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Abstract 

In this study, discriminative HMM training and its performance are investigated in 
both clean and noisy environments. Recognition error is defined at string, word, 
phone, and acoustic levels and treated in a unified framework in discriminative 
training. With an acoustic level, high-resolution error measurement, a 
discriminative criterion of minimum divergence (MD) is proposed. Using 
speaker-independent, continuous digit databases, Aurora2, the recognition 
performance of recognizers, which are trained in terms of different error measures 
and different training modes, is evaluated under various noise and SNR conditions. 
Experimental results show that discriminatively trained models perform better than 
the maximum likelihood baseline systems. Specifically, in MWE and MD training, 
relative error reductions of 13.71% and 17.62% are obtained with multi-training on 
Aurora2, respectively. Moreover, compared with ML training, MD training 
becomes more effective as the SNR increases. 

Keywords: Noise Robustness, Minimum Divergence, Minimum Word Error, 
Discriminative Training 

1. Introduction 

With the progress of Automatic Speech Recognition (ASR), noise robustness of speech 
recognizers attracts more and more attention for practical recognition systems. Various noise 
robust technologies can be grouped into three classes: 1. Feature domain approaches, which 
aim at noise resistant features, e.g., speech enhancement, feature compensation or 
transformation methods [Gong 1995]; 2. Model domain approaches, e.g., Hidden Markov 
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Model (HMM) decompensation [Varga et al. 1990], Parallel Model Combination (PMC) 
[Gales et al. 1994], which aim at modeling the distortion of features in noisy environments 
directly; 3. Hybrid approaches. 

In the past decade, discriminative training has been shown quite effective in reducing 
word error rates of HMM based ASR systems in a clean environment. In the first stage, 
sentence level discriminative training criteria, including Maximum Mutual Information (MMI) 
[Schluter 2000; Valtchev et al. 1997] and Minimum Classification Error (MCE) [Juang et al. 
1997], were proposed and proven effective. Recently, new criteria such as Minimum Word 
Error (MWE) and Minimum Phone Error (MPE) [Povey 2004], which are based on fine error 
analysis at word or phone level, have achieved further improvement in recognition 
performance. 

In [Ohkura et al. 1993; Meyer et al. 2001; Laurila et al. 1998], noise robustness 
investigation on sentence level discriminative criteria such as MCE, Corrective Training (CT) 
is reported. Hence, we give a more complete investigation of noise robustness for general 
minimum error training. 

From a unified view of error minimization, the major difference between MCE, MWE 
and MPE is the error definition. String based MCE is based upon minimizing sentence error 
rate, while MWE is based on word error rate, which is more consistent with the popular metric 
used in evaluating ASR systems. Hence, the latter yields a better word error rate, at least on 
the training set [Povey 2004]. However, MPE performs slightly but universally better than 
MWE on the testing set [Povey 2004]. The success of MPE might be explained as follows: 
when refining acoustic models in discriminative training, it makes more sense to define errors 
in a more granular form of acoustic similarity. However, error definition at phone label level 
is only a rough approximation of acoustic similarity. 

Based on the analysis above, we have proposed using acoustic dissimilarity to measure 
errors [Du et al. 2006]. As acoustic behavior of speech units is characterized by HMMs, by 
measuring Kullback-Leibler Divergence (KLD) [Kullback et al. 1951] between two given 
HMMs, we can obtain a physically more meaningful assessment of their acoustic similarity. 

Adopting KLD for defining dissimilarity, the corresponding training criterion is referred 
as Minimum Divergence (MD) [Du et al. 2006; Du et al. 2007]. The criterion possesses the 
following potential advantages: 1) It employs acoustic similarity for high-resolution error 
definition, which is directly related to acoustic model refinement; 2) Label comparison is no 
longer used, which alleviates the influence of the chosen language model and phone set and 
the resultant hard binary decisions caused by label matching. Due to these advantages, MD is 
expected to be more flexible and robust. 

In our work, MWE, which matches the evaluation metric, and MD, which focuses on 
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refining acoustic dissimilarity, are compared. Other issues related to robust discriminative 
training, including how to design the maximum likelihood baseline and how to treat with the 
silence model is also discussed. 

Experiments were performed on Aurora2 [Hirsch et al. 2000], which is a widely adopted 
database for research on noise robustness. For completeness, we tested the effectiveness of 
discriminative training on different ML baselines and different noise environments. 

