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TaggedPAbstract

We present an information fusion approach to the robust recognition of multi-microphone speech. It is based on a deep learn-

ing framework with a large deep neural network (DNN) consisting of subnets designed from different perspectives. Multiple

knowledge sources are then reasonably integrated via an early fusion of normalized noisy features with multiple beamforming

techniques, enhanced speech features, speaker-related features, and other auxiliary features concatenated as the input to each sub-

net to compensate for imperfect front-end processing. Furthermore, a late fusion strategy is utilized to leverage the complemen-

tary natures of the different subnets by combining the outputs of all subnets to produce a single output set. Testing on the

CHiME-3 task of recognizing microphone array speech, we demonstrate in our empirical study that the different information sour-

ces complement each other and that both early and late fusions provide significant performance gains, with an overall word error

rate of 10.55% when combining 12 systems. Furthermore, by utilizing an improved technique for beamforming and a powerful

recurrent neural network (RNN)-based language model for rescoring, a WER of 9.08% can be achieved for the best single DNN

system with one-pass decoding among all of the systems submitted to the CHiME-3 challenge.

� 2017 Published by Elsevier Ltd.
TaggedPKeywords: CHiME challenge; Deep learning; Information fusion; Microphone array; Robust speech recognition

1. Introduction

TaggedPWith the emergence of eyes-busy and hands-free speech-enabled applications on multi-microphone portable devi-

ces, the robust recognition of microphone array speech in distant-talking scenarios has become one of the most criti-

cal issues to be addressed for the massive deployment of spoken language services. For the past several decades,

many techniques (Gong, 1995; Li et al., 2014a) have been proposed to handle this challenging problem, but there

have not been many performance benchmarks for studying noise robustness issues. One remarkable benchmark was

the Aurora series initiated by Nokia in 2000, including the Aurora-2 (Pearce and Hirsch, 2000), Aurora-3 (Aurora,
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TaggedP1999; 2000; 2001a; 2001b) and Aurora-4 (Hirsch, 2002) tasks. The Aurora-2 and Aurora-4 databases were designed

with artificially generated noisy data for the recognition tasks of small and medium-sized vocabularies, respectively,

whereas the Aurora-3 task aimed at recognizing digit strings in real automobile environments.

TaggedPEvolving into the mobile era and with the ever-increasing popularity of the deep learning technologies, the focus

on noise robustness has been reinvigorated by a recent series of CHiME challenges (Barker et al., 2013; 2015; Vin-

cent et al.,2013) in recent years. This series differs from the Aurora tasks in several aspects. First, the scenarios are

extended to far-field automatic speech recognition (ASR) in everyday listening environments, e.g., the family living

room. Second, the room impulse responses (RIRs) simulating speaker movements and reverberation conditions have

been convolved with the utterance to generate more realistic artificial noisy data. Third, research on microphone

array based ASR has been more emphasized than conventional single-microphone techniques. One main difference

in the CHiME-3 challenge, which was launched in 2015, from the previous CHiME-1 and CHiME-2 challenges was

the use of a set of real-world data collected from several typical scenes via a mobile tablet device equipped with

microphone arrays.

TaggedPIn this sense, the CHiME-3 challenge might serve a new research direction attempting to solve ASR problems in

real-world applications. The initially released official results also indicated that conventional techniques that worked

well on the simulation data could fail on real data. Among all of the systems submitted to CHiME-3, several catego-

ries of solutions were proposed. The multi-channel speech enhancement approaches based on beamforming techni-

ques (Yoshioka et al., 2015; Hori et al., 2015; Sivasankaran et al., 2015; Zhao et al., 2015; Heymann et al., 2015;

Jalalvand et al., 2015; Pang and Zhu, 2015; Prudnikov et al., 2015; Mousa et al., 2015; Barfuss et al., 2015) have

been widely used as the mainstream. In Hori et al. (2015), Sivasankaran et al. (2015) and Prudnikov et al. (2015),

the super-directive minimum variance distortionless response (MVDR) beamformer provided in the official baseline

system (Barker et al., 2015) was replaced with a robust delay and sum beamformer for the real data. To improve the

MVDR beamformer, the Top-1 system (Yoshioka et al., 2015) adopted a spectral mask-based approach to obtain

accurate estimates of the acoustic beam-steering vectors, and (Zhao et al., 2015) proposed a cross-correlation and

eigen-decomposition method for microphone gain estimation. For the post-filtering techniques of beamforming, spa-

tial coherence filtering (Pang and Zhu, 2015; Barfuss et al., 2015) or filtering for dereverberation (Yoshioka et al.,

2015; Mousa et al., 2015) was commonly used. In Jalalvand et al. (2015), several beamforming techniques were

combined at the lattice level during decoding. Single-channel deep learning based front-end processing was investi-

gated in Bagchi et al. (2015) and Ma et al. (2015). Bagchi et al. (2015) used a deep neural network (DNN)-based

spectral mapping method that predicted clean filter bank features from noisy spectra, and Ma et al. (2015) conducted

DNN-based mask estimation using pitch-based features. However, the algorithms could not yield significant perfor-

mance improvements for the final systems. In Du et al. (2015), we proposed a solution via a large neural net consist-

ing of subnets with different architectures, namely, deep neural networks (DNNs) (Vesel et al., 2013) and recurrent

neural networks (RNNs) (Graves, 2012), to combine multiple knowledge sources by early feature fusion and late

score fusion. Overall, the NTT system (Yoshioka et al., 2015) achieved the best performance on this challenging

task, which indicates that an effective front end via conventional beamforming techniques incorporated with single-

channel deep learning based approaches for acoustic modeling in the back-end is a successful solution for multi-

channel speech recognition.

TaggedPOur proposed framework consists of early and late fusion stages. In early fusion, diverse features are concatenated

to compensate for imperfect beamforming. First, a concatenation of multi-channel acoustic features is investigated,

with each channel corresponding to one beamforming result of a channel subset in a microphone array. This is quite

different from the conventional approach in which one single overall output, after beamforming combines all of the

channels of the array, is fed to the recognizer. One reason that such a proposed multi-channel feature concatenation

technique can achieve a better performance might be that it reduces the risk caused by the imperfection of the exist-

ing beamforming approaches, especially for a microphone array with many highly diverse channels.

