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ABSTRACT
We address an over-smoothing issue of enhanced speech in
deep neural network (DNN) based speech enhancement and
propose a global variance equalization framework with two
schemes, namely post-processing and post-training with mod-
ified object function for the equalization between the global
variance of the estimated and the reference speech. Exper-
imental results show that the quality of the estimated clean
speech signal is improved both subjectively and objectively in
terms of perceptual evaluation of speech quality (PESQ), es-
pecially in mismatch environments where the additive noise
is not seen in the DNN training.

Index Terms— Speech enhancement, global variance e-
qualization, deep neural networks, over-smoothing

1. INTRODUCTION

In many real applications, such as automatic speech recogni-
tion (ASR), mobile communication and hearing aids [1], esti-
mating clean speech from noisy ones is very important.

Many speech enhancement approaches have been pro-
posed, such as spectral subtraction [2], Wiener filtering [2],
and minimum mean squared error (MMSE) estimation [3, 4].
Most of these methods are based on either the additive nature
of the background noise, or the statistical properties of the
speech and noise signals [5]. However, the process of noise
corruption on speech is very complicated. An adaptive and
non-linear model, like the neural networks, should be more
suitable. Shallow neural networks with random initialization
were once used as the non-linear filters to extract clean speech
from noisy version [6, 7, 8, 9]. Nonetheless, the relatively
simple model with little training data was insufficient to rep-
resent the complex relationship between speech and noise.
Recently stacked denoising autoencoders (SDA) were adopt-
ed to model the relationship between clean and noisy power
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spectrums of speech signals [5, 10]. In [11], speech separa-
tion was formulated as a classification task based on DNNs.
We have also introduced a speech enhancement framework
based on DNNs taking advantage of the abundant acoustic
context information and large training data [12], and it was
shown to achieve better generalization to new speakers, d-
ifferent SNRs and unseen noise types, etc. Although these
mapping functions can be effective, the listening quality is
not entirely satisfactory due to the presence of estimation
errors and residual noise.

In this paper, we focus on addressing one type of residue
error problems, namely the over-smoothing issue in DNN
regression-based speech enhancement by considering the
equalization between the global variance of the enhanced
features and reference clean speech features. Two methods,
namely post-processing and post-training with modified ob-
ject function, are proposed to lift the global variance. This
global variance equalization process can be considered as one
type of histogram equalization (HEQ), which plays a key role
of density matching [13]. [14] had demonstrated that the use
of global variance information could significantly improve
subjective score in a voice conversion task.

The rest of the paper is organized as follows. The DNN-
based speech enhancement system is illustrated in Section 2.
Section 3 presents the proposed global variance equalization
frameworks. In Section 4, experimental evaluations are given
to demonstrate the effectiveness of quality improvement with
the proposed approach. Finally, we summarized our findings
in Section 5.

2. DNN-BASED SPEECH ENHANCEMENT

A block diagram of the DNN-based speech enhancement sys-
tem is shown in Fig. 1, which mainly included four modules:
feature extraction, DNN training, DNN decoding, and wave-
form reconstruction. In the training stage, a regression DNN
model is trained from a collection of stereo data, consisting of
pairs of noisy and clean speech represented by the log-power
spectral features. In the enhancement stage, the well-trained
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DNN model is fed with the features of noisy speech in order to
generate the enhanced log-power spectral features. The addi-
tional phase information is calculated from the original noisy
speech. Finally an overlap-add method is used to synthesize
the waveform of the estimated clean speech. A detailed de-
scription of the feature extraction module and the waveform
reconstruction module can be found in [15].

Clean/Noisy

Samples

Feature

Extraction

DNN

Training

Noisy

Samples

Feature

Extraction

DNN

Decoding

Waveform

Reconstruction

Training Stage

Enhancement Stage

t
Y

l
Y

l
X̂

t
X̂

f
YÐ

Fig. 1. A block diagram of the DNN-based speech enhance-
ment system.

