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Abstract. This paper investigates on the deep learning approaches for the
social touch gesture recognition. Several types of neural network architectures
are studied with a comprehensive experiment design. First, recurrent neural
network using long short-term memory (LSTM) is adopted for modeling the
gesture sequence. However, for both handcrafted features using geometric
moment and feature extraction using convolutional neural network (CNN),
LSTM cannot achieve satisfactory performances. Therefore, we propose to use
the 3D CNN to model a fixed length of touch gesture sequence. Experimental
results show that the 3D CNN approach can achieve a recognition accuracy of
76.1 % on the human-animal affective robot touch (HAART) database in the
recognition of social touch gestures challenge 2015, which significantly out-
performs the best submitted system of the challenge with a recognition accuracy
of 70.9 %.

Keywords: Deep learning * Social touch gesture - 3D CNN

1 Introduction

In recent years there has been an increasing interest on human-robot interaction studies
that use touch modality. In social human-robot interaction, the correct interpretation of
touch gestures provides additional information about affective contents in touch, and can
be used together with audio-visual cues to improve affect recognition performance [1].
Some well-known robots, such as AIBO (1999), Paro (2001), Nao (2006) and Reeti
(2011) are equipped with touch sensors. Some researchers have investigated skin-like
sensing, i.e. lots of sensors spreading all over the robot body [2—4].

In the international conference on multimodal interaction (ICMI) last year, the
Recognition of Social Touch Gestures Challenge 2015 was launched. In this challenge,
organizers provided participants with pressure sensor grid datasets of various touch
gestures, namely Corpus of Social Touch (CoST) database and Human-Animal
Affective Robot Touch (HAART) database [5]. Many conventional classification
approaches were adopted, including support vector machine (SVM) [6], logistic
regression [7], random forest [6, 8, 9], and multiboost [8].

Recently, the deep learning techniques are successfully used in many research
areas. Convolutional neural networks (CNNs) [10] are one type of feedforward neural
networks, which make promising results especially for the computer vision area.
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CNN receives raw images as the inputs, uses trainable kernels to extract features and
pooling layers to down-sample feature maps, and makes output feature maps highly
invariant to specific input transformation. Researchers have found that with appropriate
parameters and regularization terms, CNNs can outperform methods with manually
extracted features [11-13]. Recurrent neural networks are another type of deep neural
networks with directed circles between units which make it “deep in time”. RNNs can
model the temporal actions by changing their outputs through time. But this simple
RNN is suffering from problems like gradient vanishing and explosion, easy to lose the
track of long term connections [14]. However, by using RNN with the long short-term
memory (LSTM) structure, the gradient vanishing problem can be alleviated [15].

In this study, we investigate on the deep learning approaches for the social touch
gesture recognition which are rarely mentioned for 2015 challenge. Several types of
neural network architectures are studied with a comprehensive experiment design. First,
recurrent neural network using long short-term memory (LSTM) is adopted for modeling
the gesture sequence. However, for both handcrafted features using geometric moment
and feature extraction using CNN, LSTM cannot achieve satisfactory performances.
Therefore, we propose to use the 3D CNN to model a fixed length of touch gesture
sequence. Experimental results show that the 3D CNN approach can achieve a recog-
nition accuracy of 76.1 % on the human-animal affective robot touch (HAART) database
in the recognition of social touch gestures challenge 2015, which significantly outper-
forms the best submitted system of the challenge with a recognition accuracy of 70.9 %.

The remainder of the paper is organized as follows. In Sect. 2, LSTM with geo-
metric moment features (denoted as GM-LSTM) is introduced. In Sect. 3, LSTM with
CNN-based feature extraction (denoted as LRCN) is presented. In Sect. 4, 3D CNN is
elaborated. In Sects. 5 and 6, we report experimental results and analysis. Finally we
conclude the paper in Sect. 7.

2 GM-LST™M

Geometric moments represent geometric features of an image and are invariant to
rotation, transition and scaling, which are also called invariant moments [16]. In image
processing, geometric moments can be used as important features to represent objects.
The zeroth-order moment, g and the first-order moments, y, ; and i ; are given by
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where w and & represent the width and height of an image, respectively. I(x,y) is the
intensity of pressure at (x, y). Higher-order moments are calculated from the following
equation
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In our implementation, the zeroth, first, second and third order moments for each
frame are calculated, resulting in a 10-dimension feature vector.

In GM-LSTM architecture, the input layer receives a sequence (432 frames for each
sample) of GM feature vectors while the output layer has 7 units, each corresponding to
a type of gesture labels. The activation function of output layer is the softmax function,
and the loss function is cross-entropy error function. The hidden layers are represented
by the LSTM layers as shown in Fig. 1.
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Fig. 1. A diagram of GM-LSTM architecture.
3 LRCN

Donahue et al. proposed long-term recurrent convolutional networks (LRCNs) to deal
with problems like activity detection, image captioning and video captioning in 2014. It
performed well for many datasets, becoming a type of leading deep learning methods
[17]. LRCNs are one kind of deep neural networks that can make end-to-end classi-
fication of videos. It uses CNN to extract hierarchical features for each frame, and
LSTM to model the feature sequence. Then the parameters of the whole network are
updated using backpropagation through time (BPTT) algorithm.