The rest of paper is organized as follows. In Section 2, issues on noise robustness of 
minimum error training will be discussed. In Section 3, MD training will be introduced. 
Experimental results are shown and discussed in Section 4. Finally, in Section 5, we give our 
conclusions. 

2. Noise Robustness Analysis of Minimum Error Training 

In this section, we will give a brief discussion of the major issues we are facing in robust 
discriminative training. 

2.1 Error Resolution of Minimum Error Training 
In [Povey 2004] and [Du et al. 2006], various discriminative training approaches are unified 
under the framework of minimum error training, where the objective function is an average of 
the recognition accuracies r( , )W WA  of all hypotheses weighted by the posterior 
probabilities. For conciseness, we consider the single training utterance case: 

r( ) ( | ) ( , )P
∈

= ∑
W

W O W WF Aθθ
M

                                         (1) 

where θ  represents the set of the model parameters; O is a sequence of acoustic observation 
vectors; rW is the reference word sequence; M is the hypotheses space; ( | )Pθ W O is the 
posterior probability of the hypothesis W given O, which can be formulated as: 
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where κ is the acoustic scaling factor. 

The gain function ( , )rW WA  is an accuracy measure of W given its reference rW . In 
Table 1, comparison of several minimum error criteria are listed. In MWE training, 

( , )rW WA is word accuracy, which matches the commonly used evaluation metric of speech 
recognition. However, MPE has been shown to be more effective in reducing recognition 
errors because it provides a more precise measurement of word errors at the phone level. We 
can argue this point by advocating the final goal of discriminative training. In refining 
acoustic models to obtain better performance, it makes more sense to measure acoustic 
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similarity between hypotheses instead of word accuracy. The symbol matching does not relate 
acoustic similarity with recognition. The measured errors can also be strongly affected by the 
phone set definition and language model selection. Therefore, acoustic similarity is proposed 
as a finer and more direct error definition in MD training. 

Table 1. Comparison of criteria of minimum error training. ( WP : Phone sequence 
corresponding to word sequence W; LEV(,): Levenshtein distance between 
two symbol strings;| ⋅ |: Number of symbols in a string.) 

Criterion ( , )rW WA  Objective 
 

String based MCE ( )r=δ W W  Sentence accuracy 

MWE rLEV( , )r −W W W  Word accuracy 

MPE 
r r

LEV( , )P P P−W W W Phone accuracy 

MD r( || )D− W W  Acoustic similarity 

Here, we aim at seeking how criteria with different error resolution performs in noisy 
environments. In our experiments, the whole-word model, which is commonly used in digit 
tasks, is adopted. For the noisy robustness analysis, MWE, which matches with the evaluation 
metric of speech recognition, will compared with MD, which possesses the highest error 
resolution as shown in Table 1. 

2.2 Training Modes 
In noisy environments, various ML trained baselines can be designed. So, the effectiveness of 
minimum error training with different training modes will be explored. In [Hirsch et al. 2000], 
two different sets of training, clean-training and multi-training, are used. In clean-training 
mode, only clean speech is used for training. Hence, there will be a mismatch when the model 
is tested in noisy environments. To alleviate the mismatch, multi-training, in which training 
set is composed of noisy speech with different SNRs, can be applied. Actually, multi-training 
can only achieve a “global SNR” match. To achieve a “local SNR” match, we adopt a 
SNR-based training mode. In the training phase, we train a series of models at different SNR 
levels, while in testing, all these models are paralleled as multi pronunciations of a HMM. 
Ideally, the model that matched the local SNR best will be automatically selected in decoding. 
SNR-based training can be considered as a high resolution acoustic modeling of multi-training. 
An illustration of the three training modes is shown in Figure 1. 

 An important issue in discriminative training is how to update silence or background 
models, which is even more critical in a noisy environment. In our research, we pay special 
attention to this issue for appropriate guidelines. 
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Figure 1. Illustration of three training modes 

3. Word Graph based Minimum Divergence Training 

3.1 Defining Errors by Acoustic Similarity 
A word sequence is acoustically characterized by a sequence of HMMs. For automatically 
measuring acoustic similarity between W and rW , we adopt KLD between the corresponding 
HMMs: 

r r( , ) ( || )D= −W W W WA                                                 (3) 

The HMMs, when they are reasonably well trained in ML sense, can serve as succinct 
descriptions of data. 