TaggedPA few issues must be considered carefully in the proposed fusion approach. First, for multi-channel concatena-

tion, there is an increase in the input layer size for the DNN, which can be even larger than the hidden layers and

often leads to performance degradation. To alleviate this problem, multiple-frame expansion is applied to the main

channel, whereas only one central frame is used for the other channels. Second, appending multiple enhanced fea-

tures is believed to be beneficial, motivated by the observation that the use of the enhanced features from the main

channel alone could not provide an improvement over the noisy features on the real data, possibly due to the large

residual noise (Barker et al., 2015). Different feature normalization approaches, speaker-related features, and
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TaggedPauxiliary features are also studied in early fusion. For late fusion, the outputs of all subnets with different architec-

tures are combined via a simple posterior average strategy (Li and Sim, 2013) to generate a single output set for sub-

sequent decoding. Based on our experiments, the early and late fusions are equally important and strongly

complementary in terms of reducing the ASR word error rates (WERs). The proposed two-stage fusion may be supe-

rior to either pure early fusion or late fusion. If all the information is concatenated in early fusion, then it is difficult

to handle the issue of high dimensionality in the input layer and dynamic ranges of different features. Similarly, if

only late fusion is used, the poor performance of each subnet can be predictable.

TaggedPThe main contributions of this study, on top of our previous work submitted to CHiME-3 (Du et al., 2015) are (i) a

simplified version of the MVDR approach from Yoshioka et al. (2015) with a comparable recognition performance is

adopted as the most effective one among all of those used in beamforming; (ii) in terms of boosting the input signal-

to-noise ratio (SNR), the beamforming techniques are not necessarily the same as those used in training and recogni-

tion stages in our new framework, which can relax the constraint that the same front-end techniques should be

applied to training and testing in the conventional pattern recognition framework; and (iii) more detailed descriptions

of the implementations, new experiments, and an expanded discussion of results are provided. Finally, by using an

improved MVDR approach and language model re-scoring, we can achieve the best recognition performance for

any DNN system with one-pass decoding among all of the submissions to the CHiME-3 challenge.

TaggedPThe remainder of the paper is organized as follows. Section 2 describes the CHiME-3 challenge task. In Section 3, we

give a detailed system description of our proposed deep learning framework. Early fusion and late fusion are elaborated

in Sections 5 and 6, respectively. In Section 7, we report experimental results, and we conclude our findings in Section 8.

2. The CHiME-3 D59X Xchallenge D60X Xtask

TaggedPThe CHiME-3 challenge is designed to focus on real-world and commercially motivated scenarios in which a per-

son is talking to a mobile tablet device in a variety of real and challengingly public conditions (Barker et al., 2015).

Four environments have been selected: a caf�e (CAF), a street junction (STR), a public transport (BUS) and a pedes-

trian area (PED). For each environment, two types of noisy speech data have been provided: real and simulated. The

real data are collected from 6-channel recordings of speakers reading the same sentences from the WSJ0 corpus

(Garofalo et al., 2007) in four environments. The simulated data are constructed by mixing clean utterances with

environmental noise recordings by using the techniques described in Vincent et al. (2007). For the ASR evaluation,

the data are divided into official training, development and test sets.

TaggedPThe development and test data consist of 410 and 330 utterances, respectively, with the same text as the corre-

sponding sets in the WSJ0 5k task. Each sentence is read by four different talkers in one randomly selected environ-

ment, for totals of 1640 (410 £ 4) and 1320 (330 £ 4) real development and test utterances. Similarly, simulated

data are generated for the development and test sets. The training data include 1600 real noisy utterances from the
Fig. 1. Geometry of microphone array. D1X X
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TaggedPcombinations of four speakers each reading 100 utterances in four environments (i.e., 4 £ 4 £ 100) and 7138 simu-

lated utterances from the WSJ0 training data.

TaggedPRecordings were made using an array of six Audio-Technica ATR3350 omnidirectional lavalier microphones

mounted in holes drilled through a custom-built frame surrounding a Samsung Galaxy tablet computer. The frame is

designed to be held in a landscape orientation and has three microphones spaced along both the top and bottom

edges, as shown in Fig. 1. All microphones face forward (i.e., towards the speaker holding the tablet), apart from the

top-center microphone (Mic 2), which faces backward.
3. System D61X Xoverview

TaggedPThe overall flowchart of our proposed system is illustrated in Fig. 2. The dashed block conceptually denotes a

large neural network, consisting of K subnets with different architectures. As for the input, multiple knowledge sour-

ces are exploited to generate different feature combinations. Each combination, as an early fusion, includes one type

of multi-channel beamforming concatenation, enhanced features, feature normalization, speaker-related features,

and auxiliary features, to be elaborated upon in the next section. Each subnet is built independently with different

architectures and learning methods. Finally, in recognition, the outputs of the large neural network for each frame

are generated by a late fusion of all subnets in the output layer for posterior averaging (Li and Sim, 2013), which are

then fed to a decoder with hidden Markov models (HMMs).
4. Multi-channel D62X Xenhancements

4.1. Delay-and-sum beamforming

TaggedPDelay-and-sum beamforming is a signal processing technique in which the outputs from an array of microphones

are time-delayed so they can be summed. For simplification, we use a simple delay and sum beamforming, namely
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TaggedPaveraging waveforms, where the delay is set to a constant 0 and the weights to 1/D63X XM, where D64X XM is the number of chan-

nels.
4.2. MVDR D65X Xformulation

TaggedPGiven a speech signal s(t) in the target speaker position, the signals received by an array of M microphones are

time-delayed and amplitude-attenuated versions of s(t) with additional noises and interferences, which can be mod-

eled in the time domain as

yiðtÞD gisðt¡tiÞC niðtÞD xiðtÞC niðtÞ iD 1; 2; :::;M ð1Þ
where ti is the time of arrival from the speaker location to the ith microphone location; gi is a gain factor to reflect

the effects of the propagation energy decay, the amplification gain of the corresponding microphone setting, the

directionality of the source and the ith microphone; and xi(t) and ni(t) are the convolved speech signal and the noise

signal received by the ith microphone, respectively. In the short-term Fourier transform (STFT) (Mcaulay and Qua-

tieri, 1986) domain, the equation can be expressed as Zhang et al. (2008)

yðk; lÞD gðkÞsðk; lÞC nðk; lÞD xðk; lÞC nðk; lÞ ð2Þ
where k is the frequency bin index and l is the frame index; x(k, l), s(k, l), and n(k, l) are the complex vectors with M

dimensions in the STFT domain corresponding to xi(t), s(t), and ni(t), respectively; g(k) is the steering vector (Veen

and Buckley, 1988). We assume that the analysis window is longer than all of the channel impulse responses and n
(k, l) is relatively stationary to be estimated.