As a combination of CNN and LSTM, LRCN has its own architecture including the
input layer, several convolutional layers and pooling layers for CNN, several LSTM
layers, and the output layer, as shown in Fig. 2. For our task, the input layer receives
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Fig. 2. A diagram of LRCN architecture.

raw input of gesture samples, namely a 8 x 8 image for each frame with the pixel
value ranging from O to 1023. The output layer has 7 units, each corresponding to a
type of gesture labels. The activation function of output layer is the softmax function,
and the loss function is cross entropy error function.

4 3D CNNs

Ji et al. proposed 3D convolutional neural networks to tackle the problem like human
action detection in videos and achieved excellent performance, indicating the superi-
ority of 3D CNNs compared with other approaches [18].

In 2D CNNs, convolutions are applied on the 2D feature maps to compute features
from the spatial dimensions only. When applied to video analysis problems, it is
desirable to capture the motion information encoded in multiple contiguous frames. To
this end, the proposed 3D CNNs can simultaneously compute features from both spatial
and temporal dimensions. By the use of 3D CNNs, contiguous frames in a gesture
sequence are first stacked up, reshaped into a 3D cube. Then 3D convolutions with 3D
kernels are applied on the cube. That’s why feature maps of 3D CNN are relevant to
both spatial and temporal information, and can capture motion information. The value
at position (x, y, z) of the j-th feature map in the i-th layer is given by

vt tanh(bl]JrZ Z Z Z WZ;I; X+P)(y+q)(z+r)) 5)
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where tanh(-) is the activation function, b; is the value at position (i, j) of the bias
vector, WZZ: is the value at (p, q, r) of the m-th convolution kernel, P; and Q; are the
height and width of the kernel, and R; is the temporal length of the kernel.

The overall architecture of 3D CNNs is shown in Fig. 3. Apart from the 3D
convolutional layers and max pooling layers, another main difference from the

GM-LSTM and LRCN is the fully connected layers are adopted before the output layer.

Gesture labels
3D max pooling

Reshaping layer
Gesture 3D convolutional
sequence layer Fully connected

layer

Fig. 3. A diagram of 3D CNN architecture.

5 Experiments and Results

Our experiments are conducted on the HAART dataset of the recognition of social touch
gestures challenge 2015. The main purpose of HAART dataset design is to find methods
of recognizing human emotion by gestures. The sampling rate of HAART dataset is
54 Hz and the time duration is 8 s. The number of participants is 10. The number of
gestures types is 7. The size of sensor grid is 10 x 10, which was trimmed to 8§ x 8 to
match that of CoST dataset in the challenge [5]. Other details can refer to [5].

5.1 GM-LSTM and LRCN Experiments

In the GM-LSTM experiments, two LSTM layers with 50 units for each layer are good
configurations to balance the model capability and the over-fitting problem. After 500
epochs of training, the test set accuracy is 65.3 %.

In the LRCN experiments, we can achieve a fair performance when using three
convolutional layers and two 128-unit LSTM layers. The first convolutional layer has 4
feature maps, and its kernel size is 3 x 3. The second convolutional layer has 8 feature
maps, its kernel size is 3 x 3, and the second convolutional layer is followed by an
average pooling layer. The third convolutional layer has 16 feature maps, and its kernel
size is 2 x 2. The test set accuracy at the 500-th epoch is 60.6 % (Table 1).
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Table 1. The accuracy of test set at the 500-th epoch in GM-LSTM and LRCN experiments.

Classifier | Accuracy (%)
GM-LSTM | 65.3
LRCN 60.6

5.2 3D CNN Experiments

The input layer of 3D CNN receives a raw gesture sequence with 432 frames. For each
frame, the size of the image is 8 x 8 with the pixel value ranging from 0 to 1023. The
output layer has 7 units, each corresponding to a type of gesture label. The activation
function of output layer is the softmax function, and the loss function is cross entropy
error function. The number of training epochs is 600.

5.2.1 Experiments on the Number of Feature Maps

The number of feature maps in every convolutional layer determines the dimension of
features extracted and is important for recognition performance. In this set of experi-
ments, the number of convolutional layers was fixed to 4, and we found that when the
number configuration of feature maps for 4 convolutional layers was set as
16-32-64-128, 3D CNNs achieved the best performance, compared with 8-16-32-64
and 32-64-128-256 setting, as shown in Table 2. The kernel sizes in every convolu-
tional layer were all set to be 3 x 3x3.

