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Abstract—Recently, deep neural network (DNN) based speech
dereverberation becomes popular with a standard minimum
mean squared error (MMSE) criterion for learning the parame-
ters. In this study, a probabilistic learning framework to estimate
the DNN parameters for single-channel speech dereverberation is
proposed. First, the statistical analysis shows that the prediction
error vector at the DNN output well follows a unimodal density
for each log-power spectral component. Accordingly, we present a
maximum likelihood (ML) approach to DNN parameter learning
by charactering the prediction error vector as a multivariate
Gaussian density with a zero mean vector and an unknown co-
variance matrix. Our experiments demonstrate that the proposed
ML-based DNN learning can achieve a better generalization
capability than MMSE-based DNN learning. And all the object
measures of speech quality and intelligibility are consistently
improved.

I. INTRODUCTION

Reverberation is the collection of reflected sounds from
the surfaces in an enclosure like an auditorium [1]. Although
appropriate reverberation can compensate the inverse square
law drop-off of sound intensity in the enclosure, excessive
reverberation can make the sounds run together with the
loss of articulation, muddy and garbled effects. As a result,
reverberation often seriously degrades speech quality and
intelligibility, causing significant performance degradation in
automatic speech recognition (ASR) [2] and speaker identi-
fication systems [3], [4]. Therefore, speech dereverberation
becomes one of the main tasks of speech signal processing.

Many dereverberation techniques have been proposed in the
past. Inverse filtering [5] is one of the commonly used single-
channel speech dereverberation techniques. The dereverberated
signal is estimated by convolving the reverberant signal with
the inverse filter. However, in many situations, the inverse filter
cannot be directly determined or accurately estimated. Further-
more, this approach assumes that the room impulse response
(RIR) function is minimum-phase which is not always satisfied
in real practice [6]. Wu and Wang [7] utilized a two-stage
approach including inverse filtering and spectral subtraction to
deal with early reverberation and late reverberation separately,
which relies on an accurate estimate of the inverse filter in one
microphone scenarios. The inverse filtering is only effective in
a short reverberation time (RT60) range. Other studies dealt
with dereverberation by exploiting the properties of speech
such as modulation spectrum [8], homomorphic transformation
[9] and other harmonic structures [10], [11], [12].

Recently, deep neural networks (DNNs) [13], [14] have been
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utilized in many speech processing areas, such as speech en-
hancement [15], [16], source separation [17], [18] and speech
recognization [19], [20], which creates a new direction of
single-channel dereverberation. Han et al. [21] also proposed
the supervised learning approach based on DNN to perform
speech dereverberation. They utilized DNN to learn a spectral
mapping from corrupted speech to clean speech for dereverber-
ation and denoising. Wu et al. [22] proposed a reverberation-
time-aware DNN-based speech dereverberation framework to
handle a wide range of reverberation times. They adopted a
linear output layer, globally normalized the target features into
zero mean and unit variance, and then investigated the effects
of frame shift and acoustic context sizes on the dereverberated
speech quality using DNN at different RT60s.

However, the objective function commonly used in DNN-
based regressive tasks is mean squared error, making a strong
assumption that all the feature components are equivalent. In
this paper, instead of the conventional minimum mean squared
error (MMSE) criterion for DNN (MMSE-DNN), we explore
a maximum likelihood (ML) solution within the probabilistic
learning framework to optimize DNN parameters with the
assumption that the prediction error vector of the regression
DNN follows a multivariate Gaussian density. Accordingly, a
training procedure of ML-based DNN (ML-DNN) is designed
to update both DNN parameters and the covariance matrix of
Gaussian density alternatively. We need to emphasize that the
MMSE-DNN approach could be considered as a special case
of the proposed ML-DNN approach with the assumption that
the covariance matric is an identity matric. The evaluation
on the Wall Street Journal (WSJO) corpus shows that the
proposed ML-DNN approach achieves a significantly better
performance than the conventional MMSE-DNN approach in
the dereverberation task. Moreover, the ML-DNN approach
can also achieve a better generalization capability.

II. THE PROPOSED ML-DNN APPROACH

In this study, we redefine the objective function in the
probabilistic framework and adopt the maximum likelihood
estimation for the parameter learning in order to further im-
prove the generalization capability of the conventional MMSE
optimization for the regression DNN, as shown in Fig. 1.