TaggedPThe MVDR beamformer applies a set of weights w(k) to the vector y(k, l) such that the variance of the noise com-

ponent of wH(k)y(k, l) is minimized, subject to a constraint of unity gain in the target direction,

minw wHðkÞRnnðkÞwðkÞ; s:t: wHðkÞgðkÞD 1 ð3Þ
where Rnn(k) is the spatial correlation matrix of noise and interference defined as the following expectation:

RnnðkÞDEl½nðk; lÞnHðk; lÞ� ð4Þ
TaggedPThe closed-form solution of Eq. Eq. (3) is given by Capon (1969):

wðkÞDR

¡1ðkÞgðkÞ
gH ðkÞR¡1ðkÞgðkÞ

nn
nn

ð5Þ

TaggedPAccording to Eq. (3), MVDR is a technique that can be used to form an acoustic beam to pick up signals arriving

from a direction specified by a steering vector, thereby removing the background noise.
4.3. The D66X Xproposed MVDR D67X Xbeamforming

TaggedPThe conventional beamformer design obtains the steering vectors by estimating the speaker direction and the

microphone array geometry, such as the officially provided beamforming approach (Anguera et al., 2007). In the lit-

erature, the robust adaptive beamformers have been extensively studied to deal with direction of arrival (DOA) mis-

match, e.g., optimization in the DOA region (Keyi et al., 2005) and the diagonal loading techniques (Zhao et al.,

2014). Zhao et al. (2015) designed beamformers robust against microphone gain errors to address the microphone

gain estimation problem without any assumptions on the noise field. In Yoshioka et al. (2015), spectral mask-based

steering vector estimation without relying on prior information has been introduced. The key of this approach is the

unsupervised and accurate estimation of a spectral mask that indicates the presence of speech/nonspeech time D68X X�fre-

quency units. In this paper, we directly utilize the first several frames of each test utterance to estimate the noise of

the whole test utterance rather than the spectral mask-based approach in Yoshioka et al. (2015).

TaggedPSupposing that the speech and noise are statistically independent, the spatial correlation matrix of x(k, l), Rxx(k)

can be estimated as

RxxðkÞDRyyðkÞ¡RnnðkÞ ð6Þ
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TaggedPwhere Ryy(k) is the spatial correlation matrix of y(k, l). In this study, Ryy(k) and Rnn(k) are implemented as

RyyðkÞD 1

T

XT

lD 1

yðk; lÞyHðk; lÞ

RnnðkÞD 1

T1

XT1

lD 1

nðk; lÞnHðk; lÞ
ð7Þ

where T is the number of frames of the whole utterance and T1 (set to 6 in the experiments) is the number of the first

several frames of the utterance. Conversely, Rxx(k) can be written by definition as

RxxðkÞ DEl½xðk; lÞxHðk; lÞ�
D s2

SðkÞgðkÞgHðkÞ
ð8Þ

where s2
s ðkÞ is the power of the speech signal s(t). Clearly, the positive semi-definite matrix Rxx(k) is of rank 1 and

the steering vector g(k) can be obtained by computing the principal eigenvector of the estimated Rxx(k) (Jones and

Ratnam, 2009) from Eq. (6).
4.4. The generalized sidelobe canceller

TaggedPA generalized sidelobe canceller (GSC) (Griffiths and Jim, 1982; Gannot and Cohen, 2004) based on a relative

transfer function (Talmon et al., 2009) is adopted in this paper. The GSC as a filter structure can implement a beam-

former that minimizes the MVDR objective function, Eq. (3). In this paper, the main difference between the GSC

and our proposed MVDR is the estimation of the steering vector. The GSC obtains the steering vector by using DOA

estimates, but MVDR obtains the steering vector based on the estimated Rxx(k) presented in Section 4.3.
5. Early D69X Xfusion

5.1. Beamforming and feature concatenation

TaggedPFormulating a strategy to make full use of the multi-channel information of microphone array speech in the neural

networks is critical to recognition performance. The existing approaches can be divided into two broad classes: con-

ventional beamforming to generate one single channel output for subsequent processing and channel concatenation.

For example, in Liu et al. (2014) and D70X XRenals and Swietojanski (2014), the concatenation of the noisy features in each

channel of a microphone array outperforms the beamforming approach, especially for moving speech, as it might

preserve the signals from all directions. In Li et al. (2014b), the beamformed features concatenated with the noisy

features from the main channel of the microphone array yield better recognition performance. In Sainath et al.

(2016), the time-domain waveforms are concatenated directly as the input of the CLDNNs, and spatial info can be

exploited within the neural net to perform beamforming. However, the microphone array geometry priors are not

fully utilized in these approaches.

TaggedPIn our current study, multiple sets of beamforming results are concatenated, as illustrated in Fig. 3. Each beam-

formed result is generated on a subnet of channels in the microphone array. Multiple beamforming techniques are

also adopted for the comparison. One approach is the waveform averaging of the specified channels, denoted as Avg

in Table 1. Another approach is a generalized sidelobe canceller (GSC). The last approach is a simplified version of

the MVDR beamformer from Yoshioka et al. (2015), which achieves the best recognition performance in compari-

son to the other two. A detailed formulation and description of the MVDR approach will be given in the next subsec-

tion. After beamforming, multiple sets of features, such as log Mel-filterbank (LMFB) features, speaker-related

features, and other auxiliary features extracted from the enhanced signals, will be elaborated upon in the following

subsections. These features are exploited to generate different combinations for the input to each subnet, but the

acoustic context (the number of neighboring frames) of each concatenated feature set is different according to its

believed importance to acoustic modeling.
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5.2. Enhanced D71X Xfeatures

TaggedPTo demonstrate the effectiveness of the enhanced features (denoted as Enh) combined with the beamforming con-

catenation, we used the officially provided beamforming approaches (Barker et al., 2015). The source localization

technique in Loesch and Yang (2010) was used to track the target speaker, and the speech signal was estimated by

time-varying MVDR beamforming with a diagonal loading (Mestre and Lagunas, 2003) architecture so we can
Table 1

Description of the different concatenated features.

Feature Frames Channels Beamformers Type Dimensions

Avg1 11 4,5,6 Averaging fbankCpitch 1386

Avg2 1 1,3 Averaging fbankCpitch 126

CH2 1 4,5,6 No fbankCpitch 126

Enh 1 1,3,4,5,6 Official fbankCpitch 126

GSC1 11 4,5 GSC fbankCpitch 1386

GSC2 1 5,6 GSC fbankCpitch 126

GSC3 1 1,3 GSC fbankCpitch 126

iVec1 1 4,5,6 No ivector 20

iVec2 1 1,3 No ivector 20

CG1 1 4,5,6 No cochleagram 30

CG2 1 1,3 No cochleagram 30
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TaggedPdirectly concatenate different types of features as our input. In the following, we introduce some of the robust fea-

tures used in our work.

TaggedPIn our recent work (Xu et al., 2015; Tu et al., 2015; Du et al., 2014), the DNN-based single-channel enhancement

approach has been proven to be effective in single-channel speech recognition for simulation data. We now investi-

gate its effectiveness on the real data of the CHiME-3 task. In this study, the DNN as a regression model is used to

predict the log-power spectral (LPS) features of clean speech given the input LPS features of noisy speech with an

acoustic context, which can be regarded as a pre-processing technique. The noisy speech is selected from channel 5

of the microphone array. Overall, 7138 utterance pairs of simulated data and 1600 utterance pairs of real data are

used for training. However, the DNN pre-processing system could not yield a performance gain over the unprocessed

system, as confirmed in Hori et al. (2015).

