitly segment text line into a sequence of

primitive image patches and then merge them to form a can-

didate lattice. Finally, character classification, linguistic and

geometric contexts are integrated to calculate the score for path

search. With the emergence of deep learning techniques [10],

the new progress has also been made for oversegmentation-

based approaches. Wang et al. [8] used positive and negative

samples to train the so called heterogeneous convolutional

neural network (CNN) [17] as character classifier. Wu et al.

[9] adopted three different CNN models to replace conven-

tional character classifier, over-segmentation and geometric

models respectively. which were combined with the neural

network language model (NNLM) under the general inte-

grated segmentation-and-recognition framework. In contrast

to the oversegmentation-based approaches, segmentation-free

approaches do not require the explicit segmentation for text

line. An early attempt in [11], the authors adopted the Gaussian

mixture model based hidden Markov model (GMM-HMM) for

the text line modeling. Messina et al. [12] successfully used

multidimensional long-short term memory recurrent neural

network (MDLSTM-RNN) [14] with connectionist temporal

classification (CTC) [13] for OHCTR. Another recent work

[15] utilized a CNN followed by a LSTM neural network

under the HMM framework to obtain a significant improve-

ment when compared with LSTM-HMM model. In [16], the

authors proposed the deep neural network based HMM (DNN-

HMM) for text recognition and three key issues, namely

feature extraction, character modeling, and language modeling

are comprehensively investigated under the general Bayesian

framework. And this approach achieved promising results on

the ICDAR 2013 competition [4].

On the other hand, recently a great progress has been made

to design the new architectures of CNN in computer vision

area [18], [19], [20], [21], [22]. In [21], the authors used

small 3×3 convolution filters throughout the whole net and

the depth of the net could be designed as 19 layers. Szegedy

et al. [20] proposed the inception module to increase both

the depth and width of the net without extra computation

budget. He et al. [22] used a series of shortcut connections

to combine the different layers of the net, which could lead to

a very deep model. All these recent works indicate that deeper

architectures could yield better recognition performance.

Based on the above discussion, in this study, we propose

a segmentation-free approach via deep convolution neural

network based HMM (DCNN-HMM) to improve the recently

proposed DNN-HMM approach [16]. First, on the frame basis,

the DCNN-HMM can automatically learn the features from
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Fig. 1: A block diagram of the proposed system.

the raw image of the handwritten text line via the deep

convolutional architecture rather than the handcrafted gradient

features using in the DNN-HMM. Second, we examine several

important factors of DCNN to the recognition performance,

namely the kernel size, the number of blocks and convolutional

layers. We also improve the language modeling by using more

text data and high-order N-gram. Tested on ICDAR 2013

competition task of CASIA-HWDB database, the proposed

DCNN-HMM could achieve a character error rate (CER) of

4.07%, yielding a relative CER reduction of 30.8% over the

DNN-HMM approach. To the best of our knowledge, this is

the best published result of the segmentation-free approaches.

Furthermore, we explain why DCNN-HMM is more effective

than DNN-HMM via the visualization of feature learning and

the error pattern analysis.

The remainder of the paper is organized as follows. In

Section II, we first give an overview of the system frame-

work. In Section III and IV, we describe DCNN-HMM based

character modeling and N-gram based language modeling.

Then we report experimental results and analysis in Section V.

Finally we summarize our work and discuss the future work

in Section VI.

II. SYSTEM OVERVIEW

The proposed framework aims to search the optimal char-

acter sequence C for a given extracted feature sequence X of

a text line, which can be formulated according to the Bayesian

decision theory as follows:

Ĉ = argmax
C

p(C | X) = argmax
C

p(X | C)P (C) (1)

where p(X | C) is the conditional probability of X given C
which is named as the character model. Meanwhile P (C) is

the prior probability of C which is named as the language

model.

As one implementation of this Bayesian framework, we use

an HMM [32] to model one character class. Accordingly a

text line is modeled by a sequence of HMMs. An HMM has

a set of states and each frame is supposed to be assigned

to one underlying state. For each state, an output distribution

describes the statistical property of the observed frame. With

HMMs, we rewrite the p(X | C) in Eq. (1):

p(X | C) = ΣS [p(X, S | C)]

= ΣS

[
π(s0)

T∏
t=1

ast−1stp(xt|st)
]

(2)

= ΣS

[
π(s0)

T∏
t=1

ast−1st

p(st|xt)p(xt)

p(st)

]
(3)

S = {s0, s1, ..., sT } is one underlying state sequence of C to

represent X. π(s0) is the prior probability of the initial state

s0 and ast−1st is the transition probability from state st−1

at the (t − 1)th frame to state st at the tth frame. p(xt|st)
is the emission probability, which can be directly calculated

(e.g., GMM-HMM) or indirectly obtained via the calculation

of state posterior probability p(st|xt) (e.g. DNN-HMM).

