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Abstract

We explore joint training strategies of DNNs for simultaneous dereverberation and acoustic modeling to improve the
performance of distant speech recognition. There are two key contributions. First, a new DNN structure incorporating
both dereverberated and original reverberant features is shown to effectively improve recognition accuracy over the
conventional one using only dereverberated features as the input. Second, in most of the simulated reverberant
environments for training data collection and DNN-based dereverberation, the resource data and learning targets are
high-quality clean speech. With our joint training strategy, we can relax this constraint by using large-scale diversified
real close-talking data as the targets which are easy to be collected via many speech-enabled applications from
mobile internet users, and find the scenario even more effective. Our experiments on a Mandarin speech recognition
task with 2000-h training data show that the proposed framework achieves relative word error rate reductions of 9.7
and 8.6 % over the multi-condition training systems for the cases of single-channel and multi-channel with
beamforming, respectively. Furthermore, significant gains are consistently observed over the pre-processing
approach using simply DNN-based dereverberation.
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1 Introduction
With the fast development of mobile internet, hands-
free speech interaction with automatic speech recognition
(ASR) system is natural and becoming more and more
popular. In these application scenarios, speech signal is
often corrupted by reverberation and background noise.
Reverberation is the collection of reflected sounds from
the surfaces in an enclosure like an auditorium. It is a
desirable property of auditoriums to the extent that it
helps to overcome the inverse square law drop-off of
sound intensity in the enclosure. However, if it is exces-
sive, it can make the sounds run together with the loss of
articulation, muddy and garbled effects. Human listeners
rarely encounter the problem of comprehending speech in
reverberant environments. However, the room reverbera-
tion leads to the severe degradation of ASR performance
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compared with the close-talking condition [1, 2]. The
word error rate (WER) is highly correlated to the rever-
beration time, namely T60, which is the time required
for reflections of a direct sound to decay 60 dB. Typi-
cally, the higher the T60 values are, the more distorted the
reverberated speech becomes.
In recent years, substantial progress has been made for

distant/reverberant speech recognition by several impor-
tant challenges, such as REVERB (REverberant Voice
Enhancement and Recognition Benchmark) challenge [3],
CHiME [4] challenge mainly for solving background
noises, and ASpIRE (Automatic Speech Recognition In
Reverberant Environments) [5]. Many techniques have
been widely investigated, including front-end multi-
channel and single-channel dereverberation techniques,
and back-end acoustic modeling approaches.
The multi-channel signal processing methods include

spatial filtering and channel selection. When the signals
from the individual microphone with a known geometry
are suitably combined, the array can function as a spatial
filter for suppressing noise and reverberation. The signals
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are filtered and weighted so as to form a beam of enhanced
sensitivity in the direction of the desired source and to
attenuate sounds from other directions. Such beamform-
ing techniques have been investigated in [6–8]. However,
if the positions of the microphones are neither known
nor fixed, the beamforming approaches become less effec-
tive. Then the channel selection is an alternative approach.
Wolf et al. [9] described, analyzed, and compared several
signal-based and decoder-based measures of signal qual-
ity and applied them to the problem of channel selection
in multi-microphone environments. And Himawan et al.
[10] proposed a channel selection approach for select-
ing reliable channels based on a criterion operating in
the short-term modulation spectrum domain for distant
speech recognition. More recently, deep learning-based
beamforming methods combined with acoustic modeling
were investigated in [11, 12].
Inverse filtering [13] is one of the commonly used

single-channel speech dereverberation techniques. The
dereverberated signal is estimated by convolving the
reverberant signal with the inverse filter. However, in
many situations, the inverse filter cannot be directly
determined or accurately estimated. Furthermore, this
approach assumes that the room impulse response (RIR)
function is minimum-phase which is not always satisfied
in real practice. The recent breakthrough of deep learn-
ing [14, 15], and the applications of deep neural networks
(DNNs) in speech signal processing area [16–18], creates
a new direction of single-channel dereverberation. Han
et al. [19] implemented the supervised learning approach
based on DNNs to perform speech dereverberation. They
used DNNs to learn a spectral mapping from corrupted
speech to clean speech for dereverberation and denoising.
This supervised learning approach boosted ASR results
in a range of reverberant and noisy conditions. In [20],
the DNN-based speech dereverberation was verified to
be effective to reverberant speech recognition with clean-
condition training.
So far, one of the most powerful methods for rever-

