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ABSTRACT

In this paper, we propose a new signal-noise-dependent (SND) deep
neural network (DNN) framework to further improve the separation
and recognition performance of the recently developed technique for
general DNN-based speech separation. We adopt a divide and con-
quer strategy to design the proposed SND-DNNs with higher resolu-
tions that a single general DNN could not well accommodate for all
the speaker mixing variabilities at different levels of signal-to-noise
ratios (SNRs). In this study two kinds of SNR-dependent DNNs,
namely positive and negative DNNs, are trained to cover the mixed
speech signals with positive and negative SNR levels, respectively.
At the separation stage, a first-pass separation using a general DNN
can give an accurate SNR estimation for a model selection. Experi-
mental results on the Speech Separation Challenge (SSC) task show
that SND-DNNs could yield significant performance improvements
for both speech separation and recognition over a general DNN. Fur-
thermore, this purely front-end processing method achieves a rela-
tive word error rate reduction of 11.6% over a state-of-the-art recog-
nition system where a complicated joint decoding framework needs
to be implemented in the back-end.

Index Terms— single-channel speech separation, robust speech
recognition, deep neural networks, semi-supervised mode

1. INTRODUCTION

Speech separation aims at separating the voice of each speaker when
multiple speakers talk simultaneously. It is important for many ap-
plications, for example automatic speech recognition (ASR). While
significant progress has been made in improving the noise robust-
ness of ASR systems, most techniques focus on improving the per-
formance of the back-end recogniser. In this study, we use the sepa-
ration system as our front-end pre-processor for ASR. So the perfor-
mance of the ASR system depends heavily on the quality of acoustic
pre-processing. The separating algorithms can be often classified
into unsupervised and supervised modes. In the former, speaker i-
dentities and the reference speech of each speaker are not available
in the training stage, while the information of both the target and the
interfering speakers is provided in the supervised modes.

One broad class of single-channel speech separation is the so-
called computational auditory scene analysis (CASA) [1], usually
in an unsupervised mode. CASA-based approaches [2]-[6], use the
psychoacoustic cues, such as pitch, voice onset/offset, temporal con-
tinuity, harmonic structures, and modulation correlation, to segregate
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a voice of interest by masking the interfering sources. For exam-
ple, in [5], pitch and amplitude modulation were adopted to separate
the voiced portions of co-channel speech. In [6], unsupervised clus-
tering was used to separate speech regions into two speaker groups
by maximizing the ratio of between-cluster and within-cluster dis-
tances. Recently, a data-driven approach [7] separates the underly-
ing clean speech segments by matching each mixed speech segment
against a composite training segment.

In the supervised approaches, speech separation is often formu-
lated as an estimation problem based on:

xm = xt + xi (1)

where xm, xt, xi are speech signals of the mixture, target speaker,
and interfering speaker, respectively. To solve this under-determined
equation, a general strategy is to represent the speakers by two mod-
els, and use a certain criterion to reconstruct the sources given the
single mixture. An early study in [8] adopted a factorial hidden
Markov model (FHMM) to describe a speaker, and the estimated
sources are used to generate a binary mask. To further impose tem-
poral constraints on speech signals for separation, the work in [9] in-
vestigates the phone-level dynamics using HMMs [10]. For FHMM-
based speech separation, 2-D Viterbi algorithms and approximations
have been used to estimate the inference [11]. In [12], FHMM was
adopted to model vocal tract characteristics for detecting pitch to re-
construct speech sources. In [13, 14, 15] Gaussian mixture models
(GMMs) were employed to model speakers, and the minimum mean
squared error (MMSE) or maximum a posteriori (MAP) estimator is
used to recover the speech signals. The factorial-max vector quanti-
zation model (MAXVQ) was also used to infer the mask signals in
[16]. Other popular approaches include nonnegative matrix factor-
ization (NMF) based models [17].