TaggedPTo explain this, we show the spectrograms of an utterance example illustrated in Fig. 4. Fig. 4(a) is a spectrogram

of an utterance recorded by a close-talking microphone, which can be considered as the target clean speech in the

real data. Fig. 4(b) is a spectrogram of the utterance from channel 5 of the real data. By the comparison between

Fig. 4(a) and D72X X(c), severe speech distortions can be observed in the marked elliptical areas, which lead to incorrect rec-

ognition results. This problem is possibly due to (i) the limited real training data; (ii) the target speech of the real data

still being noisy, as shown in Fig. 4(a); and (iii) that only four speakers were included in the training set. Based on

this analysis, the DNN pre-processing technique is not further investigated in this study.
5.3. Normalized D73X Xfeatures

TaggedPUtterance-based feature normalization is widely used in ASR systems to reduce the effect of possible irrelevant

variabilities due to speaker, background noises and channel distortions. Two normalization approaches, namely,

mean normalization (denoted as MN in Table 2) and mean variance normalization (denoted as MVN in Table 2), are

applied to the acoustic features. MVN is more effective for additive noises, especially with low SNRs, while MN is

more stable for the high-SNR cases.
Table 2

Description of 12 subsystems (DAM denotes (D)NN using (A)verage beamforming and (M)ean normalization,

and BGV denotes (B)LSTM using (G)SC beamforming and mean (V)ariance normalization).

Feature D5X Xfusion NN type Parameters (D6X XM) One D7X Xiteration (D8X Xh)

DAM MN(Avg1CAvg2CCH2CEnh)CiVec1CiVec2 DNN 112 0.6

DGM MN(GSC1CGSC2CGSC3CEnh)CiVec1CiVec2 DNN 112 0.6

DAV MVN(Avg1CAvg2CCH2CEnhCCG1CCG2)CiVec1CiVec2 DNN 112 0.6

DGV MVN(GSC1CGSC2CGSC3CEnhCCG1CCG2)CiVec1CiVec2 DNN 112 0.6

LAM MN(Avg1CAvg2CCH2CEnh)CiVec1CiVec2 LSTM-RNN 116 1.5

LGM MN(GSC1CGSC2CGSC3CEnh)CiVec1CiVec2 LSTM-RNN 116 1.5

LAV MVN(Avg1CAvg2CCH2CEnh)CiVec1CiVec2 LSTM-RNN 116 1.5

LGV MVN(GSC1CGSC2CGSC3CEnh)CiVec1CiVec2 LSTM-RNN 116 1.5

BAM MN(Avg1CAvg2CCH2CEnh)CiVec1CiVec2 BLSTM-RNN 222 2.3

BGM MN(GSC1CGSC2CGSC3CEnh)CiVec1CiVec2 BLSTM-RNN 222 2.3

BAV MVN(Avg1CAvg2CCH2CEnh)CiVec1CiVec2 BLSTM-RNN 222 2.3

BGV MVN(GSC1CGSC2CGSC3CEnh)CiVec1CiVec2 BLSTM-RNN 222 2.3
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5.4. Speaker-related Features

TaggedPSimilar to Saon et al. (2013), the i-vectors (denoted as iVec in Table 1) that represent the speaker information are

extracted via the standard procedure (Dehak et al., 2011; Glembek et al., 2011) as parallel features fed to the input

layer of neural nets. The main idea is that the speaker- and channel-dependent Gaussian mixture model (GMM)

supervector s can be formulated as

sDmCTw ð9Þ
where m is the mean supervector of the universal background model (UBM), T is a low-rank matrix representing M

bases spanning the subspace with important variabilities in the mean supervector space, and w is a standard normal

distributed vector of sizeM. The i-vector is the maximum a posteriori (MAP) point estimation of w given the speech

segments. The main advantage of the i-vector based speaker adaptation approach is that the architecture of the neural

net remains unchanged, so it is unnecessary to perform the first-pass decoding. Inspired by the beamforming concate-

nation, the multi-channel i-vectors are extracted corresponding to each beamforming result, and they are verified

more effectively than the single-channel i-vector. Note that for both training and testing, the i-vector is estimated

based on the utterances of a single speaker and only changed across different speakers.

5.5. Auxiliary D74X Xfeatures

TaggedPBesides the commonly used LMFB features, other auxiliary features are also adopted. One feature set is the pitch

and probability-of-voicing features proposed in Ghahremani et al. (2014) D75X Xand Metze et al. (2013), which are tuned

for the ASR systems. It is believed that those features not only give large improvements for tonal language recogni-

tion but also yield remarkable gains for non-tonal languages, which is confirmed in our task. The other set is the

cochleagram (CG) features that are well verified for ASR (Chen et al., 2014). In our experiments, the pitch-related

features (Ghahremani et al., 2014) are always concatenated with the LMFB features in each system of Table 1,

whereas the CG features are optionally used.

TaggedPAs mentioned above, in early fusion, diverse features are concatenated together. One issue is to control the input

feature dimension to avoid possible performance degradation. Suppose that the dimension of the basic acoustic fea-

tures is D1 and the size of the acoustic context is t frames. The number of channels after beamforming is N. The

dimensions of the i-vector and auxiliary features are D2 and D3, respectively. Then, the final dimension for the input

feature vector is D1 � tCN � D1 CN � D2 CN � D3; which means that the acoustic context expansion is only

applied to the main channel of the basic acoustic features.

6. Late D76X Xfusion

6.1. Acoustic D77X Xmodeling

TaggedPThree types of neural nets are adopted as subnets: DNN, long short-term memory (LSTM)-based RNN (Sak et al.,

2014a), and bi-directional LSTM (BLSTM)-based RNN (Graves et al., 2013). Before the neural network training,

state labels should be generated using forced alignment via a state-of-the-art system with GMM-HMMs (Tachioka

et al., 2013). The only difference is the use of the multi-channel concatenation of acoustic features after the wave-

form average beamforming. This set of state labels is used for the training of all subnets. For the DNN training, the

Kaldi recipe for the CHiME-2 challenge (Weng et al., 2014) is adopted with the standard procedure, namely, pre-

training using restricted Boltzmann machines plus cross-entropy (CE) training. The DNN can be refined by re-align-

ment (ReFA) and sequence discriminative training using the state-level minimum Bayes risk (sMBR) criterion

(Vesel et al., 2013). For training the LSTM-RNN and BLSTM-RNN, the CE (Sak et al., 2014a) and sMBR criterion

(Sak et al., 2014b) are adopted with the truncated backpropagation through time (BPTT) learning algorithm to

update the model parameters. The neural network types, parameters and computational speed are shown in Table 2.

