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ABSTRACT

Speech enhancement and speech separation are important
frontends of many speech processing systems. In real tasks,
the background noises are often mixed with some human
voice interferences. In this paper, we explore a framework
to unify speech enhancement and speech separation for a
speaker-dependent scenario based on deep neural networks
(DNNs). Using a supervised method, DNN is adopted to
directly model a nonlinear mapping function between noisy
and clean speech signals. The signals of speaker interferers
are considered as one type of universal noise signals in our
framework. In order to be able to handle a wide range of
additive noise in the real-world situations, a large training
set that encompasses many possible combinations of speech
and noise types, is designed. Experimental results demon-
strate that the proposed framework can get the comparable
performances to those single speech enhancement or separa-
tion systems. Furthermore, the resulting DNN model, trained
with artificial synthesized data, is also effective in dealing
with noisy speech data recorded in real-world conditions.

Index Terms— speech enhancement, speech separation,
speaker-dependent, deep neural networks, supervised method

1. INTRODUCTION

Speech enhancement and speech separation are important
frontends of many speech processing systems such as speech
communication and automatic speech recognition [1, 2]. The
goal of speech enhancement is to improve the intelligibility
and quality of a noisy speech signal degraded in adverse con-
ditions. Similar with speech enhancement, speech separation
aims at separating the voice of each speaker when multiple
speakers talk simultaneously [3, 4]. Considering the process
of noise corruption on speech is very complicated, the en-
hancement and separation performance is still unsatisfactory.

This work was supported by the National Natural Science Foundation of
China under Grants No. 61305002.

Numerous speech enhancement methods were developed
over the past several decades, such as spectral subtraction [5],
Wiener filtering [6], minimum mean squared error (MMSE)
estimation [7, 8] and optimally-modified log-spectral ampli-
tude (OM-LSA) speech estimator [9, 10]. In most of these
algorithms, it is assumed that an estimate of the noise spec-
trum is available [11]. Its noise tracking capacity is limited
for highly non-stationary noise cases, and it tends to distort
the speech component in mixed signals if it is tuned for a bet-
ter noise reduction.

Recently, supervised learning methods are becoming
more popular. Some data-driven methods attempt to make a
binary classification decision on time-frequency (T-F) units,
such as estimating the ideal binary mask for monaural speech
separation [12], however the acoustic context information of
the T-F unit is not well utilized in a classification framework.
In [13], DNNs were used to estimate a smoothed ideal ratio
mask (IRM) in the Mel frequency domain for robust ASR.
In [14], a regression DNN-based speech enhancement frame-
work via training a deep and wide neural network architecture
using a large collection of heterogeneous training data was
proposed. It was found multi-condition training with many
kinds of noise types can achieve a good generalization capa-
bility to unseen noise environments. Moreover, the proposed
DNN framework is also powerful to cope with non-stationary
noises in real-world environments.

From a unified viewpoint, both speech enhancement and
separation aim at removing interference sources. Generally,
it is hard to use one single system to handle both background
noises and speaker interferers with conventional approaches.
However, if the target speech to be separated is from a specific
speaker, speech enhancement and separation could be unified.
The unified system is meaningful because the real-world nois-
es are often mixed with some human voice interferences. In
this paper, based on our previous work [15, 16], we propose
a unified speaker-dependent speech separation and enhance-
ment framework. For convenience, we call this task as unified
speech enhancement (U-SE). The main contributions of this
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Fig. 1. Overall development flow and architecture.

paper are summarized as follows: (i) We propose a general-
ized framework of speech separation and enhancement for a
target speaker. (ii) A large training set of Mandarin speech
that encompasses many possible combinations of speech and
noise types is designed. (iii) We employ an improved DNN
architecture with dual outputs of speech features for both tar-
get and interference source in the output layer. And a nov-
el post-processing with IRM is proposed. Empirical results
demonstrate that the proposed framework can get the com-
parable performances to those single speech enhancement or
separation systems for both synthetic and real-world condi-
tions.

2. SYSTEM OVERVIEW

The overall flowchart of our proposed unified speech en-
hancement framework is illustrated in Fig. 1. In the training
stage, a regression DNN model is trained from a collection
of stereo data, consisting of pairs of noisy and clean speech
represented by the log-power spectra (LPS) features. In the
enhancement stage, the well-trained DNN model is fed with
the features of noisy speech in order to generate the enhanced
LPS features. Another module, namely post-processing with
IRM is proposed to improve the overall performance. The
additional phase information is calculated from the origi-
nal noisy speech. Finally an overlap-add method is used
to synthesize the waveform of the estimated clean speech.
A detailed description of the feature extraction module and
waveform reconstruction module can be found in [17]. In the
next section, the details of DNN-based speech enhancement
are elaborated.