The input of DNN is the (27+1)D-dimensional log-power
spectral (LPS) feature vector of reverberant speech with an
acoustic context of 27+1 neighbouring frames to consider
acoustic context information. The output of DNN refers to
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the D-dimensional log-power spectral (LPS) feature vector
corresponding to the anechoic speech. The sigmoidal hidden
units and linear output units are adopted. We assume that the
DNN output vector with the input vector w(”) and the DNN
parameter set W at sample index n is ™ (z, W) while the
corresponding reference vector is y(™). The objective function
in conventional MMSE criterion is defined as:

JW)=—
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where N represents the training set size. In the proposed ML-
based DNN, the prediction error vector e(™) could be defined
as:

e™ =y _ @(n)(w(n), W) )

which is assumed to follow a multivariate Gaussian density
with a D-dimensional zero mean vector and a D x D covari-
ance matrix V:
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If the reference vector is also a random vector, then (3) is
equivalent to:

ply™ |2 W V) = N(y™ | g™ (2 W), V) @)
which implies that the conditional distribution of g™
given (") with the parameter set (W, V) is unimodal.
Given a training set with N data pairs (X,Y) =
{(z™ y™)|n =1,2,..N} and making the assumption that
these data pairs are drawn independently from the distribution
in (4), we can define the likelihood function as:

N
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where the parameter set (W, V') is to be optimized. Accord-
ingly, the log-likelihood function can be written as:
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We adopt maximum likelihood criterion to alternatively opti-
mize W and V . To maximize (6) with respect to W , it is
equivalent to minimizing the following error function:

E(W) =
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Then the back-propagation procedure with a stochastic gradi-
ent descent method is used to optimize W in the mini-batch
mode of M sample frames.
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Fig. 1. The ML-DNN architecture for speech dereverberation.

Alternatively, we can also maximize (6) with respect to V'
. The update formula can be derived as:
5@, W)

N
-y
- ®)

To avoid the problem that the total number of parameters in
the covariance matric may be very large, we use the diagonal
covariance matrix in this study. The whole training procedure
is summarized as Algorithm 1.

2™ W))(y(") _

Algorithm 1 Procedure of ML-DNN training
Step 1: Initialization

Initialize the DNN parameter set W . The covariance matrix
V is set to an identity matrix.
Step 2: Fix V and update W

By minimizing (7) with N training sample pairs, the

back-propagation procedure with a stochastic gradient descent
method is used to update W in the mini-batch mode of M
sample frames.
Step 3: Fix W and update V'

Update V via (8).
Step 4: Go to Step 2 for L epochs

We should notice that the conventional MMSE-DNN is a
special case of ML-DNN where the covariance matrix V in
(7) is always an identity matrix, namely making a strong
assumption that all the LPS components are with equivalent
variances. This is the reason why MMSE optimization leads
to a poor generalization capability.
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III. STATISTICAL ANALYSIS ON PREDICTION ERRORS

To verify the reasonability of our assumption that the
prediction error vector e follows a multivariate Gaussian
density with zero mean, we present the distributions of se-
lected dimensions (2, 128, 257) of the prediction error vector
on the cross validation set for both well-trained randomly-
initialized MMSE-DNN and ML-DNN as shown in Fig. 2. It
is observed that all selected dimensions of the prediction error
vector approximately follow a unimodal distribution with the
mean closing to zero for both MMSE-DNN and ML-DNN.
However, the variances are quite different, which implies that
the assumption of equivalent variances in MMSE-DNN is not
reasonable.