3.2 KLD between Two Word Sequences 
Our goal is to measure the KLD for word sequences in Eq. 3. Given two word sequences rW  
and W without their state segmentations, we should use a state matching algorithm to measure 
the KLD between the corresponding HMMs [Liu et al. 2005]. With state segmentations, the 
calculation can be further decomposed down to the state level: 
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where T  is the number of frames; 1:To  and 1:
r

Ts  are the observation sequence and hidden 
state sequence, respectively. 

By assuming all observations are independent, we obtain: 

1: 1 r
r r r

1 1

( | )
( ) ( ) ( | ) log

( | )

t tT TT :T t t t t t
t tt t

p
D D s s p d

p= =
= =∑ ∑ ∫

o s
s s o s o

o s
                    (5) 

which means we can calculate KLD state by state, and sum them up. 

Now, our problem is how to measure the KLD between two states. Conventionally, each 
state s  is characterized by a Gaussian Mixture Model (GMM): 

( )p | s =o 1 ( ; , )sM
smm w=∑ sm smo µ ∑N , so the comparison is reduced to measuring KLD 

between two GMMs. Since there is no closed-form solution, we need to resort to the 
computationally intensive Monte-Carlo simulations. The unscented transform mechanism 
[Goldberger et al. 2003] has been proposed to approximate the KLD measurement of the two 
GMMs. 

Let ( ; , )o µ ∑N  be a N -dimensional Gaussian distribution and h  be an arbitrary 
IR IRN → function, the unscented transform mechanism suggests approximating the 
expectation of h  by: 

2

1

1( ; , ) ( ) ( )
2

N
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k
h d h

N =
≈ ∑∫ o o o oµ ∑N                                         (6) 

where (1 2 )k k N≤ ≤o are the artificially chosen “sigma” points: 
,k k kNλ= +o uµ (1 )k N k kNλ k N+ = − ≤ ≤o uµ , where kkλ ,u  are the thk  eigenvalue 

and eigenvector of Σ , respectively. Geometrically, all these “sigma” points are on the 
principal axes of Σ . Equation 6 is precise if h  is quadratic. 

For our case, the Gaussian distribution in Eq. 6 is replaced by a GMM, and the function  

h  corresponds to the term r( | )
( | )

log
t t

t t
p
p

o s
o s

 in Eq. 5. Then, KLD between two states (GMMs) can 

be approximated by: 
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where mko  is the thk  “sigma” point in the thm  Gaussian kernel of state r
ts . By plugging 

this into Eq. 4, we obtain the KLD between two word sequences given their state 
segmentations. 
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3.3 Gain Function Calculation 
Usually, a word graph is a compact representation of large hypotheses space in speech 
recognition. As the KLD between a hypothesised word sequence and the reference can be 
decomposed down to the frame level, we have the following word graph based representation 
of (1): 

:
( ) ( | ) ( )

w w
P w

∈ ∈ ∈
= ∑ ∑

W W
W O

M M
θθF A                                     (8) 

where ( )wA  is the gain function of word arc w . Denoting ,w wb e , the start frame index 
and end frame index of w , we have: 

r( ) ( )
w

w

e
t t
w

t b
w D s s

=
= − ∑A                                                  (9) 

where the t
ws  and r

ts  represent the certain state at time t  on arc w  and the reference, 
respectively. 

From the objective function defined in Eq. 1, the gain function r( , )W WA  is dependent 
on the model parameters, which should be updated in optimization process. In [Du et al. 2007], 
we conclude that the optimization of the gain function term has little impact on the 
performance. So here, r( , )W WA is considered a constant term and not optimized. The KLDs 
related to gain function are precomputed using the ML trained model parameters. Then our 
optimization of objective function is the same as that mentioned in [Povey 2004]. We use the 
Forward-Backward algorithm to update the word graph and the Extended Baum-Welch 
algorithm to update the model parameters in the training iterations. 

4. Experiments 

4.1 Experimental Setup 
Experiments on TIDigits and Aurora2, both English continuous digit tasks, were performed. 
The English vocabulary is made of the 11 digits, from ’one(1)’ to ’nine(9)’, plus ’oh(0)’ 
and ’zero(0)’. The baseline configuration for two databases is listed in Table 2. 