berant speech recognition is the use of multi-condition
training. Many results from different research groups at
the REVERB [21] and ASpIRE challenges have shown
that the increased diversity of reverberation conditions
for multi-condition training usually improves the robust-
ness of acoustic models due to a well acoustic-condition
match of the training and testing data. Reverberant speech
is usually generated by convolving clean speech signals
with RIRs measured in the target environment [22, 23].
In [24], some novel methods for taking advantage of
reverberant speech training in modern DNN-based hid-
denMarkov model (DNN-HMM) systems were proposed.
Based on multi-condition training, feature-level derever-
beration by deep autoencoders (DAEs) has been investi-
gated in [25, 26]. In these works, DAEs were trained using

reverberant speech features as input and clean speech fea-
tures as learning targets. Acoustic models were retrained
using the reconstructed features. Weninger et al. [27, 28]
have shown that deep recurrent neural networks (RNNs)
are also suitable for feature enhancement of reverber-
ant speech signals. Recently, Mimura et al. [29] aug-
mented the input of the autoencoder based on long short-
term memory (LSTM) [30] with phone-class information
(denoted as pLSTM). The results show that DNN-based
pDAE (DAE with phone-class information) slightly out-
performed pLSTM on real testing data. It is noted that
the front-end feature dereverberation and the back-end
acoustic modeling of these methods via DNNs or RNNs
were trained separately.
In [31], an effective joint training procedure was

proposed for noise robust speech recognition. In this
DNN-based hybrid framework, the front-end for feature
denoising and the back-end for acoustic modeling were
jointly optimized. A joint training procedure was also pro-
posed in [32] to combine masking DNN with back-end
DNN. However, fixed layers were used to performmiddle-
stage masking post-processing and dynamic feature cal-
culation operations. Instead, the joint training in [31] can
seamlessly connect front-end and back-end DNNs, as the
output of feature mapping DNN is exactly the input of
acoustic modeling DNN. Multi-task learning (MTL) of
DNN is also a machine learning scheme to combine dif-
ferent tasks. The motivation of MTL is to improve the
generalization of the target task by leveraging the other
tasks. When the tasks are properly chosen, the knowledge
learned from one task could be made useful to the other
tasks [11, 33, 34]. Compared with joint training which
incorporates an explicit functional structure, MTL can be
viewed as an implicit method.
In this study, we aim to jointly optimize a front-end

regression DNN for feature dereverberation and a back-
end classification DNN for acoustic modeling. Tradition-
ally, a multi-condition training set of reverberant data can
be simulated by using different RIRs and clean speech
data. Furthermore, for DNN-based dereverberation, the
learning targets are also clean speech. In both cases, the
high-quality clean speech data are necessary and also dif-
ficult to be largely collected in real applications. With
our joint training strategy, we can relax this constraint by
using large-scale diversified real data as the targets which
are easy to be collected via many speech-enabled applica-
tions from mobile internet users. Surprisingly, our exper-
iments show that the system built with real user data can
even outperform that using recorded clean speech in case
of the same amount of training data. As for joint train-
ing, the new structures by utilizing both dereverberated
and original reverberant features can effectively improve
recognition accuracy over the conventional one in which
only dereverberated features are used. Besides, we also
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verify the effectiveness of the proposed ASR system for
multi-channel testing data with beamforming front-end.
Further gains are consistently observed, indicating that
the explicit dereverberation structure in the joint train-
ing framework is still effective when combining linear
beamforming techniques.
The remainder of the paper is organized as follows. In

Section 2, we give a system overview. In Section 3, we
adopt a DNN-based speech dereverberation module as
the pre-processor for acoustic modeling. In Section 4, we
introduce the details of several DNN-based joint training
structures. In Section 5, we report experimental results,
and finally we conclude the paper in Section 6.

2 System overview
The overall flowchart of our proposed ASR system is illus-
trated in Fig. 1. According to [35], reverberation is usually
formulated as:

y(t) = s(t) ∗ h(t) + αn(t) (1)

where reverberant signal y(t) is obtained by convolving
close-talking speech signal s(t) with RIRs h(t). In the
training stage, we first use this simulation method to gen-
erate a large amount of reverberant data. Since we mainly
focus on the effects of reverberation, white noise n(t) con-
trolled by the gain α in order to obtain different SNRs is
added to the reverberant speech to simulate background
noise. In this paper, we set SNR at 40 dB. Then the train-
ing samples are processed to extract log Mel-filterbank
(LMFB) [36] features followed bymean normalization.We

also augment the LMFB with pitch-related features [37].
Next, we use a joint training procedure to train DNNs
for both front-end feature dereverberation and back-end
acoustic modeling. Besides, different joint training struc-
tures are explored for distant speech recognition.
In the recognition stage, two cases are considered.

