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Abstract—Recently, we propose an iterative mask estimation
(IME) approach to improve the conventional complex Gaus-
sian mixture model (CGMM) based beamforming and yield
the best multi-channel speech recognition accuracy in CHiME-
4 challenge. In this study, we focus on multi-channel speech
enhancement and present a novel approach via long short-term
memory (LSTM) based IME and post-processing. First, an LSTM
is adopted to estimate the ideal ratio mask (IRM) to improve the
mask estimated by a CGMM. Then, the improved mask is used to
derive a beamformer. Finally, the IME-based beamformed speech
is processed by the LSTM-based regression model. Experiments
on the CHiME-4 simulation data show that LSTM-based IME
approach can improve the PESQ performance comparing to
unprocessed signals, with relative PESQ improvements of 17.33%
and 13.89%, and the LSTM-based post-processing can further
yield performance gains based on the IME approach, with
relative PESQ improvements of 11.42% and 10.00% for 6-
channel and 2-channel cases, respectively.

I. INSTRUCTIONS

Multi-channel enhancement in distant-talking scenarios
based on the use of microphone arrays has become an im-
portant part of everyday life with the emergence of speech-
enabled applications on multi-microphone portable devices
due to its convenience and flexibility. However, the speech
signals recorded by distant microphones are often corrupt-
ed by reverberation and background noise, leading to con-
siderable degradation in speech quality, particularly at low
signal-to-noise ratios (SNRs). Speech enhancement algorithms
that reduce noise without much damaging the target speech
are therefore desired for improving the speech quality. For
multi-channel speech enhancement, representative algorithms
in this category include multi-channel Wiener filtering [1],
blind source separation [2], and beamforming [3], [4]. And
beamforming is a popular approach,for example, the minimum
variance distortionless response (MVDR) beamformer. A key
to achieving a high-quality beamformer is how to construct
a steering vector that represents the acoustic propagation [5].
Conventionally, some a priori knowledge is used to construct
the steering vector, e.g., the geometry of the microphone
array and the direction of arrival (DOA) information. But its
robustness often becomes a problem in real-life environments
where the acoustic propagation information is not known and

difficult to estimate accurately. In [4], a method was developed
to steer a beamformer using the time-frequency (T-F) masks
estimated by a complex Gaussian mixture model (CGMM),
which was demonstrated to be beneficial to ASR in real-life
scenarios.

Deep learning techniques are becoming increasingly popular
in many speech research areas, notably ASR [6]. In [7], [8],
deep neural networks (DNNs) were utilized for single-channel
enhancement and shown to be superior to some early speech
enhancement algorithms in improving some objective mea-
sures, such as short-time objective intelligibility (STOI) [9]
and segmental SNR (SSNR, in dB) [10]. Different neural
network architectures have been adopted in single-channel
speech enhancement for ASR, and they have demonstrated
a significant increase in ASR performance [11], [12], [13].
The input features of these approaches are magnitude or log-
magnitude spectra in the short-time-Fourier-transform (STFT)
domain [14]. The ideal ratio mask (IRM) [15] has also been
shown to obtain a good speech enhancement performance.

In this paper, we focus on the IME approach [16] to
beamforming by leveraging upon information obtained from
long short-term memory (LSTM) based ideal ratio mask (IRM)
estimation, and single channel post-processing based on the
LSTM-based regression model for multi-channel speech en-
hancement. First, a deep learning approach is used to estimate
signal statistics, e.g., IRM, in order to improve the mask
estimated by a complex Gaussian mixture model (CGMM).
Then, the improved mask is used to derive a beamformer.
Finally, the IME-based beamformed speech is processed by
the LSTM-based single channel regression model.

The remainder of this paper is organized as follows. In Sec-
tion II, we present an overview of the system. In Section III,
we present a detailed description of our proposed IME ap-
proach and LSTM-based post-processing. Section IV presents
the enhancement performance of our proposed approach on
the CHiME-4 Challenge. Finally, we summarize our findings
in Section VI.
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II. THE PROPOSED FRAMEWORK

A block diagram of the proposed deep learning framework
is shown in Fig. 1. “LSTM-IRM” and “LSTM-DM” denote the
IRM estimation and feature direct mapping using the LSTM
regression model, respectively. For the IRM estimation, the
LSTM-IRM model is trained using the log-power spectral
(LPS) features of training data as input features and the IRM
as reference. And the LSTM-DM is trained using the LPS
features of training data as input features and the clean features
as reference. The LPS features offering perceptually relevant
parameters are adopted [10]. IRM is used to represent the
speech presence probability at each time-frequency point in
speech separation [17].