The block diagram of proposed system is illustrated in

Fig. 1. To make a fair comparison with the DNN-HMM

approach in [16], we still use the state-level labels via the

GMM-HMM system for each frame. Namely, the processing

within the dotted box of Fig. 1 is the same as [16]. As for

the preprocess module of DCNN-HMM, first the height of

the text line is estimated, followed by the size normalization

while keeping the aspect ratio. Then the margin is extended to

accommodate the text area for all the sliding windows in the

next step. Along the centre line, each frame, represented by a

40 × 80 sliding window from the left to right, with a frame

shift of 3 pixels, is scanned across the text line. Moreover each

frame is normalized to 40 × 40 by the bilinear interpolation.

Finally, each frame is extended to 48 × 48 by adding the

margin, which is fed to DCNN model. With the frame-level

label of each frame, the DCNN model is trained using the

cross-entropy (CE) criterion. In the recognition stage, the

DCNN is adopted to calculate the state posterior probability

p(st|xt) in Eq. (3) and the final recognition results can be

generated via a weighted finite-state transducer (WFST) [38],

[39] based decoder by integrating both DCNN-HMM based

character model and N-gram based language model (LM). The

details of character and language modeling are elaborated in

the following sections.

III. DCNN-HMM BASED CHARACTER MODELING

The conventional convolutional neural network [17] suc-

cessively consists of stacked convolutional layers optionally

followed by spatial pooling, one or more fully-connected

layers and a softmax layer. For the convolutional and the

pooling layers, each layer of them is a three-dimensional

tensor organized by a set of planes called feature maps while

the fully-connected layer and the softmax layer are the same

as the conventional DNN. Inspired by the locally-sensitive,
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Fig. 2: The architecture of DCNN-HMM.

orientation-selective neurons in the visual system of cats [35],

each unit in a feature map is constrained to connect a local

region in the previous layer, which is called the local receptive

field. Two contiguous local receptive fields are usually s pixels

(referred as stride) shifted along a certain direction. All units

in the same feature map of a convolutional layer share a set of

weights, each computing a dot product between its weights and

local receptive field in the previous layer and then followed

by nonlinear activation functions (e.g., rectifier). Meanwhile

the units in a pooling layer perform a spatial average or

max operation for their local receptive field to reduce the

spatial resolution and the noise interferences. Accordingly, the

key information for identifying the pattern is retained. We

formalize the convolution operation in a convolutional layer

as:

Yi,j,k =
∑
m,n,l

X(i−1)×s+m,(j−1)×s+n,lKm,n,k,l (4)

where Xi,j,k is the value of the input unit in feature map k
at row i and column j while Yi,j,k is corresponding to the

output unit. Km,n,k,l is the connection weight between a unit

in feature map k of the output and a unit in channel l of the

input, with an offset of m rows and n columns between the

output unit and the input unit. Similarly, the pooling operation

can be conducted by using a max operation in this study.

The DCNN-HMM in this work, illustrated in Fig. 2, is

designed with the following innovations. First, we investigate

on creating a DCNN architecture suitable for the specific

OHCTR task, which is experimentally verified to be more

effective than the widely used standard CNN models [21],

[22] for image recognition tasks. Second, the proposed DCNN

can model the character with a high-resolution by using

many hidden states in the HMM framework, which is the

key to achieving the promising recognition results. In our

experiments, the size of DCNN output layer is close to 20,000

corresponding to the total number of states, which should

be the largest among the existing publications for OHCTR,

to the best of our knowledge. Finally, in comparison to the

DNN-HMM approach in [16], the modeling capability is

significantly improved by using deep convolutional layers to

automatically learn more useful information from the input.

IV. N-GRAM BASED LANGUAGE MODELING

The language modeling is quite an effective way to improve

the recognition accuracy by incorporating more context infor-

mation during the decoding. Suppose the sequence C contains

m characters. P (C) in Eq. (1) can be written as:

p(C) =
m∏
i=1

p(ci|hi−1
1 ) (5)

where hi−1
1 = (c1, ..., ci−1). Statistical N-gram LM is adopted

in this study as an approximation of Eq. (5), where only n−1
history characters of ci in hi−1

1 are considered:

p(C) ≈
m∏
i=1

p(ci|hi−1
i−n+1) (6)

where n is the order of N-gram LM. To calculate those

conditional probabilities in Eq. (6) and alleviate the data

sparse problem, back-off n-gram language models (BLMs)

[42] are widely used. Specifically, we adopt a conventional

BLM approach with Katz smoothing [43]. The SRILM toolkit

[36] is employed to generate Katz n-gram LM and then used

to generate the WFST-based decoder [38], [39] by Kaldi [37].