The first one is a conventional single-channel speech
recognition system as shown in Fig. 1. The other one
is a multi-channel speech recognition system. In [38,
39], weighted prediction error (WPE) plus beamform-
ing yielded good performances for REVERB challenge
and CHiME-3 challenge [40], respectively. Based on this,
WPE-based dereverberation [41] is first carried out with
a linear time-invariant filter. Next, we use a traditional
beamformer [6] to extract beamformed speech signal
from the multi-channel dereverberated signals. This is
a linear and multiple input single output process. After
beamforming, the one-channel beamformed signal will be
used to verify the effectiveness of the proposed ASR sys-
tem which incorporates a nonlinear front-end. For both
the single-channel and multi-channel systems, normal
recognition is conducted with hybrid DNN-HMM.

3 DNN as a Pre-processor for ASR
For comparison with our joint training method, we first
adopt a DNN-based pre-processor which has been used
in [42] for noisy speech recognition and [19, 20] for rever-
berant speech recognition. In detail, this DNN is trained
to predict clean log-power spectral (LPS) features given
the input reverberant LPS features with acoustic context,

Fig. 1 Overall development flow and architecture of our proposed solution
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which is shown in Fig. 2. The reason why we use LPS
features rather than LMFB features is that all speech
information can be retained in this domain and good lis-
tening quality can be obtained from the reconstructed
clean speech according to [16]. The acoustic context infor-
mation along both time axis (with multiple neighboring
frames) and frequency axis (with full frequency bins) can
be fully utilized by DNN to improve the continuity of
estimated clean speech, and context information is more
important in reverberant condition.
In the training of this regression DNN, we aim at mini-

mizing mean squared error between the DNN output and
the reference clean features based on randomly initialized
weights. In the dereverberation stage, the well-trained
DNNmodel is fed with the features of reverberant speech
to generate dereverberated LPS features. The additional
phase information is calculated from original reverber-
ant speech. Finally, an overlap-add method is used to
synthesize the waveform of the estimated clean speech.
The well-trained speech dereverberation DNN will be

used as a pre-processor for acoustic modeling. We extract
acoustic features from the dereverberated training speech,
and the DNN acoustic model constructed using rever-
berant speech features can be further optimized by using
the dereverberated features as input. This simple fine-
tuning procedure of DNN is not only faster than retraining

Fig. 2 DNN-based speech dereverberation

from scratch but also generates better recognition per-
formance in [42]. In the recognition stage, after DNN
pre-processing and feature extraction of unknown utter-
ance, normal recognition is conducted. We denote this
method as DNN-PP. To better understand this training
strategy, we further illustrate the system procedure in
Algorithm 1.

Algorithm 1 : DNN as a pre-processor for ASR (DNN-
PP)
Step1: Pre-processor training

1. Extract reverberant and clean log-power spectral (LPS)
features from all training utterances.

2. Train dereverberation DNN with reverberant-clean
LPS feature pairs under minimum mean square error
(MMSE) criterion.

Step2: Acoustic model training

1. Train a baseline DNN acoustic model using reverberant
acoustic features based on randomly initialized weights.

2. Generate dereverberated speech waveforms using
DNN-based pre-processor, and then extract LMFB
acoustic features from all training utterances.

3. On top of the baseline DNN as an initialization, the
acoustic model of dereverberated speech can be further
optimized by only changing the input of DNN from
original reverberant features to dereverberated features.

Step3: Recognition

1. Generate dereverberated testing speech using
DNN-based pre-processor, and then extract acoustic
features.

2. Feed the acoustic features through DNN acoustic
model to generate senone posterior probability.

4 New structures for joint training
4.1 Conventional joint training structure
In [31], joint training framework was verified more effec-
tive than DNN-PP for noisy speech recognition, in which
the front-end for feature denoising and the back-end
for acoustic modeling were jointly optimized. To address
reverberant condition, we adopt the front-end and back-
end DNNs as shown in Fig. 3. Specifically, the front-end is
a DNN-based feature level dereverberation module which
maps the input reverberant features to the desired clean
features. In the supervised learning stage, we aim at mini-
mizing mean squared error between the DNN output and
the reference clean features based on randomly initialized
weights:
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Fig. 3 Conventional joint training of front-end and back-end DNNs
(DNN-JT1)