The first letter of each subsystem abbreviation represents the neural network type (D, L, and B denote (D)NN, (L)

STM, and (B)LSTM, respectively), the second letter represents the beamforming type (A and G denote (A)veraging

beamforming and (G)SC beamforming, respectively), and the last letter represents the feature normalization (M and

V denote (M)ean normalization and mean (V)ariance normalization, respectively).
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Table 3

WERs (in %) of GMM-based systems trained with different channels on the devel-

opment set of real data.

System %WER for D9X Xreal D10X Xdev.

BUS CAF PED STR AVG.

CH1 25.25 27.17 17.33 22.96 23.18

CH2 64.02 56.17 51.03 70.87 60.52

CH3 27.35 27.82 16.99 22.78 23.74

CH4 26.64 19.32 16.98 22.46 21.35

CH5 25.93 17.46 13.13 17.89 18.6

CH6 24.07 19.81 14.88 18.63 19.35

ARTICLE IN PRESS
JID: YCSLA [m3+;December 27, 2016;15:49]

10 Y.-H. Tu et al. / Computer Speech & Language 00 (2016) 1�18
6.2. Language D78X Xmodeling

TaggedPIn this paper, in addition to the originally provided 3-gram language model (LM) as the baseline, a RNN LM

(Mikolov et al., 2010) and a 5-gram LM with modified Kneser D79X X�Ney smoothing (Kneser and Ney, 1995; Chen and

Goodman, 1996) are generated using the WSJ0 text corpus. The RNN LM is more effective and is composed of a

neural network including a hidden layer with re-entrant connections to itself with a one-word delay. The activations

of the hidden units play the role of memory, keeping a history from the beginning of the speech. Accordingly, the

RNN LM can robustly estimate word probability distributions by representing the histories smoothed in the continu-

ous space and taking long-distance inter-word dependencies into account. Mikolov et al. reported that the RNN LM

yielded a large improvement in recognition accuracy when combined with a standard n-gram model (Mikolov et al.,

2010). In the decoding phase, word lattices are first generated using the baseline LM, namely, the standard 5k WSJ

3-gram with entropy pruning. Then, N-best lists are generated from the lattices using the 5-gram LM. Finally, the N-

best lists are re-ranked using a linear combination of the 5-gram and RNN LMs. The best-ranked hypothesis is

selected as the recognition result of each single system.
6.3. System D80X Xcombination

TaggedPFor all K subnets, the outputs share the same tied state set from the HMM topology of the GMM-HMM or DNN-

HMM system. Thus, late fusion can be implemented by a simple strategy of state posterior averaging in the output

layers (Li and Sim, 2013). This approach has been verified to be more effective than lattice fusion or ROVER (Fis-

cus, 1997) in our experiment, which is reasonable as fusion at the frame level (state level) is done at a higher resolu-

tion than that at the text level and is not affected by the language model. Back to Fig. 2, if we treat early fusion and

late fusion as internal operations of the large neural net in the dashed box, then the input might be a high-dimensional

vector with diverse features from multiple knowledge sources, while the output is still the normal-state posterior

representation.
7. Experiments and D81X Xresults

TaggedPWe evaluate the ASR performance of the proposed concatenation methods on the multi-condition training

schemes for the CHiME-3 task and compare them to the baseline ASR systems provided by the challenge sponsors.

Both the GMM and DNN acoustic models were used in the ASR systems.

7.1. Empirical experiments on beamforming and concatenation

TaggedPDue to space limitations in Du et al. (2015), the feature concatenation configuration was directly given there

without explanation. Here, we detail our proposed approach in multi-channel scenarios. The following experiments

show the importance of a reasonable concatenation and a full usage of data from all channels.

TaggedPFirst, Table 3 compares models trained on 6-channel data sets in terms of the WER on the development set of

real data. We adopted a GMM-HMM system using a 91-dimensional feature vector, consisting of 13-dimensional
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Table 4

WERs (in %) of GMM-based systems trained with different beamformings on the

development set of real data.

System %WER for D11X Xreal D12X Xdev.

BUS CAF PED STR AVG.

CH5 25.93 17.46 13.13 17.89 18.60

Enh 21.63 17.67 16.45 18.20 18.49

AvgAll 28.50 25.47 16.52 21.90 23.1

AvgNoch2 24.30 18.13 13.97 20.23 19.16

Avg1 24.41 16.52 12.29 16.13 17.34

Avg2 22.70 22.89 14.29 18.82 19.68
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TaggedPMel-frequency cepstral coefficients (MFCCs) with a 7-frame context expansion. The result confirmed that the qual-

ity of channel 5 was the best among the 6 channels, and it would play a key role in beamforming and feature concate-

nation in the subsequent experiments.

TaggedPSecond, Table 4 gives a WER comparison with Avg beamforming of different channels on the development sets

of real data using the above GMM-HMM acoustic model. For all beamforming, Channel 5 was used due to its reli-

able speech quality. “CH5” and “Enh” denote the acoustic model trained on the speech data of channel 5 and the

enhanced data by the official tools using 6-channel data, respectively. For the waveform averaging beamforming,

“AvgAll” , “AvgNoch2”, “Avg1’, and “Avg2” denote the averages of channels (1,2,3,4,5,6), (1,3,4,5,6), (4,5,6), and

(1,3), respectively. When training and testing data were both processed by the provided officially enhanced data, the

WER of 18.49% for the real data was slightly decreased compared to that of the single channel baseline (CH5) of

18.60%. This result shows a weakness of the conventional multi-channel enhancement for ASR. One reason that the

“AvgAll” system performed the worst at 23.1% may be that channel 2 contains a lot of noise. By excluding channel

2, we found that the Avg1 system at 17.34% outperformed the baseline system by a large margin, which indicates

that the performance of waveform averaging beamforming depends upon the speech quality of each channel, and

averaging beamforming is more robust to speaker motion than the official beamformer.

TaggedPThe above experiments were conducted using the GMM-HMM model for a quick verification of our point. Next,

the DNN-HMM model was adopted. Table 5 shows the performance of our proposed simple concatenation system

on the development sets of real data. In the DNN-based baseline system, 11 frames of 40-dimension LMFB features

with their first-order and second-order derivatives were used, resulting in 1320-dimensional features. The DNN has

7 hidden layers with 2048 hidden units at each layer and the 1965-dimensional softmax output layer, corresponding

to the senones of the GMM-HMM system. Compared to the Avg1 results in Table 4, we found that the accuracy of

DNN was better than that of GMM for the Avg1 system. In the experiments to follow here, the DNN system setting

was adopted. As for the simple concatenation system, the frames of each concatenated feature were the same, so the

input dimensions were an integral multiple of 1320, namely, 1320 £ N, where N is the number of concatenated fea-

tures. The first two rows of Table 5 show that our proposed beamforming and simple concatenation “Avg1CAvg2”

system consistently outperformed the “Avg1” system for all testing cases, e.g., a relative WER reduction of 6.93%

was achieved for the development sets on average. The result indicates that beamforming on different channels

might be strongly complementary to make full use of multi-channel information. Finally, channel 2 containing much
Table 5

WER (in %) comparison at different simple concatenations of the Avg beam-

forming of different channels on the development sets of real data using the

DNN acoustic model.