Recently, speech separation based on deep learning approaches
becomes increasingly popular, which can be divided into two broad
classes. One is in a supervised mode, where deep neural network-
s (DNNs) or recurrent neural networks (RNNs) [18] are adopted to
separate the mixed speech given the information of the target speak-
er, interfering speaker, and even the signal-to-noise ratio (SNR). The
other one is in a semi-supervised mode where only the information
of the target speaker is provided. Our recent work [19, 20, 21] be-
longs to the latter. In [19, 20], we solve the separation problem in E-
q. (1) by using DNN to directly model the highly nonlinear relation-
ship among speech features of the target speaker, the interference s-
peaker and the mixed signals. Its effectiveness has also been verified
for robust speech recognition [21]. As our DNN approach is semi-
supervised, a large mount of training data with different interfering
speakers at different SNRs can be included to address the problem
of unseen information. However a single general DNN might not
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Fig. 1. Development flow for speech separation system.

accommodate all the variabilities well. In this study we adopt a di-
vide and conquer strategy to design signal-noise-dependent DNNs
(SND-DNNs) with a detailed resolutions. Two SND-DNNs, namely
positive and negative DNNs, are trained to cover the mixed speech
with positive SNRs and negative SNRs, respectively. At the separa-
tion stage, the first-pass separation using a general DNN can give an
accurate SNR estimation for the follow-up model selection.

The evaluation results on the Speech Separation Challenge (SS-
C) corpus [22] show that the proposed SND-DNNs approach signif-
icantly outperforms the general DNN approach [21] in terms of both
separation and recognition performance. Furthermore, our purely
front-end only pre-processing method achieves significant perfor-
mance improvements over the state-of-the-art IBM system [23, 24]
and a comparable performance with recent work in [25], where a
complicated joint decoding framework or/and DNN based acoustic
modeling should be implemented in the back-end.

The rest of the paper is organized as follows. In Section 2, we
give a system overview. In Section 3, we propose SND-DNN based
speech separation. In Section 4, we report experimental results. Fi-
nally we conclude our findings in Section 5.

2. SYSTEM OVERVIEW

In this section, both the speech separation and the ASR systems are
introduced. First, an overall flowchart of our proposed speech sepa-
ration system is illustrated in Fig. 1. In the training stage, the DNN
as a regression model is trained by using log-power spectra features
from pairs of mixed signal and the sources. Two SND-DNNs, name-
ly positive DNN and negative DNN, are trained using mixture utter-
ances with positive SNRs and negative SNRs, respectively. In the
separating stage, we use a general DNN to perform first-pass separa-
tion for SNR estimation of the mixture. Then based on the estimated
SNR, the positive or negative DNN is selected for the second-pass
separation. Meanwhile, in Fig. 2, the development flow of the speech
recognition system is given. In the training stage, the acoustic mod-
el using Gaussian mixture continuous density HMMs (denoted as
GMM-HMMs) is trained from the clean speech of the target speaker
using mel-frequency cepstral coefficients (MFCCs) under the maxi-
mum likelihood (ML) criterion. In the recognition stage, the mixture

Fig. 2. Development flow for speech recognition system.

utterance is first preprocessed by speech separation based on SND-
DNNs to extract the speech waveforms of the target speaker. Then
conventional feature extraction and recognition follow. In the next
section, the detail of SND-DNNs is elaborated.

3. SPEECH SEPARATION BASED ON SND-DNNS

As the procedures for training positive DNN or negative DNN are the
same, we first introduce training of the general DNN which separates
the mixture utterances in all SNRs, and then SNR estimation based
on separation results.

3.1. DNN for predicting the target and interference

In [20], DNN was adopted as a regression model to predict the log-
power spectra features of the target and interference speakers given
the input log-power spectra features of mixed speech with acoustic
context as shown in Fig. 3. These spectra features provide percep-
tually relevant parameters. The acoustic context information along
both time axis (with multiple neighboring frames) and frequency ax-
is (with full frequency bins) can be fully utilized by DNN to improve
the continuity of the estimated clean speech while the conventional
GMM-based approach does not effectively model the temporal dy-
namics of speech. As training of this regression DNN requires a
large amount of time-synchronized stereo-data with target and mixed
speech pairs, the mixed speech utterances are synthesized by cor-
rupting the clean speech utterances of the target speaker with inter-
ferers at different SNR levels (here we consider interfering speech
as noise) based on Eq. (1).

Training of DNN consists of unsupervised pre-training and su-
pervised fine-tuning. Pre-training treats each consecutive pair of lay-
ers as a restricted Boatsman machine (RBM) [26] while the param-
eters of RBMs are trained layer by layer with an approximate con-
trastive divergence algorithm [27]. For supervised fine-tuning, we
aim at jointly minimizing the mean squared error between the DNN
output and the reference clean features of both the target and inter-
ference speakers:

E =
1

N

N∑
n=1

(∥x̂t
n − xt

n∥22 + ∥x̂i
n − xi

n∥22) (2)

where x̂t
n and xt

n are the nth D-dimensional vectors of estimated
and reference clean features of the target speaker, respectively, while
x̂i

n and xi
n are the corresponding versions for interference.