E = 1
N

N∑
n=1

‖x̂n+τ
n−τ (y

n+τ
n−τ ,W , b) − xn+τ

n−τ‖22 + κ‖W‖22 (2)

where x̂n+τ
n−τ and xn+τ

n−τ are the nth D(2τ + 1)-dimensional
vectors of estimated and reference features, respectively.
yn+τ
n−τ is a D(2τ + 1)-dimensional vector of input reverber-
ant features with neighboring left and right τ frames as the
acoustic context. W and b denote all the weight and bias
parameters, respectively. κ is the regularization weighting
coefficient to avoid overfitting. The objective function is
optimized using back-propagation with a stochastic gra-
dient descent method in mini-batch mode of N sample
frames.
After feature mapping, we use the dereverberated fea-

tures for acoustic modeling. We employed a hybrid DNN
framework to perform joint training of DNNs for both fea-
ture mapping and acoustic modeling. In the hybrid DNN,
we directly stack the acoustic modeling layers on top of
the feature mapping layers. The output layer of feature
mapping becomes the input layer for acoustic modeling,
which is also a linear hidden layer of the whole network.
Using the same object function as the back-end DNN,
namely the cross entropy (CE) criterion, all weights are
retrained. After joint training, the hybrid DNN can yield
a better recognition performance which can be explained
as the feature mapping network is refined to enable a bet-
ter phone classification instead of optimizing the original
MMSE criterion.

In the recognition stage, a normal decoding process
is conducted using original reverberant features and the
hybrid DNN. We denote this joint training structure as
DNN-JT1. To better understand this training procedure,
we further illustrate it in Algorithm 2.

Algorithm 2 : Training procedure of conventional joint
training structure (DNN-JT1)
Step1: Front-end DNN training

1. Extract reverberant and clean LMFB features from all
training utterances.

2. Train feature mapping DNN with reverberant-clean
feature pairs under MMSE criterion.

Step2: Back-end DNN training

1. Train a baseline DNN acoustic model using reverberant
acoustic features based on randomly initialized weights.

2. Stack the baseline model layers on top of the mapping
style dereverberation layers to get a hybrid DNN
framework.

3. Fix the front-end layers to retrain the back-end
acoustic model layers. We denote this intermediate
model as DNN-FM1.

Step3: Joint training of front-end and back-end DNNs

1. Optimize the front-end and back-end layers as a whole
network under CE criterion with reverberant features.
This is the joint training step and we denote the hybrid
model as DNN-JT1.

4.2 New joint training structure
Inspired by our recent work [43] for CHiME-3 chal-
lenge, we design a new joint training structure for distant
speech recognition. In [43], original noisy and enhanced
features can be concatenated as the input of back-end
DNN. This early fusion strategy was verified to be effec-
tive for noisy speech recognition. Results from [44–46]
also demonstrate that original feature, dereverberated fea-
ture and reverberation feature could supply compensatory
information to acoustic modeling.
In this new structure, we splice the output of front-end

dereverberation DNN with original reverberant features
to feed the back-end DNN for acoustic modeling as shown
in Fig. 4. It should be noted that the back-end weights in
this structure are randomly initialized due to the unequal
dimension between the spliced features and the input of
pre-trained back-end DNN used in DNN-JT1. We denote
this new joint training structure as DNN-JT2 with corre-
sponding procedure in Algorithm 3.
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Algorithm 3 : Training procedure of new joint training
structure (DNN-JT2)
Step1: Front-end DNN training

1. Extract reverberant and clean LMFB features from all
training utterances.

2. Train feature mapping DNN with reverberant-clean
feature pairs under MMSE criterion.

Step2: Back-end DNN training

1. Stack randomly initialized acoustic model layers on top
of the dual-output (reverberant and dereverberated)
feature mapping layers to get a hybrid DNN framework.

2. Fix the front-end layers to retrain the back-end DNN
layers. We denote this intermediate model as
DNN-FM2.

Step3: Joint training of front-end and back-end DNNs

1. Optimize the front-end and back-end layers as a whole
network under CE criterion with reverberant features.
We denote the hybrid model as DNN-JT2.

4.3 New joint training structure with a learned
connection layer

The randomly initialized back-end used in DNN-JT2 is
different from the pre-trained back-end used in DNN-
JT1. Alternatively, we use a linear connection layer to

Fig. 4 New joint training structure (DNN-JT2)

concatenate the dual output (original reverberant and
dereverberated feature) front-end and the pre-trained
back-end as shown in Fig. 5. The connection layer can pro-
vide a linear feature transformation and dimensionality
reduction.
Intuitively, the connection layer can be randomly

initialized and updated during the network training.
We denote this new joint training structure with the
learned connection layer as DNN-JT3 described in
Algorithm 4.

4.4 New joint training structure with a fixed connection
layer

One common problem of the learned connection layer
in DNN-JT3 is overfitting which can be verified in
the following experiments. When overfitting happened,
the connection layer could not use the dereverberated
and reverberant feature properly. As a solution, we use
a fixed 2D × D matrix A as shown in Eq. (3) to
implement the linear connection layer, where D is the
dimension of the input dereverberated features. This
design simply averages the dereverberated and rever-
berant features and is similar to the average pool-
ing operation in convolutional neural network (CNN)
[47]. We denote this new joint training structure with
the fixed connection layer as DNN-JT4 illustrated in
Algorithm 5.