What’s more, we also compare the generalization capabil-
ity between MMSE-DNN initialized randomly (denoted as
MMSE-DNN-InitR), ML-DNN initialized randomly (denoted
as ML-DNN-InitR) and ML-DNN initialized with well-trained
MMSE-DNN (denoted as ML-DNN-InitM) via the learning
curves of the reconstruction loss on the cross validation (CV)
set, as shown in Fig. 3. We should note that the reconstruction
loss refers to the conventional mean squared error, but not
the objective function proposed in (7). It is observed that the
MMSE-DNN-InitR to minimize the reconstruction loss on the
training data consistently generates larger errors on the cross
validation set than ML-DNN-InitR which is maximizing the
likelihood rather than directly minimizing the reconstruction
loss in the training stage. So it is clear that ML-DNN can
achieve a better generalization capability than MMSE-DNN.
In addition, the learning curve of ML-DNN-InitR also shows
a faster convergence than that of MMSE-DNN-InitR. Besides,
ML-DNN-InitM generates smaller errors on the cross valida-
tion set than ML-DNN-InitR as shown in Fig. 3.

1V. EXPERIMENTS AND RESULTS

In our experiments, the anechoic speech data were derived
from the WSJO corpus. Twelve kinds of RIRs which were
measured from three rooms with different volumes (small,
medium, and large) were adopted. Then, the anechoic speech
data and the RIRs were adopted for generating 7138 rever-
berant utterances by convolution. As for testing data, 330
anechoic utterances different from the training data were
convolved with RIRs measured from three simulate rooms,
whose RT60s are 0.2s, 0.5s, 0.7s respectively, to construct the
whole 990 reverberant utterances.

For signal analysis, speech was sampled at 16 kHz. A
512-point DFT of each overlapping windowed frame was
computed. Then 257-dimension(D=257) log-power spectral
feature vectors [23] were used to train DNNs. The phase
required to reconstruct waveform was directly extracted from
the reverberant speech [24] and the dereverberated waveform
was reconstructed from the estimated spectral magnitude and
the reverberant speech phase with an overlap-add method.

All DNN configurations were fixed at three hidden layers,
2048 nodes at each hidden layer, and 7 frames of input feature
expansion to consider acoustic context information. Sigmoid
was used as the activation function at each hidden layer while a
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Fig. 2. The distributions for selected dimensions of the prediction error vector
from DNN on the cross validation set:(a)-(c) refer to MMSE-DNN while (d)-
(f) correspond to ML-DNN.
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Fig. 3. The learning curve comparison of reconstruction loss among MMSE-
DNN-InitR, ML-DNN-InitR and ML-DNN-InitM on the cross validation set.

linear activation function was adopted at the output layer. The
learning rate for the fine-tuning was set to 0.1 for the first 10
epochs and declined at a rate of 90% after every epoch in the
next 40 epochs. Frequency-weighted segmental signal-to-noise
ratio (fwSegSNR) [25], perceptual evaluation of speech quality
(PESQ) [26], and short-time objective intelligibility (STOI)
[27] were adopted to evaluate the speech signal-to-noise ratio,
speech quality and speech intelligibility, respectively.

Table I shows the average fwSegSNR, PESQ and STOI
on the test set among MMSE-DNN-InitR, ML-DNN-InitR
and ML-DNN-InitM. Clearly, the proposed ML-DNN ap-
proach yielded significant improvements over the conventional
MMSE-DNN approach for all three rooms of different RT60s,
e.g., a fwSegSNR gain of 0.27 dB, a PESQ gain of 0.17, a
STOI gain of 0.020 in rooml. In addition, the improvements
of ML-DNN-InitR are smaller than those of ML-DNN-InitM.
Fig. 4 shows the the spectrograms of a test utterance in room?2.
Clearly, ML-DNN can better restore the anechoic spectrogram
than MMSE-DNN, especially in low and intermediate frequen-
cies.

APSIPA ASEP%?PIZ ASC 2017



Proceedings of APSIPA Annual Summit and Conference 2017

(a) (b)

(©) (@
Fig. 4. Spectrograms of a test utterance in room?2: (a) reverberant speech, (b)
anechoic speech, (c) MMSE-DNN-InitR, (d) ML-DNN-InitR

V. CONCLUSIONS

In this study, we proposed a noval maximum likelihood
approach to DNN-based speech dereverberation with a rea-
sonable assumption that the prediction error vector of DNN
follows the zero-mean Gaussian distribution. In the proposed
ML-DNN, both the DNN parameters and the covariance
matrix of the prediction error vector are jointly and alter-
natively optimized. Compared with the conventional MMSE
optimization, our approach could achieve a better generaliza-
tion capability and yield a better performance in the speech
dereverberation task.
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