In the conventional supervised approaches for speech separation,
e.g., GMM-based method [15], both the target and interference in the
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Fig. 3. DNN architecture.

separation stage should be well modeled by GMMs with the corre-
sponding speech data in the training stage. In this paper, we mainly
focus on speech separation of a target speaker in a semi-supervised
mode, where the interferer in the separation stage is assumed un-
known in the training stage. Obviously, GMM cannot be easily ap-
plied here. On the other hand for the DNN-based approach, multiple
interfering speakers mixed with a target speaker in the training stage
can well predict unseen interferers in the separation stage [19].

3.2. SNR estimation

The separated target and interference utterances by the general DNN
can be used for SNR estimation of the current utterance according to
the following equation:

SNR = 10 log

(∑
m x2

t [m]∑
m x2

i [m]

)
(3)

where xt[m] and xi[m] are the mth samples of reconstructed target
and interference signals in time domain, respectively. With this es-
timated SNR, the corresponding SND-DNN can be selected for the
second-pass speech separation. In this work, we simply set 0 dB
as a threshold to select positive DNN or negative DNN. Using on-
ly two SND-DNNs could guarantee both high model resolution and
accurate model selection.

4. EXPERIMENTS

Experiments were conducted on the SSC (Speech Separation Chal-
lenge) corpus [22] for recognizing a few keywords from simple tar-
get sentences when presented with a simultaneous masker sentence
with a very similar structure [23]. All the training and test materials
were drawn from the GRID corpus [28]. There were 34 speakers for
both training and test, including 18 males and 16 females. For the
training set, 500 utterances were randomly selected from the GRID
corpus for each speaker. The test set of the SSC corpus consists of
two-speaker mixtures at a range of target-to-masker ratios (TMRs)

Fig. 4. Distribution of estimated SNR of input mixtures with differ-
ent SNR levels.

from -9dB to 6dB with an increment of 3dB. For training the general
DNN of each target speaker, all the utterances of the target speak-
er in the training set were used while the corresponding mixtures
were generated by adding randomly selected interferers to the target
speech at SNRs ranging from -10 dB to 10 dB with an increment of
1 dB. The mixture speech data with SNRs ranging from -10 dB to
0 dB were used to train the negative DNN while the positive DNN
were trained using the mixture speech with SNRs ranging from 0 dB
to 10 dB.

As for signal analysis, all waveforms were down-sampled from
25kHz to 16kHz, and the frame length was set to 512 samples (or
32 msec) with a frame shift of 256 samples. A short-time Fourier
transform was used to compute the discrete Fourier transform (DFT)
of each overlapping windowed frame. Then 257-dimensional log-
power spectra features were used to train DNNs. The separation
performance was evaluated using a short-time objective intelligibili-
ty (STOI) [29] and the recognition accuracy. The DNN architecture
used in all experiments was 1799-2048-2048-2048-514, which de-
noted that the sizes were 1799 (257*7) for the input layer, 2048 for
three hidden layers, and 514(257*2) for the output layer. The num-
ber of epoch for each layer of RBM pre-training was 20 while the
learning rate of pre-training was 0.0005. For fine-tuning, the learn-
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Fig. 5. Separation performance (STOI) comparison of different ap-
proaches averaged across all 34 testing target speakers.

ing rate was set at 0.1 for the first 10 epochs, then decreased by 10%
after every epoch. The total number of epoch was 50 and the mini-
batch size was set to 128. Input features of DNNs were globally
normalized to zero mean and unit variance. Other parameter settings
can be found in [30].

As for the recognition system, the feature vector consists of 39-
dimensional MFCCs, i.e., 12 mel-cepstral coefficients and the log-
arithmic energy plus the corresponding first and second order time
derivatives. Each word was modeled by a whole-word left-to-right
HMMs with 32 Gaussian mixtures per state. The chosen number of
states for each word can be referred to [23].