Fig. 5 New joint training structure with a connection layer (DNN-JT3,
DNN-JT4)
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Algorithm 4 : Training procedure of new joint training
structure with a learned connection layer (DNN-JT3)
Step1: Front-end DNN training

1. Extract reverberant and clean LMFB features from all
training utterances.

2. Train feature mapping DNN with reverberant-clean
feature pairs under MMSE criterion.

Step2: Back-end DNN training

1. Train a baseline DNN acoustic model using reverberant
acoustic features based on randomly initialized weights.

2. Use a randomly initialized linear connection layer to
concatenate the dual output (reverberant and
dereverberated) front-end and the baseline DNN
acoustic model.

3. Fix the front-end layers to retrain the connection layer
and back-end acoustic model layers. We denote this
intermediate model as DNN-FM3.

Step3: Joint training of front-end and back-end DNNs

1. Optimize the front-end, connection layer and back-end
as a whole network under CE criterion with reverberant
features. We denote the hybrid model as DNN-JT3.

Algorithm 5 : Training procedure of new joint training
structure with a fixed connection layer (DNN-JT4)
Step1: Front-end DNN training

1. Extract reverberant and clean LMFB features from all
training utterances.

2. Train feature mapping DNN with reverberant-clean
feature pairs under MMSE criterion.

Step2: Back-end DNN training

1. Train a baseline DNN acoustic model using reverberant
acoustic features based on randomly initialized weights.

2. Use matrix A to concatenate the dual output
(reverberant and dereverberated) front-end and the
baseline DNN acoustic model.

3. Fix the front-end layers and the connection layer to
retrain the back-end acoustic model layers. We denote
this intermediate model as DNN-FM4.

Step3: Joint training of front-end and back-end DNNs

1. Optimize the front-end and back-end layers as a whole
network under CE criterion with reverberant features.
The connection layer is still fixed. We denote this
hybrid model as DNN-JT4.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 0 0

0
. . . 0

0 0 1/2
1/2 0 0

0
. . . 0

0 0 1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

5 Experiments
Our experiments are conducted on a Mandarin speech
recognition task with a vocabulary of more than 80,000
words. First, two kinds of RIRs were generated, namely
real and synthetic RIRs. The real RIRs were measured
from nine rooms with different volumes (small, medium,
and large) and three types of distances between the
speaker and the microphone array (1, 3, and 5 m).
The reverberation times (T60) of the small-, medium-,
and large-size rooms are about 0.29 s, 0.60∼0.86 s,
1.07∼1.40 s, respectively.
One hundred fifty synthetic RIRs were created accord-

ing to the image method [48, 49] with random enclosure
properties, microphones and source positions, and source
radiation characteristics. Table 1 lists the parameters
involved in the simulations with the ranges of the adopted
uniform distributions. For a given enclosure, the target
T60 is achieved by varying the wall absorption coefficient
according to the Sabine’s formula. The parameter ρ deter-
mines the source directivity from omnidirectional setting
(ρ = 0) to highly directional setting (ρ = 6). The source
and the microphone can be located anywhere within the
room, while the source orientation is distributed between
−π and π . More details can be found in [50].
Then, two datasets were adopted for generating multi-

style reverberant simulation data. One was 1000-h high-
quality clean speech while the other one was 1000-h
close-talking speech collected from mobile internet
users.
As for the front-end, the frame length was set to 400

samples (or 25 ms) with a frame shift of 160 samp-
les (or 10 ms) for the 16 kHz speech waveforms. The
257-dimensional LPS features were used to train DNN
pre-processor. The architecture of DNN-PP was 2827-
3072-3072-3072-257 with 11 frames of LPS features for
the input layer, 3072 sigmoid nodes for each hidden layer,
and one frame of LPS features for the output layer. Other
parameter settings can refer to [16].