System Feature D13X Xdimension %WER for D14X Xreal D15X Xdev.

BUS CAF PED STR AVG.

Avg1 1320 22.48 14.65 12.13 16.50 16.44

Avg1CAvg2 2640 20.52 14.50 11.12 15.06 15.3

Avg1CAvg2CCH2 3960 24.78 18.08 12.86 16.56 18.07
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Table 6

WERs (in %) for feature concatenations with different frame settings on the

development sets of real data using the DNN acoustic model.

System Feature D16X Xdimension %WER for D17X Xreal D18X Xdev.

BUS CAF PED STR AVG.

Avg1CAvg2(11C11) 2772 15.93 12.30 7.98 11.47 11.92

Avg1CAvg2(11C5) 2016 16.15 11.67 7.86 11.74 11.86

Avg1CAvg2(11C3) 1764 16.60 11.28 7.76 11.49 11.78

Avg1CAvg2(11C1) 1512 16.74 11.83 8.79 11.58 11.98
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TaggedPnoise was used as the noise source to improve the noise robustness of ASR, for example, noise-aware training. How-

ever, no gains were observed by using the data from channel 2. This result may be due to size of the input dimension,

which was 3960 and was much larger than the number of nodes of the hidden layer, resulting in an information loss

when the input features were transferred into the first hidden layer.

TaggedPThen, we concatenated the 2-dimensional pitch features (pitch and probability-of-voicing) mentioned in Sec-

tion 5.5 into the 40-dimensional LMFB features and applied utterance-based MN plus their first-order and second-

order derivatives, resulting in a 126-dimensional feature vector at each frame. It was clearly seen that MN consis-

tently reduced the WER across all test cases when comparing the second row result of 15.3% via 2640-dimensional

features in Table 5 with the first row result of 11.92% via 2772-dimensional features in Table 6. MN was able to

reduce the channel mismatches and noise effects on the features.

TaggedPFinally, Table 6 shows that the WER is basically invariable with the changing frames of Avg2, which means that

more complementary features can be concatenated as the input dimension is reduced. The “Avg1CAvg2(11C11)”

system denotes that the frames of the concatenated Avg1 and Avg2 features were both 11. Although the

“Avg1CAvg2(11C3)” system slightly outperformed the “Avg1CAvg2(11C1)” system, the dimension of the latter

was smaller. Thus, the settings of the system “Avg1CAvg2(11C1)” were adopted and denoted as “Avg1CAvg2” for

convenience in the following experiments, and the number of concatenated features is one, except for Avg1, which

has 11 frames.
7.2. Feature concatenation: early fusion

TaggedPIn this section, experiments on early fusion were reported. Table 7 gives a WER comparison at different stages of

early fusion for the DAM system on the development and test sets of real data. Our proposed beamforming and con-

catenation system “Avg1CAvg2” consistently outperformed the baseline system for all testing cases, e.g., relative
Table 7

WER (in %) comparison of different early fusions for the DAM system on

the development and test sets of real data.

System Feature D19X Xdimension BUS CAF PED STR AVG.

Development set of real data

CH5 1386 20.93 12.89 9.18 13.58 14.15

Avg1CAvg2 1512 16.74 11.83 7.79 11.58 11.98

CCH2 1638 15.74 11.52 7.92 11.47 11.66

CEnh 1764 14.35 10.06 7.76 10.50 10.67

CiVec1CiVec2 1804 12.33 9.45 6.83 10.37 9.75

CReFA 1804 11.70 9.00 6.86 9.76 9.33

CsMBR 1804 10.87 7.92 6.14 8.88 8.45

Test set of real data

CH5 1386 34.77 26.24 20.76 16.23 24.50

Avg1CAvg2 1512 28.04 22.23 17.30 13.54 20.28

CCH2 1638 27.28 21.22 17.28 12.87 19.66

CEnh 1764 25.31 21.26 15.88 12.27 18.68

CiVec1CiVec2 1804 22.79 20.02 15.13 11.60 17.39

CReFA 1804 21.33 18.88 14.78 11.32 16.58

CsMBR 1804 19.09 16.74 13.19 10.53 14.89
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Table 8

WER (%) comparison of different early fusions for the DGM system on the

development and test sets of real data.

System Feature D20X Xdimension BUS CAF PED STR AVG.

Development set of real data

GSC1 1386 16.92 10.44 7.57 11.28 11.55

CGSC2 1512 16.37 9.73 7.23 10.57 10.98

CGSC3 1638 15.96 9.97 7.26 10.60 10.95

CEnh 1764 14.62 9.29 7.23 9.97 10.28

CiVec1CiVec2 1804 13.57 8.83 6.90 10.09 9.85

CReFA 1804 13.39 8.45 6.90 9.95 9.68

CsMBR 1804 12.16 8.14 6.12 8.64 8.77

Test set of real data

GSC1 1386 27.16 21.78 17.12 13.34 19.85

CGSC2 1512 25.82 20.94 15.98 12.83 18.89

CGSC3 1638 25.69 20.86 15.21 12.63 18.59

CEnh 1764 24.27 21.22 15.56 12.29 18.33

CiVec1CiVec2 1804 22.36 20.30 14.52 11.58 17.19

CReFA 1804 22.56 19.91 14.87 11.60 17.24

CsMBR 1804 20.02 17.26 12.91 10.40 15.15
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TaggedPWER reductions of 15.3% and 17.2% were achieved for the development and test sets on average. Then, by append-

ing the channel 2 features, the recognition performance was slightly improved, in contrast to the point that the high

dimension of input concatenated features may degrade the performance in Section 7.1. More interestingly, the con-

catenation with the enhanced features brought about an absolute 1% WER reduction for both the development and

test sets. However, according to Table 4, no obvious improvements were observed by the use of the enhanced fea-

tures only. This indicates the necessity of the parallel beamformed and enhanced features, which might be strongly

complementary. Furthermore, the additional i-vector features gave remarkable gains, demonstrating the effective-

ness of these speaker-adapted features. As for DNN training, ReFA and sMBR could consistently reduce the WER.

Overall, relative WER reductions of 40.3% and 39.2% were yielded from the baseline system for the development

and test sets, respectively. By considering that the test set was more difficult than the development set, these simi-

larly relative improvements show a generalization ability of our proposed early fusion strategy. The above results

showed that the more complementary features that could be concatenated, the better the performance improvements

are.