3. DNN-BASED SPEECH ENHANCEMENT

3.1. DNN Training

In [15], DNN was adopted as a regression model to predic-
t the clean LPS features given the input noisy LPS features
with acoustic context. The current work improves the frame-
work to predict the clean LPS and noise LPS features simul-
taneously in the output layer as shown in Fig. 2. We believe
the estimation of noise LPS will act as a regularization to the
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Fig. 2. DNN-based speech enhancement.

clean part. As for the DNN training, we first perform pre-
training of a deep generative model with the LPS features of
noisy speech by a stacking of multiple restricted Boltzman-
n machines (RBMs) [18]. Then the back-propagation with
the MMSE-based object function between the LPS features
of the estimated and the reference (clean speech and noise)
is adopted to train the DNN. Another two techniques, namely
dropout training and noise-aware training (NAT) can be found
in [19]. A stochastic gradient descent algorithm is performed
in minibatches with multiple epochs to improve learning con-
vergence as follows,
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where X, and X!, are the n™ D-dimensional vectors of es-
timated and reference clean features of the target speaker, re-

spectively. In the same way, X ; and X ; are the vectors of
estimated and reference noise features. « is used to tune the
contribution from the speech part and the noise part. As the
noise variance is large and not stable, we mainly focus on the
speech part. The second term of Eq.(1) can be considered as a
regularization term, which leads to a better generalization ca-
pacity for estimating the target speech. Another benefit from
the dual outputs DNN is the estimation of noise can be used
in the following post-processing module.

3.2. Post-processing with IRM

Different from [13] where the IRM is directly predicted by
a well trained IRM-DNN, the IRM here is estimated by the



DNN output for each dimension as follows,
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which is used in post-processing as follows,
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where, X » and Y, are the vectors of final enhanced speech
and noisy speech, respectively. 8 and A are the thresholds to
improve the overall performance.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Experimental configurations

In [15], 104 noise types ! were used as the noise signals for
synthesizing the noisy speech training samples. In this study,
we add another 200 hours real-world noises ? to handle a wide
range of additive noise in the real-world situations. 6 hours in-
terference speech covering 30 males and 30 females are also
used for speech separation. On the other hand, 2 hours Hi-Fi
Mandarin data were recorded by the target male speaker as
our clean data. The 2 hours clean data were added with the
above-mentioned background noises and interference speech
and 5 levels of Signal Noise Ratio (SNR), at 20dB, 15dB,
10dB, 5dB and 0dB, to build a multi-condition stereo training
set. This resulted in a collection of about 100 hours of noisy
training data (including two subsets, 80 hours for speech en-
hancement and the rest 20 hours for speech separation) used
to train the DNN models. The whole 100-hour training data
was used for a unified speech enhancement model training,
namely U-SE. The two training subsets were used for train-
ing of individual speech enhancement and speech separation
systems, namely SE and SS systems. Another 50 utterances
recorded from the target speaker were used to construct the
test set for each combination of noise types (KTV, mess hall,
female and male interferers) and SNR levels (-5dB, 0dB, 5d-
B, 10dB and 15dB). It should be noted that all the noises in
test set are different from those in the training set.

As for signal analysis, speech waveform was down-
sampled to 16KHz, and the corresponding frame length was

'The 104 noise types are N1-N17: Crowd noise; N18-N29: Machine
noise; N30-N43: Alarm and siren; N44-N46: Traffic and car noise; N47-
N55: Animal sound; N56-N69: Water sound; N70-N78: Wind; N79-N82:
Bell; N83-N85: Cough; N86: Clap; N87: Snore; N88: Click; N88-N90:
Laugh; N91-N92: Yawn; N93: Cry; N94: Shower; N95: Tooth brushing;
N96-N97: Footsteps; N98: Door moving; N99-N100: Phone dialing; N101:
AWGN, N102: Babble, N103: Restaurant, N104: Street.

2The noise types are Vehicle: bus, train, plane and car; Exhibition hall;
Meeting room; Office; Emporium; Family living room; Factory; Bus station;
Mess hall.

set to 512 samples (or 32 msec) with a frame shift was set to
256 samples. A short-time Fourier analysis was used to com-
pute the DFT of each overlapping windowed frame. Then the
257-dimensional LPS features were used to train DNNs. The
performance was evaluated using two measures, namely a
short-time objective intelligibility (STOI) [20] and Perceptu-
al evaluation of speech quality (PESQ) [21]. STOI is shown
to be highly correlated to human speech intelligibility while
PESQ has a high correlation with subjective scores and it
ranges from -0.5 to 4.5.

The number of epoch for each layer of RBM pre-training
was 20. Learning rate of pre-training was 0.0005. As for the
finetuning, learning rate was set at 0.1 for the first 10 epochs,
then decreased by 10% after every epoch. Total number of
epoch was 30. The mini-batch size was set to N=128. In-
put features of DNNs were normalized to zero mean and unit
variance. The DNN architecture was 2056-2048-2048-2048-
514, which denoted that the size was 2056 (257*7+257, 7=3)
at the input layer, 2048 for three hidden layers, and 514 for
the output layer (dual outputs). The regularization weighting
coefficient a in Eq.(1) was 0.8. 8 and A in Eq.(3) were set to
0.75 and 0.1, respectively. Other details of the setup can be
found in [19].