Table 1 The range of parameters for RIR generation

Parameter Min Max

T60 0.1 s 2 s

Room size 3 m 7 m

Room hight 3 m 5 m
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The LMFB acoustic features for back-end consisted of
24-dimensional log Mel-filterbank feature plus their first-
and second-order derivatives, and 3-dimensional pitch
features. The final 75-dimensional LMFB features were
adopted for both feature mapping and acoustic model-
ing DNNs. The architecture of feature mapping DNN was
825-2048-2048-2048-825, which denoted that the size was
825 (75*11, τ = 5) at the input layer, 2048 for three hidden
layers with sigmoid nodes, and 825 for the output layer.
Other parameter settings can refer to [31].
For acoustic modeling, each triphone was modeled by

an HMM with three emitting states. There were totally
9004 tied states. For the Gaussian mixture model (GMM)-
based HMM system, 40 Gaussian mixtures were used.
For the DNN-HMM system, the input layer was a con-
text window of 11 frames of LMFB features. The DNN for
acoustic modeling had 6 hidden layers with 2048 sigmoid
nodes in each layer, and the final softmax output layer had
9004 units, corresponding to the tied states of HMMs. The
other parameters were set according to [31]. Three-gram
language model was used for decoding.
For several joint training configurations, the archi-

tectures of DNN-JT1 and DNN-JT2 were 825-2048*
3-825-2048*6-9004 and 825-2048*3-1650-2048*6-9004,
respectively. DNN-JT3 and DNN-JT4 shared the same
architecture 825-2048*3-1650-825-2048*6-9004 with a
connection layer.

5.1 Proof-of-concept on simulated test data
For proof-of-concept, a medium-size training set (150 h)
of reverberant speech was generated from 150-h high-
quality clean speech convolving with real RIRs. Another
645 clean utterances covering 20 males and 17 females
were used to construct the test set with real RIRs. The
test reverberation conditions were as follows: three rooms
(T60 = 0.25, 0.61, 1.10 s) and the 3-m distance between
the speakers and the microphones. This test set is referred
as SimData.
The WER on SimData for different models including

clean-condition training with 150-h clean speech (Clean-
Model), multi-condition training with 150-h reverberant
speech (Reverb-Model), DNN trained on dereverberated
speech (DNN-PP), and conventional joint training model
(DNN-JT1) are shown in Table 2. We also reported the
intermediate results (DNN-FM1) of DNN-JT1. DNN-
FM1 was similar to the feature enhancement methods
used in [25, 26, 29], in which the front-end derever-
beration and the back-end acoustic modeling via DNNs
or RNNs were trained separately. The results show that
DNN-PP was effective in clean-condition training. How-
ever, the performances of both DNN-PP and DNN-
FM1 were unsatisfactory in multi-condition training with
high baseline performances, especially for the small
T60. Only DNN-JT1 achieved consistent and significant

Table 2 WER (%) comparisons on SimData: Clean-Model and
Reverb-Model stand for baseline systems of clean-condition
training and multi-condition training, respectively

System T60 = 0.25 s T60 = 0.61 s T60 = 1.10 s

Clean-condition training

Clean-Model 21.49 50.21 91.69

DNN-PP 14.64 17.04 40.99

Multi-condition training

Reverb-Model 6.75 7.96 21.10

DNN-PP 7.08 8.49 17.61

DNN-FM1 6.77 7.96 19.79

DNN-JT1 6.06 6.93 16.88

DNN-PP stands for pre-processing, DNN-JT1 for conventional joint training
structure, and DNN-FM1 for intermediate result of DNN-JT1

performance gains over all other models on the test sets
across all T60 conditions, which demonstrates the effec-
tiveness and importance of joint training.
Visually, the spectrograms of an example processed

by DNN-PP are presented in Fig. 6, including clean
speech, reverberant speech with T60 = 0.61 s and DNN-
PP dereverberated speech. We can observe that the
corrupted speech was processed effectively and neatly.
Figure 7 displays the results of DNN-JT1, including the
24-dimensional static LMFB features of clean speech,
reverberant speech with T60 = 0.61 s and DNN-PP dere-
verberated speech, and the output of front-end regression
DNN before joint training (the estimated clean LMFB fea-
tures), the output of front-end after joint training. We also
used MSE (mean squared error) to measure the change
of the output of front-end DNN before and after joint
training. In Fig. 7, the average MSE between clean refer-
ence and feature mapping is 78.4 per frame. After joint
training, the MSE is 264.1 per frame. Feature mapping
could generate more similar results to the reference clean
speech visually and yielded good performance of MSE
while DNN-JT1 could achieve better recognition perfor-
mances due to the further optimization of front-end DNN
under the CE criterion designed for speech recognition.