V. EXPERIMENTS

A. Experimental setup

The experiments are conducted on the public CASIA-

HWDB database [40]. The training set consists of HWDB1.0,

HWDB1.1, HWDB2.0, HWDB2.1, and HWDB2.2 datasets.

HWDB1.0 and HWDB1.1 are offline isolated handwritten

Chinese character datasets while HWDB2.0-HWDB2.2 are

offline handwritten Chinese text datasets. Almost all the data

samples of these datasets are used for training. In total, there

are 3,980 classes (Chinese characters, symbols, garbage) with

4,091,599 samples. Here “garbage” classes represent the short

blank model between characters and the long blank model at

the beginning or end of the text line. As for the evaluation set,

the ICDAR 2013 competition set with 60 writers is adopted

[4], which consists of 3432 text lines.

Five DCNN architectures are investigated in Table I. Similar

to [21] , we design CNN1-5 to evaluate the effect of receptive

field size, network width and depth. For CNN1, there are 7

weights layers, including 5 convolutional (conv) and 2 fully

connected (FC) layers. And the number of channels starts from

100 in the first conv layer to 400 in the last conv layer. For

CNN5, there are 16 weights layers (13 conv and 2 FC layers)

and the number of channel can reach to 700 in the last conv

layer. In CNN1, CNN3-5, the image patch of each frame is

passed through a stack of 3×3 conv layers. After the last

max pooling layer, a 1×1 conv layer is used to increase the
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TABLE I: Five DCNN architectures. The convolutional layer

are denoted as “conv(receptive field size)-(feature map size)”.

CNN Configuration

CNN1 CNN2 CNN3 CNN4 CNN5

7 weights layers 10 weights layers 10 weights layers 13weights layers 16 weights layers

Input 48 × 48 Gray Image

conv3-100 conv2-100 conv3-100 conv3-100 conv3-100

maxpool

conv3-200 Pa1

conv2-100 conv3-100 Pa1 conv3-100 Pa1 conv3-100 Pa1

conv2-200 conv3-200 Pa1 conv3-200 Pa1 conv3-200 Pa1

conv3-300 Pa1 conv3-300 Pa1

conv3-300 Pa1

maxpool maxpool Pa1 maxpool maxpool maxpool

conv3-300 Pa1

conv2-200 conv3-200 Pa1 conv3-300 Pa1 conv3-300 Pa1

conv2-300 conv3-300 Pa1 conv3-400 Pa1 conv3-400 Pa1

conv3-500 Pa1 conv3-500 Pa1

conv3-500 Pa1

maxpool maxpool Pa1 maxpool maxpool maxpool

conv3-400 Pa1

conv2-300 conv3-300 Pa1 conv3-500 Pa1 conv3-500 Pa1

conv2-400 conv3-400 Pa1 conv3-600 Pa1 conv3-600 Pa1

conv3-700 Pa1 conv3-700 Pa1

conv3-700 Pa1

maxpool maxpool Pa1 maxpool maxpool maxpool

conv1-400 conv1-400 conv1-400 conv1-700 conv1-700

FC500

FC19900

Soft-max 19900

nonlinearity of the net without more computation and memory

compared to other larger receptive fields. Although 3×3 conv

layer has proven to be very effective [21], [29], [9], we still

design CNN2 with a stack of 2×2 conv layers to study the

effect of smaller receptive field. All conv layers in Table I, are

followed by the rectification non-linearity (ReLU [18]) and the

stride is 1 while the stride of all max pooling layers is 2 with

3×3 pixel window. For some conv and max pooling layers,

we use the padding operation (denoted as “Pa1” in Table I) to

preserve the spatial resolution. Because each character class

is modeled by a left-to-right HMM with 5 states, the output

size of DCNN is 3, 980 × 5 = 19, 900 corresponding to the

number of states of all classes. For training the DCNN model,

the mini-batch size is 400, while the momentum is 0.9 and the

weight decay is 0.0001. 1.8 million iterations are conducted.

The learning rate is initially set to 0.01 and then decreased

by 0.92 after every 10,000 iterations. The DCNN model is

initialized with Xavier method [44] using Caffe toolkit [41].

As for LM, in addition to the transcriptions in the CASIA

database, other corpora are used as supplementary sources,

including 208MB texts of Guangming Daily between 1994 and

1998, 178MB texts of People’s Daily 2000-2004 and 2011,

129MB texts of other newspapers, and 93MB texts of Sina

News. A 4-gram LM with Katz smoothing was trained by the

SRILM toolkit with the default parameters.