TaggedPTable 8 shows a WER comparison at different stages of early fusion for the DGM system on the development and

test sets of real data. Similar observations to those for DAM as in Table 7 could be made. The main difference

between DAM and DGM was the use of GSC-based beamforming. It is interesting that in the stage of pure beam-

forming concatenation, the GSC-based approach outperformed the waveform average approach, e.g., with the aver-

age WER decreasing from 19.66% to 18.59% on the test set. However, by a performance comparison of the final

systems, DAM and DGM, we could make the opposite observation, that waveform averaging was slightly better

than that of GSC, which implies that the simple average operation in the time domain was a robust beamforming

approach. Finally, both DAM and DGM gave significant gains over the baseline system, and each feature set in the

early fusion stage made a contribution to reducing the WERs.
7.3. System combination: late fusion

TaggedPBefore presenting the late fusion results, the recognition performances of the 12 subsystems to be combined are

shown in Table 9. Clearly, no single subsystem could achieve the best performance in all environments. For the test

set with real data, DAM achieves the best performance on average, but not the best for the PED and STR environ-

ments. There were 7 subsystems with at least one best performance case. Those observations deliver important mes-

sages. On the one hand, the noise statistics should be quite different in the four test environments, so that each

subsystem with one feature combination could not optimally handle all of the noise conditions. On the other hand,

all of the subsystems might be complementary, which was one key motivation for our proposed late fusion strategy.
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Table 9

WER (in %) comparison of 12 subsystems on the development and test sets of real and simulated data.

DAM DGM DAV DGV LAM LGM LAV LGV BAM BGM BAV BGV

Dev Simu BUS 6.64 5.91 7.24 6.52 7.33 6.80 7.27 6.50 6.83 5.80 6.65 6.27

CAF 9.09 9.23 10.27 10.04 10.18 10.41 9.41 10.03 9.73 9.20 9.60 9.31

PED 6.17 5.72 6.90 6.39 6.78 6.42 7.02 6.65 6.45 6.09 6.70 6.25

STR 8.33 6.96 9.01 7.29 8.76 8.16 8.91 7.57 7.86 6.90 8.24 7.52

Avg. 7.56 6.96 8.36 7.56 8.26 7.95 8.15 7.69 7.72 7.00 7.80 7.34

Real BUS 10.87 12.16 12.16 7.08 12.94 14.43 13.26 13.69 11.11 12.45 12.82 12.17

CAF 7.92 8.14 8.83 10.12 10.29 9.75 9.62 9.73 8.86 8.63 8.66 8.81

PED 6.14 6.12 5.94 8.48 7.48 7.80 7.77 8.16 7.05 7.17 7.02 6.80

STR 8.88 8.64 7.47 10.31 10.22 10.50 9.84 10.29 9.44 9.05 8.95 8.98

Avg. 8.45 8.77 9.10 9.00 10.23 10.62 10.12 10.47 9.12 9.33 9.36 9.19

Test Simu BUS 7.68 6.74 7.45 13.32 8.03 7.71 6.82 6.71 7.49 7.27 6.93 6.37

CAF 11.60 9.51 11.00 9.17 12.07 12.03 9.08 9.88 10.66 10.96 9.69 9.56

PED 11.58 8.37 10.96 6.37 11.45 10.70 9.56 8.87 9.77 9.77 9.23 8.74

STR 11.52 9.21 11.94 8.98 12.85 10.89 11.21 10.09 11.62 9.97 11.04 9.60

Avg. 10.59 8.46 10.34 9.46 11.10 10.33 9.17 8.89 9.89 9.49 9.22 8.57

Real BUS 19.09 20.02 23.35 25.24 22.08 23.72 22.21 22.43 20.38 22.99 21.24 21.07

CAF 16.74 17.26 19.78 20.58 19.01 19.74 18.85 19.44 17.02 17.59 17.52 17.69

PED 13.19 12.91 14.69 14.07 15.19 16.42 14.28 15.53 13.85 14.41 13.83 12.65

STR 10.53 10.40 11.90 12.57 11.34 12.18 11.49 11.09 10.65 10.96 11.28 10.16

Avg. 14.89 15.15 17.43 18.11 16.90 18.02 16.70 17.12 15.47 16.49 15.97 15.39
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TaggedPTable 9 illustrates a WER comparison of different combinations in late fusion on the development and test sets of

the real and simulated data. We designed the fusion experiments from two aspects, namely, the fusion of different

neural networks with a fixed input feature combination and the fusion of different inputs with a fixed type of neural

network. For descriptive simplification, we rename the 12 systems (DAM, DGM, DAV, DGV, LAM, LGM, LAV,

LGV, BAM, BGM, BAV, BGV) as S1D82X X�S12. From the results of F(1,5,9), F(2,6,10), F(3,7,11), F(4,8,12), significant

improvements were achieved by fusing different architectures (DNN, LSTM-RNN, BLSTM-RNN), e.g., WER on the

real test data was reduced from 14.89% in the best single subsystem to 12.1% in F(3,7,11) on average, indicating

that different architectures could help each other in predicting the state posteriors at the output layer (Table 10). With

the fixed neural network type, the improvements by fusing different feature inputs were also significant on the real

data. The small dynamic range of the WERs for the first 7 fusion systems is interesting. By fusing all 12 subsystems
Table 10

WERs (in %) of different system combinations on the development and test sets of real and simulated data

(F(1,5,9) means fusion of subsystems 1, 5, and 9).

F(1,5,9) F(2,6,10) F(3,7,11) F(4,8,12) F(1�4) F(5�8) F(9�12) F(1�12)

Dev Simu BUS 5.53 4.97 5.38 4.82 5.50 5.16 5.18 5.07

CAF 7.98 7.96 7.61 8.05 8.10 8.17 8.01 6.95

PED 5.41 5.22 5.44 5.18 4.99 5.49 5.49 4.73

STR 6.61 5.80 6.36 5.97 6.11 5.87 6.05 5.62

Avg. 6.38 5.99 6.2 6.01 6.17 6.17 6.18 5.59

Real BUS 9.20 10.33 9.81 10.86 10.05 10.31 10.08 8.76

CAF 7.26 7.27 7.02 7.17 7.39 7.37 7.01 6.37

PED 5.66 6.02 5.68 5.99 5.40 5.74 6.00 5.03

STR 7.46 8.23 7.27 7.92 7.71 7.26 7.34 6.44

Avg. 7.4 7.96 7.44 7.89 7.64 7.67 7.61 6.65

Test Simu BUS 5.88 5.83 5.49 5.70 6.33 6.11 5.79 5.30

CAF 9.25 9.11 7.86 8.03 8.52 8.91 8.46 7.71

PED 8.69 8.07 7.38 6.99 8.11 7.94 7.60 6.82

STR 8.91 7.77 9.02 8.03 9.00 8.31 8.74 7.96

Avg. 8.19 7.70 7.44 7.20 7.99 7.82 7.65 6.95

Real BUS 15.87 17.74 16.04 17.46 16.79 17.76 16.30 13.78

CAF 13.00 13.52 13.35 14.21 14.34 14.51 13.99 11.36

PED 11.53 11.53 10.69 10.63 10.71 12.31 11.15 9.30

STR 8.50 9.10 8.33 9.02 9.17 9.34 9.02 7.77

Avg. 12.22 12.97 12.10 12.83 12.75 13.48 12.62 10.55
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Table 11

WER (in %) comparison between different beamformers on the test

sets of real data using the CH5 and retrained acoustic models.