5.2 Experiments on real test data
DNN-JT1 was verified to be effective on SimData com-
pared with signal level dereverberation (DNN-PP) and
feature level dereverberation (DNN-FM1). To test the
effectiveness of our proposed approaches on real test
data, we enlarged the training data. First, a DNN acoustic
model (denoted as C-T) was trained using 1000-h close-
talking speech. Then two multi-condition DNN models
using 2000-h data were generated, denoted as Multi-1
and Multi-2. Multi-1 was trained using 1000-h close-
talking plus 1000-h reverberant speech simulated from
high-quality clean speech. The only difference of Multi-2
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Fig. 6 An example of DNN dereverberation: a spectrogram of clean speech; b spectrogram of reverberant speech with T60 = 0.61 s, distance = 3 m;
c spectrogram of DNN-PP dereverberated speech

from Multi-1 is that the 1000-h reverberant speech was
simulated from the 1000-h close-talking speech. For sim-
ulating the reverberant data, all real and synthetic RIRs
were used. We randomly chose 1000 sentences from the
training set as our development data.

As for the test set, the real data (denoted as RealData)
were collected for both close-talking and distant-talking
conditions, which aimed at evaluating the robustness of
our proposed approach against variations which can-
not be reproducible by simulation data. For close-talking

Fig. 7 DNN-JT1 results: a static LMFB features of clean speech; b static LMFB features of reverberant speech with T60 = 0.61 s, distance = 3 m; c static
LMFB features of DNN-PP dereverberated speech. d The output of front-end regression DNN: before joint training (estimated clean LMFB features).
e The output of front-end regression DNN: after joint training
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conditions, RealData included three subsets, namely Hi-
Fi conditions (Clean), common environments (C-E), and
with background noises (N-E).
For distant-talking conditions, RealData contained 6

reverberation conditions: 3 rooms (Room1: a living room,
Room2: a conference room and Room3: a classroom), 2
types of distances between the speaker and the micro-
phone array (near ∼3 m and far ∼5 m). Fifty speakers (25
males and 25 females) were asked to read their own testing
texts in each room, with 30 utterances for near fields and
30 utterances for far fields. All the data were recorded with
an eight-channel circular array with diameter of 20 cm
similar to REVERB challenge. It should be noted that all
the speakers and reading texts in testing set are different
from those in the training set.
Table 3 lists the results of different systems on Real-

Data for close-talking conditions. First, both Multi-1
and Multi-2 models yielded performance degradations
on Clean and C-E subsets compared with C-T model.
But the multi-condition models were more robust to the
background noises (N-E). Multi-2 consistently outper-
formed Multi-1, indicating that the close-talking speech
from real users were more effective than the high-quality
clean speech in the simulation of reverberant speech.
All joint training approaches in the following experi-
ments were implemented on top of Multi-2. DNN-JT4
achieved the best performance in average and consistently
outperformed the corresponding multi-condition system
(Multi-2) and other joint training approaches across all
close-talking conditions. The performance of DNN-JT3
seemed abnormal compared with DNN-JT4. The only dif-
ference between these two models is that the connection
layer was learned or manually designed. We analyzed the
connection layer weights of DNN-JT3 and found large
positive values concentrated on the diagonal of the orig-
inal feature part due to the overfitting. In other words,
DNN-JT3 mainly used the original feature, and the pro-
cessed feature was not well used for acoustic modeling. In
Table 3, the performance of DNN-JT3 was very close to

Table 3 WER (%) comparisons on RealData for close-talking
conditions

System Clean C-E N-E Avg

C-T 2.92 10.77 17.44 10.38

Multi-1 3.38 11.59 16.78 10.58

Multi-2 3.13 10.97 16.04 10.05

DNN-JT1 3.09 10.96 15.18 9.74

DNN-JT2 3.15 10.97 15.58 9.90

DNN-JT3 3.27 11.24 16.09 10.20

DNN-JT4 3.03 10.93 14.84 9.60

Clean for Hi-Fi environment, C-E for common environment and N-E for noisy
environment

that of Multi-2 which also confirmed our analysis. Based
on the above analysis, a fixed averaging layer was used to
constrain the back-end DNN by making use of the com-
plementarity between original and enhanced features. The
results demonstrate that the fixed connection layer was
effective.
Table 4 gives a performance comparison of different

single-channel systems on RealData for distant-talking
conditions. For single-channel systems, one main chan-
nel data were selected from the microphone array. Several
observations could be made. First, Multi-2 achieved a rel-
ative WER reduction of 7.3 % in average over Multi-1
in the distant-talking conditions, which was more signifi-
cant than that in close-talking conditions. This is a good
news as it is not necessary to collect a huge amount of
high-quality clean speech in real practice. We can use
easy-collected close-talking speech to construct massive
training data from real users. Second, DNN-JT1 could
bring consistent improvements over Multi-2 on all test-
ing conditions. DNN-JT2 was better than DNN-JT1 for
distant-talking conditions, which was opposite for close-
talking conditions in Table 3. This might be due to that
there was a strong complementarity between the original
and processed features in distant-talking conditions. For
example, in some cases, the severe speech distortions or
lost speech information in dereverberated feature could
be recovered by original feature. Similar to the close-
talking conditions, DNN-JT3 did not work well and the
performance was very close to Multi-2. However, DNN-
JT4 with the manually designed fixed connection layer
achieved the best performance in average, yielding overall
relative WER reductions of 9.7 % over the baseline system
and 3.3 % over DNN-JT1 for distant-talking conditions.
The improvements indicate the manually designed fixed
connection layer could well leverage on both original and
dereverberated features effectively. Compared with DNN-
JT2, DNN-JT4 yielded a comparable result with smaller
parameters of DNN due to the existence of a connection
layer.