4.2. Results and Analysis

The performance (PESQ) of different systems on speech en-
hancement and separation task under different SNRs is shown
in Table 1. Noisy, SE, SS and U-SE stand for original noisy
speech, speech enhancement model (80-hour), speech sep-
aration model (20-hour), unified speech enhancement (100-
hour), respectively. At first, with the comparison of SS and
SE on speech enhancement task and the comparison of SE
and SS on speech separation task as our cross validation, we
observe that the performance of the cross testing is dramati-
cally degraded, namley SE model on SS test data or SS model
on SE test data. Then, the comparison of SE/SS and our pro-
posed U-SE is the main focus of this work. The results show
that the unified system can get fairly effect compared with
the corresponding best single systems. In detail, SE is better
than U-SE only at low SNRs on enhancement task. This is
reasonable as the U-SE model aims to remove not only the
background noises but also the interference speech. Different
from enhancement task, it is interesting to find out that the U-
SE is better than SS on separation task. This can be explained
as the existence of 80-hour noisy data with background noises
is helpful for speech separation.

Table 2 shows the STOI results among SE, SS, and
U-SE on the speech enhancement and separation task un-
der different SNRs. The conclusion is almost the same as
PESQ results in Table 1. In summary, through the com-
parison of our proposed unified system (U-SE) and corre-
sponding subsystems (SE, SS), the framework of speaker-
dependent speech separation and enhancement is feasible



Table 1. Average PESQ comparison of different systems on speech enhancement and separation task under different SNRs on
the test set (Noise types: KTV, mess hall, female and male interferers with target speaker).

Speech Enhancement Task

Speech Separation Task

System | Noisy | SS SE

U-SE

Noisy | SE SS | U-SE

SNR15 | 290 | 3.12 | 3.34

3.34 297 | 325|333 | 3.39

SNRI10 | 2.63 | 2.87 | 3.12

3.12 269 | 298 | 3.10 | 3.15

SNRS5 | 2.35 | 2.56 | 2.86

2.85 239 | 2.68

2.81 | 2.88

SNRO | 2.05 | 221 | 252

247 2.04 | 231 | 251 | 256

SNR-5 | 1.76 | 1.86 | 2.10

1.94 1.67 | 1.91 | 221 | 2.19

Avg. 234 | 252|279

2.75 235 |2.63 279 | 2.83

Table 2. Average STOI comparison of different systems on speech enhancement and separation task under different SNRs on
the test set (Noise types: KTV, mess hall, female and male interferers with target speaker).

Speech Enhancement Task

Speech Separation Task

System | Noisy | SS SE | U-SE || Noisy | SE SS | U-SE
SNR15 | 0.82 | 0.86 | 0.87 | 0.87 0.83 | 0.86 | 0.88 | 0.88
SNR10 | 0.78 | 0.82 | 0.85 | 0.85 0.78 | 0.82 | 0.85 | 0.85
SNR5 | 0.71 | 0.77 | 0.82 | 0.82 0.70 | 0.77 | 0.80 | 0.81
SNRO | 0.62 | 0.69 | 0.76 | 0.75 0.62 | 0.69 | 0.75 | 0.74
SNR-5 | 0.53 | 0.58 | 0.66 | 0.62 0.53 | 0.60 | 0.68 | 0.67

Avg. 0.69 | 0.75 | 0.79

0.78 0.69 | 0.75 | 0.79 | 0.79
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Fig. 3. Spectrograms of an utterance example corrupted by
a female interferer at SNR=5dB: (a) Noisy speech, (b) SE
enhanced, (c) SS enhanced, (d) U-SE enhanced and (e) clean
speech.

and effective. The spectrograms of an processed example
were presented in Fig. 3. More results could be found at
http://home.ustc.edu.cn/"gtian09/demos/USE_DNN.html.

5. CONCLUSION

In this paper, we employ a speaker-dependent framework to
unify speech enhancement and speech separation based on
deep neural networks (DNNs). We found that the DNN-based
unified speech separation and enhancement system was effec-
tive to handle both speech enhancement and separation tasks.
Two strategies, namely dual outputs and IRM-based post-
processing were proposed and achieved a better performance.
Moreover, a large training data of Mandarin speech with
many noise types and combinations could achieve a good
generalization capability to real-world noise environments.
Empirical results demonstrate that the proposed framework
can get fairly effect compared with the corresponding best
single system in both synthetic and real-world conditions.
In summary, the unified speech enhancement system for a
speaker-dependent scenario is feasible and effective.
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