As for training of the regression DNN model, a deep
generative model of the noisy log-spectra by a stacking of
multiple restricted Boltzmann machines (RBMs) was firstly
learned as an initialization of the DNN parameters to avoid
poor local minima [16]. A back-propagation algorithm with
the minimum mean squared error (MMSE) object function
between the target and enhanced log-power spectral features
is then used to fine-tune the DNN parameters subsequently.
A stochastic gradient descent (SGD) algorithm is performed
in mini-batches with multiple epochs to improve the conver-
gence of the learning process as follow:

E =
1

N

N∑
n=1

D∑
d=1

(X̂d
n(W, b)−Xd

n)
2 + λ∥W∥22. (1)

where E is the mean squared error with the regularization
term, X̂d

n(W, b) and Xd
n denote the d-th enhanced and target

log-spectral features at sample index n, respectively, with N
representing the mini-batch size, D being the size of the log-
spectral feature vector, (W, b) denoting the weights and bias
parameters to be learned. And ∥W∥22 =

∑
i,j w

2
i,j , λ is the

regularization weighting coefficient to avoid overfitting.

3. GLOBAL VARIANCE EQUALIZATION

3.1. Global variance in DNN parametrization

A global variance of the feature vectors [14] is defined as:

GV (d) =
1

M

M∑
n=1

(X̂d
n − 1

M

M∑
n=1

X̂d
n)

2. (2)

where X̂d
n is the d-th component of a DNN output vector at

frame n of M -frame data. The global variance of normal-
ized reference clean speech can be calculated in the same way.

Meanwhile, a dimension-independent global variance can be
computed as follow:

GV =
1

M ∗D

M∑
n=1

D∑
d=1

(X̂d
n − 1

M ∗D

M∑
n=1

D∑
d=1

X̂d
n)

2. (3)
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Fig. 2. The global variances of the training set were shown.
GVref (d) and GVest(d) represented the d-th dimension of
the global variance of the reference features and the estima-
tion features, respectively. And the corresponding dimension-
independent variances were denoted as GVref and GVest.

Fig. 2 shows the global variances of the estimated and ref-
erence log-power spectra of clean speech. They were calcu-
lated from all training data as in Eqs. (2-3). It can be observed
that the global variances of the estimated features were small-
er than those of the target ones. This indicated that there was
an over-smoothing problem during the DNN training. More-
over, the problem would get even worse when the signal-to-
noise ratio (SNR) of the testing data is lower. Although this
smoothing effect can result in a smaller squared error during
model estimation, it is detrimental for trained DNNs to gen-
erate high-quality enhanced speech.

3.2. Enhancement using global variance equalization

In this section, post-processing, post-training with modified
object function and their extensions are proposed to lift the
global variance of the estimated spectra to the level of the ref-
erence spectra, to improve human auditory perception. Before
that, several equalization factors should be defined as follows:

β =

√
GVref

GVest
. (4)

where GVest represents the global variance of the DNN out-
put fed with all training data, and it is independent of the di-
mension of the feature vectors. The related global variance
of the reference is denoted as GVref . We further define the
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equalization factor α(d) for each dimension or frequency bin
as follow:

α(d) =

√
GVref (d)

GVest(d)
. (5)

Finally, considering that the value of α(d) is fluctuant at d-
ifferent frequency bins, especially at high frequencies and at
low frequencies where the enhancing is much more difficult,
an averaged version ᾱ was proposed as below:

ᾱ =
1

D

∑
d

α(d). (6)

where the factor ᾱ can be regarded as another version of di-
mension independent factor β. Noted that these three equal-
ization factors were all learned automatically from training
data.

3.2.1. Post-processing

Input features of the DNN for each utterance were normalized
to zero mean and unit variance similar to mean and variance
normalization done in robust speech recognition [17]. Hence,
the output of DNN X̂(d) should be transformed back as fol-
low:

X̂ ′(d) = X̂(d) ∗ v(d) +m(d). (7)

where m(d) and v(d) are the d-th component of the mean
and variance of input noisy features, respectively. Then an
equalization factor η could be used to lift the variance of this
reconstruction signal as the post-processing:

X̂ ′′(d) = X̂(d) ∗ η ∗ v(d) +m(d). (8)

Here the factor η can be either β, α(d) or ᾱ, which were
defined in Eqs. (4-6). Since the DNN output X̂(d) was in
the normalized log-power spectrum domain, the multiplica-
tive factor η (with its options α(d), β and ᾱ) was just operat-
ed as a exponential factor in the linear spectrum domain. And
this exponential factor could effectively sharpen the formant
peaks of the recovered speech and suppress the residual noise
simultaneously.