Table 4 WER (%) comparisons on RealData for distant-talking
conditions with single-channel speech input

System Room1 Room2 Room3 Avg

Single-channel systems

Multi-1 18.30 27.07 36.46 27.28

Multi-2 16.56 25.59 33.71 25.29

DNN-JT1 15.43 24.30 31.10 23.61

DNN-JT2 14.74 23.77 30.20 22.90

DNN-JT3 16.50 25.69 33.30 25.16

DNN-JT4 15.04 23.64 29.84 22.84

Multi-2(10HL) 16.90 27.04 34.89 26.28

Room1 is a living room, Room2 is a conference room, and Room3 is a classroom



Gao et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:86 Page 11 of 13

Table 5 WER (%) comparisons on RealData for distant-talking
conditions with multi-channel beamforming front-end

System Room1 Room2 Room3 Avg

Eight-channel + beamforming systems

Multi-2 16.73 18.83 22.23 19.26

DNN-JT1 15.43 17.81 20.06 17.77

DNN-JT2 15.57 18.11 19.84 17.84

DNN-JT3 16.31 19.15 21.91 19.12

DNN-JT4 15.18 17.74 19.90 17.61

Room1 is a living room, Room2 is a conference room, and Room3 is a classroom

For a better and fair comparison to further demon-
strate the effectiveness of the jointly trained model, a
multi-condition model (Multi-2(10HL)) with the same
network topology as DNN-JT1 was provided. We can
come to a conclusion that the performance gains yielded
by the design of front-end explicit dereverberation struc-
ture in the joint training framework could not be achieved
by simply using more hidden layers in the back-end
DNN.
Finally, we also tested our approach on the beamformed

speech from the eight-channel WPE dereverberated sig-
nals. Table 5 lists the performance comparisons on Real-
Data for distant-talking conditions with multi-channel
front-end. The overall performances were consistent with
single-channel systems. For multi-channel systems, the
acoustic models used in Table 5 are the same as those in

Table 4. The acoustic features of a test sample frommicro-
phone array processed by WPE and beamforming are
presented in Fig. 8. First, we find this linear pre-processing
introduced little artefact, which is important to back-end
acoustic modeling. Next, the regression DNN trained on
the real close-talking data as the learning targets could
still enhance the features of beamformed speech effec-
tively. The results show that Multi-2 with multi-channel
front-end even significantly outperformed the best DNN-
JT4 approach in the single-channel case. Based on this,
DNN-JT4 could still yield an overall 8.6 % relative WER
reduction which further verified the effectiveness of the
new joint training structure when combining with con-
ventional microphone array. It was a good example to take
full advantage of both beamforming and deep learning-
based dereverberation for distant speech recognition in
real practice.

6 Conclusions
In this paper, we explore joint training strategies and pro-
pose new hybrid DNN architectures for distant speech
recognition. The new DNNs yield significant perfor-
mance gains over the conventional pre-processing and
feature enhancement approaches via DNN-based dere-
verberation. Furthermore, the jointly trained DNNs are
much more robust to real-world testing speech than
multi-condition training DNNs for both close-talking
and distant-talking conditions. Another interesting obser-
vation is that the close-talking speech data collected
from real users can be used for both the simulation of

Fig. 8 An example of multi-channel front-end: a static LMFB features of one channel reverberant speech; b static LMFB features of WPE+Beamforming
processed speech; c the output of front-end regression DNN: before joint training (estimated clean LMFB features)
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reverberant speech and dereverberation as the learning
targets in joint training framework, instead of the high-
quality clean speech data. Our final experiments on a
Mandarin speech recognition task with 2000-h training
data show that the proposed framework achieves relative
9.7 and 8.6 % WER reductions over the multi-condition
training systems for the cases of single-channel and multi-
channel with beamforming, respectively.
In the future, other types of connection layer, fusion of

different features in the joint training framework, LSTM
architectures which are often more powerful in modeling
long-term information will be explored.
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