Table 2. Baseline configuration 

System Feature 
Model 
Type 

# State 
/Digit

# Gauss 
/State

# string of 
training set 

# string of 
testing set 

 

TIDigits 10 6  12549  12547  

Aurora2 
MFCC_E_D_A left-to-right 

whole-word model 16 3  8440*2  1001*70  

The Aurora2 task consists of English digits in the presence of additive noise and linear 
convolutional channel distortion. These distortions have been synthetically introduced to clean 
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TIDigits data. Three testing sets measure performance against noise types similar to those seen 
in the training data (set A), different from those seen in the training data (set B), and with an 
additional convolutional channel (set C). The baseline performance and other details can be 
found in [Hirsch et al. 2000]. 

For minimum error training, the acoustic scaling factor κ  was set to 1
33 .  All  KLDs 

between any two states were precomputed to make the MD training more efficient. For 
Aurora2, we select the best results after 20 iterations for each sub set of testing. 

4.2 Experiments on TIDigits Database 
As a preliminary result of noise robustness analysis, we first give the results of MD on the 
clean TIDigits database compared with MWE. As shown in Figure 2, performance of MD 
achieves 57.8% relative error reduction compared with the ML baseline and also outperforms 
MWE in all iterations. 

 
Figure 2. Performance comparison on TIDigits 

4.3 Experiments on Aurora2 Database 
Table 3. Word Accuracy (%) of MWE with or without silence model update in 

different training modes on Aurora2. 
Training Mode Update Silence Model Set A Set B Set C Overall 

 

Clean YES 61.85 56.94 66.26 60.77 

Clean NO 64.74 61.69 67.95 64.16 

Multi YES 89.15 89.16 84.66 88.26 

Multi NO 88.91 88.55 84.43 87.87 
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Silence Model Update.  As shown in Table 3, we explore whether to update the silence 
model in minimum error training using different training modes. Since it is unrelated to the 
criteria, here we adopt MWE. When applying clean-training, the performances of all test sets 
without updating silence model are consistently better. However, in multi-training, the 
conclusion is the opposite. From the results, we can conclude that increasing the 
discrimination of the silence model will lead to performance degradation in mismatched cases 
(clean-training) and performance improvement in matched cases (multi-training). This can be 
explained as follows: For the clean-training case, if we increase the discrimination of the 
silence model, the noise segments are more easily recognized as digits when testing on noisy 
data. Then, insertion errors will increase. However, for the multi-training case, the silence 
model represents both silence and noise segments, which is matched with that when testing on 
noisy data. So, by updating the silence model, the global performance will be improved. 
Obviously, our SNR-based training belongs to the latter. In all our experiments, the treatment 
of silence model will obey this conclusion. 

Table 4. Performance comparison on Aurora2 (MD vs. MWE) 
Multi-Training – Results (Minimum Divergence)  

 A B C  Rel

 Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Average Impr

Clean 99.14 99.12 98.9 99.2 99.09 99.14 99.12 98.9 99.2 99.09 98.89 98.85 98.87 99.05 35.32%

20dB 98.71 98.55 98.81 98.61 98.67 98.43 98.37 98.57 98.89 98.57 98.65 97.64 98.15 98.52 43.92%

15dB 98.5 98 98.33 97.93 98.19 98 97.76 97.79 97.93 97.87 97.88 96.74 97.31 97.89 42.04%

10dB 97.18 96.55 97.2 96.08 96.75 96.41 95.8 96.06 95.31 95.90 95.15 94.04 94.60 95.98 34.81%

5dB 92.39 89.81 90.49 90.25 90.74 89.28 87.06 90.52 87.23 88.52 84.68 82.56 83.62 88.43 20.78%

0dB 72.8 64.63 58.93 70.32 66.67 65.24 64 69.19 62.48 65.23 49.25 54.44 51.85 63.13 10.51%

-5dB 31.04 29.56 22.7 28.57 27.97 30.06 28.96 33.58 25.46 29.52 22.01 24.24 23.13 27.62 4.15%

Average 91.92 89.51 88.75 90.64 90.20 89.47 88.60 90.43 88.37 89.22 85.12 85.08 85.10 88.79  

Rel 
Impr 28.10% 12.93% 16.53% 21.79% 19.60% 27.93% 12.04% 22.53% 22.40% 21.45% 11.21% 4.93% 8.17%  17.62%

 

Multi-Training – Results (Minimum Word Error)  
 A B C  Rel

 Subway Babble Car Exhibition Average Restaurant Street Airport Station Average Subway M Street M Average Average Impr

Clean 99.14 99.18 99.02 99.29 99.16 99.14 99.18 99.02 99.29 99.16 98.99 99.06 99.03 99.13 40.96%