The beamformer process of test data is divided into four
successive steps, namely, beamforming initialization, LSTM-
based signal statistics (IRM) estimation, beamforming, LSTM-
based post-processing. First, beamformed speech from random
channel data is initialized and a T-F mask of test speech
is obtained by online CGMM-based beamforming. Then, the
IRM estimated by a well-trained LSTM-IRM model is used
to improve the initial mask where the LSTM-IRM model uses
the LPS features of the initial beamformed speech. Next, the
improved mask is adopted to steer the beamformer, thereby
obtaining the beamformed speech. Finally, the beamformered
speech is processed by the LSTM-DM model. The detail is
presented in the following subsections.

Fig. 1. A block diagram of the proposed approach.

III. IME-BASED BEAMFORMER AND LSTM-BASED
POST-PROCESSING

We use minimum variance distortionless response(MVDR)
beamformer which maximizes the signal-to-noise ratio (SNR)

of the beamformer output in each frequency bin, leading to
the beamformer coefficients:

w(k) =
R−1

nn(k)g(k)

gH(k)R−1
nn(k)g(k)

. (1)

where g(k) is the signal propagation vector, which is in the
same form as the so-called steering vector in the literature of
array beamforming [5]; Rxx(k) and Rnn(k) are the spatial
correlation matrix of target and noise, respectively. In [4],
an approach using a speech spectral model based on CGMM
was proposed to estimate the time-frequency masks, denoted
as MCGMM(k, l). The parameters of the CGMM are full-rank
spatial correlation matrices, which provide some flexibility to
address the spatial fluctuation of the steering vector.
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Fig. 2. The architecture of LSTM-IRM and LSTM-DM models.

A. Architecture of LSTM-IRM and LSTM-DM models
The LSTM architecture is shown in Fig. 2. The input layer

of the LSTM is a 1799-dimensional vector of noisy LPS
features with 7 frame expansion and 257 frequency bins. Each
node of output layer adopts a sigmoid activation function. The
two hidden layers are 1024 cells for each intend to leverage
upon the memory structure that is capable of capturing the
temporal constraints. The output layer of the LSTM is a
257-dimensional vector of the clean LPS features for LSTM-
DM model or IRM features for LSTM-IRM model. The key
components, namely, memory cell state cl, input gate il, forget
gate f l, and output gate ol, are shown in Fig. 2. With this
architecture, the network can determine what information to
store, update, discard, and output.

To train the LSTM-IRM model, supervised fine-tuning is
used to minimize the mean squared error (MSE) between
the LSTM-IRM output IRM, denoted as MNN(k, l) and the
reference IRM, denoted as Mref(k, l), which is defined as

ENN =
∑
k

∑
l

[MNN(k, l)−Mref(k, l)]
2
. (2)
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And to train the LSTM-DM model, supervised fine-tuning is
used to minimize the mean squared error (MSE) between the
LSTM-DM output LPS features, denoted as LNN(k, l) and the
reference LPS features denoted as Lref(k, l), which is defined
as

ENN =
∑
k

∑
l

[LNN(k, l)− Lref(k, l)]
2
. (3)

B. LSTM-IRM based IME

Acoustic context information along both the time axis (with
multiple neighboring frames) and frequency axis (with full
frequency bins) can be fully exploited by the LSTM to obtain a
good mask estimate in adverse environments, which is strongly
complementary with the conventional CGMM-based approach
to retain robustness. The estimated IRMs are restricted to be
in the range between zero and one, which can be directly
used to represent the speech presence probability. And the
estimated MNN(k, l) is combined with MCGMM(k, l) to yield
an improved mask MI(k, l), i.e.,

MI(k, l) =
√
MCGMM(k, l)MNN(k, l). (4)

C. LSTM-DM based post-processing

In this section, we discuss the LSTM-based post-processing
for single channel enhancement. For the beamformer, the aim
of the approach is to improve the SNR without destroying
the target speech, and it is hard to completely eliminate the
noise. While for the LSTM-based regression model, it can
eliminate the noise even at low SNR, but the target speech
maybe destroyed. We proposed a post-processing based on
the LSTM-based regression model. In order to further improve
the enhancement performance, the IME-based beamformered
speech is processing by the LSTM-based single channel re-
gression model.