3.2.2. Post-training with modified object functions

The post-processing method proposed in the previous subsec-
tion can be considered as an on-line scheme requiring some
extra calculation in the enhancement stage. On the other hand,
the global variance lifting can also be accomplished in an off-
line manner by the second-pass retraining of DNN with the
modified objective function:

E =
1

N

N∑
n=1

D∑
d=1

(X̂d
n(W, b)− η ∗Xd

n)
2 + λ∥W∥22. (9)

where η can be either β, α(d) or ᾱ, which were defined in
Eqs. (4-6). The global variance of X̂ can now be lifted

to the level of the global variance of reference clean speech
through stretching the variance of the target signal. We call
this scheme post-training.

4. EXPERIMENTS AND RESULTS

A set of experiments was conducted based on the TIMIT
database [18]. As in [15], additive white Gaussian noise
(AWGN) and three other types of noise recordings extracted
from the Aurora2 database [19], namely Babble, Restau-
rant and Street, were used as our noise signals. All 4620
utterances from the training set of the TIMIT database were
added with the abovementioned four types of noise and six
levels of SNR, at 20dB, 15dB, 10dB, 5dB, 0dB, and -5dB, to
build a multi-condition stereo training set. This resulted in a
collection of about 100 hours of noisy training data (includ-
ing one case of clean training data) used to train the DNN
models. Another 200 randomly selected utterances from the
TIMIT test set were used to construct the test set for each
combination of noise types and SNR levels. Two other noise
types, namely Car and Exhibition, were used for mismatch
evaluation.

As for signal analysis, speech waveform was down-
sampled to 8KHz, and the corresponding frame length was
set to 256 samples (or 32 msec) with a frame shift of 128
samples. Then 129-dimensional log-power spectra features
[15] with the acoustic context were used to train DNNs. The
perceptual evaluation of speech quality (PESQ), which has a
high correlation with subjective score [20], was adopted as
the objective measure.

The DNN with 3 hidden layers, 2048 hidden nodes in each
hidden layer, and 11 frames acoustic context was used as the
baseline model. [12] presented the detailed experiments about
the structures of the DNN for speech enhancement task. The
number of epoch for RBM pre-training was 20. Learning rate
of pre-training was 0.0005. As for the fine-tuning, learning
rate was set at 0.1 for the first 10 epochs, then decreased by
10% after every epoch until to 50 epochs. The mini-batch
size was set to N = 128. And the regularization weighting
coefficient λ was 0.00001.

4.1. Evaluation in seen noisy conditions

Table 1 presents PESQ results of different approaches. An
improved version of the optimally modified log-spectral am-
plitude [21, 22, 23], denoted as log-MMSE (L-MMSE)
method [12], was used for performance comparison. The
DNN baseline outperformed the L-MMSE method signif-
icantly at different SNRs across four noise types. After
post-processing on the DNN output, further improvements
of PESQ were achieved, especially at high SNRs. However,
post-processing with the factor α(d) was inferior to that of
the factor β due to the instability of the equalization factor at
different frequency bins. The scheme using averaged factor
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ᾱ achieved the best performance indicating that the degree of
over-smoothing on different dimensions was similar.

The PESQ results of different post-training methods were
also provided in Table 1, which were all slightly better than
the corresponding post-processing methods. This indicates
that the proposed DNN post-training with the modified object
function could better tune the regression function for all da-
ta than the proposed post-processing methods. Post-training
with the global factor ᾱ gave the best performance. More-
over, we found that post-training considering the global vari-
ance was much more beneficial for high SNRs than low S-
NRs. Similar phenomena could also be observed in the post-
processing schemes. One reason might be that the calcula-
tion of the global variance was inaccurate for DNN-based
prediction at low SNR conditions. The spectrograms of an

Table 1. PESQ results of the L-MMSE method and the DNN
baseline, compared with different post-processing and post-
training schemes using β, α(d) and ᾱ on the test set at differ-
ent SNRs across four noise types.