20dB 98.86 98.67 98.78 98.7 98.75 98.74 98.43 98.72 98.95 98.71 98.34 97.4 97.87 98.56 45.45%

15dB 98.74 98.13 98.33 97.69 98.22 98.5 97.82 98.03 98.06 98.10 97.33 96.25 96.79 97.89 41.97%

10dB 96.87 95.95 96.87 95.43 96.28 96.22 95.53 96.42 95.74 95.98 94.63 93.5 94.07 95.72 30.03%

5dB 92.32 88.85 88.25 88.83 89.56 88.36 87.3 89.53 86.61 87.95 84.49 82.62 83.56 87.72 15.40%

0dB 70.31 63.33 53.44 64.7 62.95 64.6 68.18 68.27 59.12 65.04 47.62 54.44 51.03 61.40 6.25%

-5dB 29.66 29.72 21.8 25.27 26.61 30.21 27.84 33.49 23.97 28.88 21.31 24.24 22.78 26.75 3.01%

Average 91.42 88.99 87.13 89.07 89.15 89.28 89.45 90.19 87.70 89.16 84.48 84.84 84.66 88.26  

Rel 
Impr 23.69% 8.60% 4.53% 8.69% 10.98% 26.64% 18.62% 20.65% 17.92% 21.02% 7.39% 3.39% 5.46%  13.71%
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Error Resolution of Minimum Error Training.  As shown in Table 4, the performances of 
MD and MWE are compared. Here, multi-training is adopted because it is believed that 
matching between training and testing can tap the potential of minimum error training. For the 
overall performance on three test sets, MD consistently outperforms MWE. From the 
viewpoint of SNRs, MD outperforms MWE in most cases when SNR is below 15dB. Hence, 
we can conclude that, although MWE matches with the model type and evaluation metric of 
speech recognition, MD, which possesses the highest error resolution, outperforms it in low 
SNR. In other words, the performance can be improved in low SNR by increasing the error 
resolution of criterion in minimum error training. This conclusion can be also drawn in 
clean-training and SNR-based training cases. 

 
Figure 3. Relative Improvement over ML baseline on Aurora2 using different 

training modes in MD training 

Table 5. Summary of performance on Aurora2 using different training modes in 
MD training. 

 Word Accuracy (%) Relative Improvement 

Training Mode Set A Set B Set C Overall Set A Set B Set C Overall 

Clean-Training 63.49 58.94 68.96 62.76 5.56% 7.21% 8.32% 6.76% 

Multi-Training 90.20 89.22 85.10 88.79 19.60% 21.45% 8.17% 17.62% 

SNR-based Training 91.27 89.27 86.70 89.56 10.00% 26.21% 1.14% 15.68% 

Different Training Modes.  Figure 3 shows relative improvement over ML baseline using 
MD training with different training modes. From this figure, some conclusions can be 
obtained. First, set B, whose noise scenarios are different from training, achieves the most 



 

 

             Performance of Discriminative HMM Training in Noise              301 

obvious relative improvement in most cases. The relative improvement of set A is comparable 
with set B in the clean-training and multi-training, but worse than set B in SNR-based training. 
The relative improvement of set C, due to the mismatch of noise scenario and channel, was 
almost the worst in all training modes. Second, the relative improvement performance declines 
for decreasing SNR in clean-training. However, in multi-training and SNR-based training, the 
peak performance is in the range of 20dB to 15dB. Also, in the low SNRs, the performance of 
cleaning-training is worse than the other two training modes on set A and set B. 

The summary of performance is listed in Table 5. Word accuracy of our SNR-based 
training outperforms multi-training on all test sets, especially set A and set C. For the overall 
relative improvement, the best result of 17.62% is achieved in multi-training. 

5. Conclusions 

In this paper, the noise robustness of discriminatively trained HMMs is investigated. 
Discriminatively trained models are tested on English continuous digit databases, and MD and 
MWE criteria are experimentally compared to test the affection of error resolution. We 
observe: 1. Minimum error training is effective not only in clean environments, but also in 
noisy environments, which can be concluded in various training modes. Minimum error 
training is more effective as the SNR increases. Even when testing on mismatched noise 
scenarios, minimum error training also achieves better performance than ML training. 2. In 
minimum error training, higher resolution error analysis is more helpful at low SNRs. 3. 
Silence models should be carefully updated when the training and testing data are not 
well-matched. 
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