Fig. 3 plots the spectrograms of a processed utterance using
different enhancement approaches from the test set of simulat-
ed data. Figures 3 (a) and (b) present the spectrograms of the
original speech from clean speech and channel 5, respectively.
Figures 3 (c) and (d) present the spectrograms of the speech
processed by the LSTM-DM model and IME-based approach.
Although there still exits some noise in Fig. 3 (d), the approach
obviously improve the SNRs and the target speech is almost
not destroyed. Fig. 3 (e) presents the spectrogram of the
IME-based beamformered speech processed by LSTM-based
regression model. Comparing to Fig. 3 (c), we can find that
the post-processing based on the beamformered speech can
almost eliminate the noise, which can further improve the
enhancement performance.

IV. EXPERIMENTAL EVALUATION

Now, we present the experimental evaluation of our frame-
work using the CHiME-4 data [18], which was designed to
study real-world scenarios where a person is talking to a
mobile tablet device equipped with 6 microphones in a variety
of adverse environments. Four conditions were selected: café
(CAF), street junction (STR), public transport (BUS), and

Fig. 3. The spectrograms using different enhancement approaches.

pedestrian area (PED). CHiME-4 offers three tasks (1-channel,
2-channel, and 6-channel) with different testing scenarios. In
this paper, we focus on the 2-channel and 6-channel cases
to make the paper concise. And we construct the simulated
test data by mixing clean utterances with environmental noise
recordings using the techniques described in [19], and each
environment has 40 utterances.

We use the LSTM-based regression model for IRM estima-
tion (LSTM-IRM) and LPS features direct mapping (LSTM-
DM). For the LSTM fine-tuning, the learning rate is set to
0.001 for 50 epochs, and the mini-batch size is set to 128.
The architecture of LSTM is 1799-1024-1024-257, with 11
frames of LPS features for input layer. And output layer is one
frame of clean LPS features or IRM for LSTM-DM or LSTM-
IRM, respectively. The training data of the LSTM-IRM model
is the channel 5 training data provided by the official (about
18 hours), and the training data of the LSTM-DM model is
constructed by mixing clean utterances with environmental
noise recordings using the techniques described in [19] (about
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ENHANCEMENT METHODS

FOR THREE TRACKS.

Track Methods Measure BUS CAF PED STR AVG

1ch
CH5 PESQ 1.82 1.72 2.17 1.74 1.86

STOI 0.78 0.83 0.79 0.82 0.81
+PP PESQ 2.16 2.12 2.46 2.28 2.26

STOI 0.83 0.82 0.81 0.84 0.83

2ch
IME PESQ 2.07 1.98 2.43 2.17 2.16

STOI 0.84 0.85 0.85 0.89 0.85
+PP PESQ 2.39 2.25 2.56 2.41 2.40

STOI 0.86 0.84 0.82 0.83 0.83

6ch
IME PESQ 2.23 2.12 2.52 2.16 2.25

STOI 0.86 0.91 0.85 0.88 0.88
+PP PESQ 2.48 2.48 2.67 2.52 2.54

STOI 0.87 0.87 0.81 0.84 0.86

36 hours).
Table I presents the performance comparison of different

enhancement methods for 1ch, 2ch, and 6ch tracks. First, for
1ch track, “CH5” and “+PP” denote the original speech from
channel 5 and the enhancement speech by the post-processing
with the LSTM-DM model. We can find that the original
speech from channel 5 processed by LSTM-based regression
model can improve the performance, with a relative PESQ
improvement of 17.70% across all test sets. Second, for 6ch
track, Table I, “IME” denotes the IME-based beamformer.
We can observe that although IME-based approach achieves a
similar PESQ performance to the single-channel LSTM-DM
approach (“+PP” in 1ch), the significant improvement of the
STOI performance is yielded (from 0.83 to 0.86 in average).
Furthermore, the LSTM-DM based post-processing (“+PP” in
6ch) can achieve an additional PESQ improvement of 11.42%
over the IME approach across all test sets, which demonstrates
the effectiveness of LSTM-based post-processing. For 2ch
track, the similar observation to 6ch track could be made,
namely with a relative PESQ improvement of 13.89% from
“CH5” to “IME”, and with a relative PESQ improvement
of 10.00% from “IME” to “+PP”. Finally, for both 2ch and
6ch cases, IME with post-processing generates the best PESQ
(speech quality) while IME achieves the best STOI (speech
intelligibility).
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VI. CONCLUSION

In this paper, we have proposed IME approach and post-
processing based on LSTM regression model. Although there
still exits some noise in IME-based beamformered speech, the
approach obviously improve the SNRs and the target speech

is almost not destroyed. And the LSTM-based postprocessing
can almost eliminate the noise, which can further improve the
enhancement performance.
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