L-MMSE DNN
Post-processing Post-training

β α(d) ᾱ β α(d) ᾱ

SNR20 3.32 3.60 3.71 3.69 3.71 3.72 3.70 3.72

SNR15 2.99 3.36 3.47 3.45 3.48 3.48 3.46 3.49

SNR10 2.65 3.10 3.18 3.17 3.19 3.20 3.18 3.20

SNR5 2.30 2.78 2.85 2.84 2.85 2.86 2.85 2.86

SNR0 1.93 2.41 2.45 2.44 2.45 2.46 2.46 2.47

SNR-5 1.55 1.97 1.99 1.99 1.99 2.01 2.00 2.02

Ave 2.46 2.87 2.94 2.93 2.94 2.95 2.94 2.96

enhancement example were presented in Fig. 3. The DNN
enhancement method could reduce noise effectively, especial-
ly for structured noise. Its performance could be further im-
proved after the post-training with the factor ᾱ (shown in the
upper right panel). Brighter formant spectrum and less resid-
ual noise could be obtained. This also reduced the discontinu-
ity in the enhanced waveforms. More results could be found
at http://home.ustc.edu.cn/˜xuyong62/demo/GVE.html.

4.2. Evaluation in unseen noise environments

The evaluations of the post-processing and the post-training
with the factor ᾱ, compared with the L-MMSE method and
the DNN baseline, were given in Table 2 under two unseen
noise environments. The noise Exhibition and Car, also de-
rived from Aurora2 database [19], were not in the training set.
The performance of the DNN baseline was better than the
L-MMSE method especially for low SNRs while the glob-
al variance equalization could provide further improvement
especially for high SNRs in a complementary manner. Com-
pared with the results of matched testing in Table 1, it can
be seen that global variance equalization is more effective in
mismatch environments. The Car noise is more stable than

Fig. 3. Spectrograms of an utterance example with DNN en-
hanced (upper left), further improved after the post-training
with ᾱ(d) (upper right), original (bottom left), and noisy (bot-
tom right) speech. Test on Street noise at SNR = 5dB.

the Exhibition noise, so the former could give better result-
s. And it even catched up the performance of the matched
testing cases after global variance equalization.

Table 2. PESQ results in mismatch environments under Car
and Exhibition noises, labeled as case A and B, respectively.
The DNN baseline was compared with the L-MMSE method
and the proposed two global variance equalization approaches
using the factor ᾱ.

L-MMSE DNN Post-Processing Post-training

A B A B A B A B

SNR20 3.52 3.19 3.58 3.30 3.72 3.46 3.73 3.46

SNR15 3.23 2.85 3.31 3.01 3.46 3.15 3.47 3.16

SNR10 2.89 2.51 3.03 2.69 3.16 2.81 3.16 2.82

SNR5 2.57 2.11 2.71 2.33 2.81 2.42 2.82 2.43

SNR0 2.21 1.72 2.35 1.93 2.44 2.00 2.44 2.01

SNR-5 1.82 1.34 1.96 1.54 2.04 1.59 2.04 1.60

Ave 2.70 2.29 2.83 2.47 2.94 2.57 2.94 2.58

5. SUMMARY

In this paper, we address the over-smoothing issue in the re-
gression DNN models for speech enhancement, and attempt
to alleviate the problem with global variance equalization be-
tween the estimated and the reference spectral features. Two
effective methods were proposed to improve the performance,
namely post-processing and post-training with modified ob-
ject functions. Both of them further enhance the formant of
the enhanced speech spectrum and suppress the residual noise
in the predicted speech signal, when compared with the DNN
baseline. Furthermore, the global variance equalization was
demonstrated to be more effective in unseen noisy environ-
ments. In the future, more equalization schemes will be fur-
ther explored.
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