B. Recognition performance

TABLE II: The CER and model size comparison of the

different NN architectures under the same HMM framework

on the ICDAR 2013 competition set.

System CNN1 CNN2 CNN3 CNN4 CNN5 DNN
CER 4.88% 4.87% 4.22% 4.09% 4.07% 5.88%

Model Size 49MB 47MB 53MB 96MB 107MB 238MB

Table II lists the CER and model size comparison of

different NN architectures under the same HMM framework

on the ICDAR 2013 competition set. The DNN structure was

the same as in [16]. Obviously, all CNN models significantly

outperformed the DNN model in terms of both CER and model

size. The CER of DNN model was 5.88% while the best CNN5

model could achieve a promising CER of 4.07%, yielding a

relative CER reduction of 30.8% over the DNN model. And

the model size of CNN5 was 107 mega bytes (MB), which was

less than half of that for DNN model. From CNN1 to CNN5,

the CER was significantly reduced (from 4.88% to 4.07%)

and saturated at CNN5 with the increase of both depth and

width. By comparing CNN2 with CNN3, we could conclude

that 3×3 receptive field is the smallest size to cover the notions

of left, right, up and down and guarantee a good recognition

performance for the OHCTR task.

TABLE III: The CER comparison of the different approaches

on the ICDAR 2013 competition set.

System CER
CNN5-HMM (Our best system) 4.07%

CNN + LSTM [15] 16.50%
MDLSTM + CTC [12] 10.6%
Heterogeneous CNN [8] 5.88%

CNN shape models + NNLM [9] 3.80%

Table III shows a CER comparison of the best CNN5-HMM

system with other approaches on the ICDAR 2013 competition

set. Our approach is similar to [15] in terms of using HMM

framework. However our recognition result was much better

with about 12% absolute CER reduction, which might be

explained as: 1) we used a deeper CNN architecture (16 weight

layers vs. 5 weight layers); 2) we achieved a higher resolution

for modeling the posterior probability of hidden states by using

more output nodes (19,900 vs. 7,356); 3) actually we adopted a

lower order N-gram LM (4-gram vs. 10-gram); 4) other details,

such as the preprocessing, GMM-HMM design for alignment,

different text data for language modeling, etc. In comparison

to the method using MDLSTM+CTC [12], our approach could

yield a relative CER reduction of 61.6%, demonstrating that

the higher resolution HMM model was much more effec-

tive than CTC technique (similar to 1-state HMM model)

for modeling the handwritten text line. To the best of our

knowledge, the proposed CNN5-HMM should achieve the best

published result of segmentation-free approaches. As for the

comparison with over-segmentation approaches, CNN5-HMM

outperformed the recent work using heterogeneous CNN [8]

and slightly underperformed the approach in [9]. However,

three different CNN models should be used in [9] to design the

character classifier, over-segmentation and geometric models

while our proposed approach only adopted one CNN model.

C. Result Analysis

To give readers a better understanding why the DCNN-

HMM model could be more effective than DNN-HMM model,

an example is given in Fig. 3, where DNN-HMM system

generates one substitution error (marked red) while CNN5-

HMM system produces the correct results as the ground truth.
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Fig. 3: The recognition results comparison of an example

between DNN-HMM and CNN5-HMM.

We conduct the result analysis from two aspects. First, we

analyze five selected kernel outputs (with kernel ID in Fig. 4)

of the first convolutional layer of CNN5. Based on the visu-

alization results, each kernel processed the input image patch

from different aspects, e.g., the contrast enhancement, stroke

deletion on a certain direction, smoothing, sharpening, and

the profile extraction. All these kernels working together could

comprehensively extract the useful information and remove the

interferences, which made CNN5-HMM more powerful than

DNN-HMM as a recognizer. Second, in Fig. 5, we analyze the

output layer of DNN and CNN5, namely the state posterior

probability of the frames for the reference character class

which is misclassified as the character with the red color by

DNN-HMM in Fig. 3. The posterior probability of each frame

in Fig. 5 was the maximum value among all the states of the

reference character class. It was clear that CNN5 could achieve

much higher posterior probability of the reference character

class than DNN among the central frames of the handwritten

character (from 10 to 20), which implied that CNN5 could

better predict the reference character than DNN.

VI. CONCLUSION

In this study, we investigate on the offline handwritten

Chinese text recognition by using the DCNN-HMM, yielding

significant performance improvements over the conventional

DNN-HMM. As for the future work, we aim to further improve

the DCNN-HMM with other techniques, e.g., discriminative

training.
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