Table 2. The accuracy of test set in feature map configuration experiments

Feature map configuration | Accuracy (%)
8-16-32-64 72.9
16-32-64-128 75.1
32-64-128-256 68.1

Table 3. The accuracy of test set for different numbers of fully connected layers.

The number of fully connected layers | Accuracy (%)
1 66.9
2 71.3
3 72.5
4 70.9

5.2.2 Experiments on the Number of Fully Connected Layers

The number of fully connected layers determines the complexity and generalization
capability of 3D CNNs. The optimal number can vary substantially in different tasks. In
this set of experiments, the number of units in every fully connected layer was 256
(Table 3).
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Table 4. The accuracy of test set in the dropout value experiments

Dropout value | Accuracy (%)
O(no dropout) | 68.9
0.2 64.5
0.5 71.3

5.2.3 Experiments on the Dropout

When training deep neural networks, if the dataset is not large enough, we should use
dropout as a trick to prevent over-fitting. Dropout was proposed by Hinton et al. in
2012. It randomly screens some weights of the units in hidden layers and improves
neural networks by preventing co-adaptation of feature detectors [19]. Our experiments
achieved a relatively good performance when the dropout value was 0.5, compared
with no dropout case and the dropout value of 0.2. In these experiments, the number
configuration of feature maps for 4 convolutional layers was set as 8-16-32-64, and the
number of units in every fully connected layer was 256 and the number of fully
connected layers was 3 (Table 4).

5.3 Overall Comparison

The final configuration of 3D CNN is as follows. The number of convolutional layers is
4. The number configuration of feature maps for 4 convolutional layers is
16-32-64-128. The kernel sizes in every convolutional layer are all set to be 3 x 3 x 3.
The pooling sizes in four convolutional layers are 5 x 1 x 1,3 x 2 x 3,3 x 2 x 2,
3 x 2 x 2, respectively. The number of fully connected layers is 3. The number of
units in the fully connected layers is 1024. The dropout value is 0.5 and learning rate is
0.001. The initialization method is he_normal [20], and the batch size is 20.

With this configuration, we achieved the best test set accuracy of 76.1 %, which is
significantly better than the first ranked result (70.9 % in [6]) in the challenge. And 3D
CNN becomes the state-of-art method for social touch gestures recognition task.
Table 5 shows an overall performance comparison with other approaches.

Table 5. An overall performance comparison with other approaches.

Approach | Classifier Accuracy (%)
Proposed | 3D CNN 76.1
Proposed | GM-LSTM 65.3
Proposed | LRCN 60.6
[6] Random forest 70.9
[6] SVM 68.5
[7] Logistic regression | 67.7
[8] Random forest 66.5
[8] Multiboost 64.5
[9] Random forest 61.0
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6 Discussion

GM-LSTMs and LRCNs did not perform well on the touch gesture recognition task. It
might be partially due to that there were not enough training data for building LSTM
layers, which usually needed longer sequence data compared with the fullly connected
layers. And LRCNs even performed worse than GM-LSTMs, indicating that the use of
CNN for feature extraction is not always helpful if the sequence model (LSTM) is not
well enough.

3D CNNs did perform well on the touch gesture recognition task, which implied
that 3D CNNs were really good at extracting motion information from contiguous
frames, even on a small data set compared with other approaches.

As we can see in Table 6, two types of gestures—constant and no touch—have
better accuracies with few false recognitions. The rub gesture is similar to scratch and
they are easily incorrectly classified to each other. The stroke is similar to rub. The
tickle has the lowest accuracy and is often incorrectly classified to scratch. All those
problems are apparently related with the way the gesture samples were collected and
the interconnections between gestures. And we can make more studies in the future.

Table 6. The confusion matrix for HARRT dataset

Counts | Constant | No touch | Pat | Rub | Scratch | Stroke | Tickle
Constant | 34 1 00 0 0 0
No touch| 0 36 0,0 0 0 0
Pat 0 0 290 | 2 2 1 2
Rub 0 0 0|27 2 5 2
Scratch 0 0 1| 6 |26 1 2
Stroke 0 0 115 1 27 2
Tickle 0 0 0 20 2 12

7 Conclusion

This paper analyzed different neural network structures including 2D CNNs, 3D CNNs
and LSTMs. GM-LSTMs, LRCNs and 3D CNNs are compared on the social touch
gestures recognition task. The conclusion is that the 3D CNN approach achieves the
best result, beyond the first ranked result in the challenge—70.9 %, and 3D CNN is the
state-of-art method for touch gestures classification task. In comparing 3D CNN
experiments with GM-LSTM and LRCN experiments, we observe that LSTMs require
larger dataset and 3D CNNs are more robust to the data size. Also we analyzed the
similarities of gestures based on confusion matrix.

In the future, on one hand, we will further verify the effectiveness on large gesture
databases. On the other hand, we will apply 3D CNNs to other tasks involving tem-
poral information.
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