4.1. Experiments on SNR estimation

The separation performance using SND-DNNs depends highly on
how accurate the SNR estimation of the mixture utterance is. Fig. 4
shows the distributions of estimated SNRs of the test data with d-
ifferent input SNRs. Several observations can be made. First, for
all the testing cases except the input SNR of 0 dB, our SNR estima-
tion based on the separation results of the general DNN could give
accurate decisions on positive SNR or negative SNR. As for the 0
dB cases, there was no significant influence in the final decision be-
cause 0 dB training data were included for both positive DNN and
negative DNN. Second, all distributions were unimodal. When the
input SNR was above -3 dB, the distribution was centered exactly
on the input SNR which indicated that a good estimation was given
by our approach. But for input SNR below -3 dB, e.g., Figures 4(a)
and 4(b), the separation performance was degraded which led to the
center shift and a large variance of the distribution. Overall, our pro-
posed SNR estimation approach was accurate enough to make the
subsequent decision for the two SND-DNNs.

4.2. Results on speech separation

Fig. 5 lists a STOI comparison of different approaches averaged
across all 34 target speakers on the test set. The number of inter-
fering speakers in the training stage was set to 10, which resulted
in about 100 hours of mixed speech for each target speaker. A total
of 34 general DNNs and 68 SND-DNNs were trained for all target
speakers. Based on those results, the general DNN approach yield-
ed a very significant improvements of STOI performance over the
unprocessed input mixtures. Meanwhile, our proposed SND-DNNs
approach consistently outperformed the general DNN approach es-

Table 1. The performance (word accuracy in %) comparison of the
baseline, the general DNN, the SND-DNNs approach, and IBM sys-
tems averaged across the mixture data of the test set.

6dB 3dB 0dB -3dB -6dB -9dB Avg.
16KHz waveform

Baseline 49.1 34.2 22.9 13.7 10.2 8.0 23.0
DNN 92.6 89.7 86.7 81.3 75.1 69.9 82.6

SND-DNNs 93.1 90.9 89.3 87.6 84.7 75.9 86.9
25KHz waveform

Baseline 63.3 47.5 35.2 24.0 17.0 12.0 33.2
SND-DNNs 94.9 93.6 92.4 90.6 87.0 81.9 90.1

IBM 93.0 92.5 91.5 89.5 87.0 79.0 88.8

pecially for low SNR cases. For example at SNR = -3 dB, the STOI
was improved from 0.89 to 0.95.

4.3. Results on robust speech recognition

Finally, the effectiveness of the SND-DNNs based separation ap-
proach is further verified for robust speech recognition. In Table 1,
we report the performance (word accuracy in %) comparison of the
baseline, the general DNN, the SND-DNNs, and IBM systems aver-
aged across the mixture data of the test set. As our experiments in
this study and previous work [19, 20, 21] are mainly conducted on
16KHz waveform, to perform a fair comparison with the IBM results
[24] on 25KHz waveform, we give our SND-DNNs results for both
16KHz and 25KHz waveforms.

The general DNN achieved significant performance improve-
ments over the baseline system without speech separation. On top of
the general DNN, SND-DNNs yielded consistently additional per-
formance gains for all testing cases, especially at low SNRs, e.g.,
at -3 dB, a relative word error rate (WER) reduction of 38.6% was
observed. In average, an absolute 4.3% WER was reduced. Fur-
thermore, our SND-DNNs approach consistently outperformed the
IBM system under all SNRs. For example, relative WER reductions
of 27.1% and 13.8% were yielded at 6 dB and -9 dB, respective-
ly. And overall a relative WER reduction of 11.6% averaged across
the whole test set was achieved. By considering that the IBM sys-
tem used both speech separation in the front-end and a complicated
joint decoding framework in the back-end, our purely front-end ap-
proach based on SND-DNNs is quite effective and we expect addi-
tional post-processing could further increase the word accuracy.

5. CONCLUSION AND FUTURE WORK

We have proposed signal-noise-dependent DNNs to achieve high
model resolutions. As a specific implementation, two SND-DNNs,
namely positive and negative DNNs, demonstrate that the proposed
SND-DNNs approach could be more effective than the general DNN
approach on speech separation and robust speech recognition for all
testing cases. Furthermore, our purely front-end processing method
is easier to implement and achieves a better recognition performance
than the state-of-the-art IBM super-human system where a com-
plicated joint decoding framework needs to be implemented in the
back-end. Our future work includes further improving the separa-
tion performance at low SNRs by using more detailed SND-DNNs
and even gender-dependent DNNs, and also adopting deep learning
approaches for the back-end of the ASR system.
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