Training D21X Xdata Test D22X Xdata %WER for D23X Xreal D24X Xtest D25X X

BUS CAF PED STR AVG.

CH5 CH5 34.77 26.24 20.76 16.23 24.50

CH5 Avg1 37.03 24.04 17.86 14.98 23.48

CH5 GSC1 36.19 22.38 18.25 14.44 22.81

CH5 MVDR 21.87 17.05 14.18 12.63 16.43

CH5CMVDR MVDR 18.93 16.02 13.59 12.23 15.19
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TaggedPin F(1�12), a relative WER reduction of 29.1% (from 14.89% to 10.55%) was obtained from the best single subsys-

tem on the real test data. The F(1�12) system consistently achieves the best results for both the development and

test sets of real data, and this observation could be extended to most of the best systems with the simulation data.
7.4. Train-test beamforming mismatch

TaggedPNext, we further enhanced our proposed fusion strategies by improved beamforming on the test sets of the real

data using the CH5 acoustic model. We find that our simplified MVDR beamformer, which used the data from all 6

channels, could achieve a relative WER reduction of 32.94% (from 24.50% in the third row to 16.43% in the bottom

row) without any acoustic model retraining in Table 11. The WER on the real test data is reduced from 16.43% in

the model that was trained on CH5 data to 15.19% in the model that was retrained using CH5Cenhanced data.

Hence, the retraining can bring about a great improvement.

TaggedPThen, we directly used the proposed MVDR beamformer to replace the other beamformed features in the test

stage, and the acoustic models of the systems presented in Table 2 remained unchanged. Table 12 shows a WER

comparison with the replacements of the different beamformed features for systems DAM, DAV, DGM, and DGV

on the test set of real data. For systems DAM and DAV, the features of Avg1 and Avg2 were replaced with the

MVDR and Avg1, respectively, and we denoted the two systems as improved DAM and DAV, respectively. Com-

pared to the DAM, with a WER result of 14.89% in the bottom row of Table 9, the concatenation of the MVDR

beamformed features remarkably reduced the WER to 11.68% for improved DAM, representing a relative WER

reduction of 21.56% on average, although there existed some mismatching between the concatenated features of the

training and test stages. The result shows that our training data can be enlarged with different concatenated features

in the limitation of the training data. The last two rows of Table 12 also showed similar WER reductions in the GSC

systems.
7.5. Language model rescoring

TaggedPFinally, a large-scale language model (Hori et al., 2015) was adopted to further improve the ASR performance.

First, we used the WSJ0 text corpus to train a 5-gram LM and a RNN LM, which was a class-based LM with 200

word classes and 500 hidden units. Then, the 5-gram and RNN LM probabilities were linearly combined, and the

best weights of the combination were chosen depending on the development set. The performance of the re-scoring
Table 12

WER (in %) comparison of the four improved DNN systems on the test set of

real data using our proposed MVDR beamforming in the test stage.

Improved D26X Xsystem Test D27X Xdata %WER for D28X Xreal D29X Xtest

BUS CAF PED STR AVG.

DAM MVDR C Avg2C 12.9 13.00 11.08 9.75 11.68

DAV CH2CEnhanCiVec 13.87 13.80 10.72 10.63 12.26

DGM MVDRCGSC1C 15.63 15.41 12.93 11.52 13.87

DGV CH2CEnhanCiVec 16.02 15.13 11.70 10.83 13.42
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Table 13

WER (in %) comparison of the 5-gram and RNN LMs for

the improved DAM system on the test set of real data.

LM %WER for D30X Xreal D31X Xtest

BUS CAF PED STR AVG.

3-gram 12.9 13.00 11.08 9.75 11.68

5-gram 10.67 11.23 10.11 8.72 10.18

C RNN LM 9.53 9.69 8.84 8.26 9.08

Table 14

WER (in %) comparison of 3-gram, 5-gram and RNN

LMs for fusing the four improved systems (DAM, DAV,

DGM, and DGV) on the test set of real data.

LM %WER for D32X Xreal test

BUS CAF PED STR AVG.

3-gram 12.45 12.25 9.70 9.21 10.90

5-gram 10.58 10.48 8.43 8.44 9.48

C RNN LM 9.18 9.28 7.51 7.60 8.39
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TaggedPof the hypothesized word lattice using a RNN LM for the improved DAM system mentioned in the above section is

shown in Table 13. We can observe that both the 5-gram and RNN LMs further improve the performance over the 3-

gram model for the improved system DAM in Table 12. The improved DAM system achieved a WER of 9.08%,

which is the best DNN system with one-pass decoding among all of the systems submitted to CHiME-3. The fusion

results of the four improved systems (DAM, DAV, DGM, DGV) shown in Table 12 were also provided in Table 14,

and the best WER of 8.39% shown in the bottom row is much better than those of the Top-2 (a WER of 9.10%)

(Hori et al., 2015) and Top-3 (a WER of 10.55%) (Du et al., 2015) systems submitted to CHiME-3.

8. Conclusion and D83X Xfuture work

TaggedPIn this paper, we propose to integrate multiple knowledge sources denoted by multiple feature sets into deep neu-

ral networks with different architectures. The proposed early fusion is adopted for local feature concatenation to

deal with incomplete features caused by imperfect beamforming, while the proposed late fusion acts as a model aver-

age of complementary systems. Since improved beamforming (the simplified version of the MVDR beamformer in

Yoshioka et al., 2015), enhanced features (as demonstrated in pitch features Ghahremani et al., 2014, speaker-

adapted features (Saon et al., 2013) and normalized features) and powerful language models (as demonstrated in

RNN LM Mikolov et al., 2010) are also available, we incorporate them for improved early fusion and late fusion.

By replacing the weak beamformers, such as Avg and GSC, without changing the trained system, a huge improve-

ment can also be obtained. This can also save much retraining time when a better beamformer is provided that can

be directly used. In future work, we will expand our structure to any microphone array and design a structure to auto-

matically achieve the optimal concatenation.
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