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ABSTRACT

In this paper, we present a novel approach to relax the constraint of
stereo-data which is needed in a series of algorithms for noise-robust
speech recognition. As a demonstration in SPLICE algorithm, we
generate the pseudo-clean features to replace the ideal clean features
from one of the stereo channels, by using HMM-based speech syn-
thesis. Experimental results on aurora2 database show that the per-
formance of our approach is comparable with that of SPLICE. Fur-
ther improvements are achieved by concatenating a bias adaptation
algorithm to handle unknown environments. Relative word error rate
reductions of 66% and 24% are achieved over the baseline systems
in the clean-training and multi-training conditions, respectively.
Index Terms: noisy speech recognition, SPLICE, HMM-based
speech synthesis

1. INTRODUCTION

With the progress of automatic speech recognition (ASR), the noise
robustness of speech recognizers attracts more and more attentions
for practical recognition systems. Many techniques [1] have been
proposed to handle the difficult problem of mismatch between train-
ing and application conditions. However, the performance achieved
by most of them are unable to reach that under matched training
and testing conditions. Recently, a feature compensation technique
called Stereo-based Piecewise Linear Compensation for Environ-
ments (SPLICE) [2] is demonstrated that this performance limit
could be surpassed. SPLICE is an extension of the feature com-
pensation techniques [3, 4] developed at Carnegie Mellon University
(CMU) in the past decade. Requirement of stereo-data and handling
unseen environments are two main obstacles in SPLICE algorithm.

First, to remove the requirement of stereo-data, variations of
SPLICE are proposed. In [5, 6], stochastic vector mapping (SVM),
which represents the mapping from the “corrupted” speech to
“clean” by a simple transformation, is a generalized definition of
SPLICE. And a joint training of the parameters of SVM function
and HMMs is implemented by adopting maximum likelihood (ML)
or minimum classification error (MCE) criteria. MMI-SPLICE [7]
is much like SPLICE, but without the need for target clean features.
Instead of learning a speech enhancement function, it learns to in-
crease recognition accuracy directly with a maximum mutual infor-
mation (MMI) objective function. FMPE [8], a kind of discrimina-
tively trained features, is related with SPLICE to a certain extent [9].
To handling unseen environments, a unsupervised online adaptation
of SVM is presented in [10].

The motivation of our approach is to relax the constraint of
recorded stereo-data from a new viewpoint: pseudo-clean features
generated by exploiting HMM-based synthesis method [11, 12] is
used to replace the ideal clean features from one of the stereo chan-
nels in SPLICE. Experimental results of clean training condition on

aurora2 show that this pseudo clean features are even more effec-
tive than the ideal clean features. Moreover, a simple ML-based bias
adaptation algorithm to handle the mismatch between training and
testing, which yields consistent improvements of different testing
sets on aurora2, is proposed. As a extension, this method of gener-
ating the pseudo clean features can be used in any algorithms [4, 13]
like SPLICE where the stereo-data is needed.

The rest of this paper is organized as follows. First a review of
SPLICE is given in section 2. In section 3, we propose our modifi-
cations. Experimental results are discussed in section 4. Finally in
section 5, we give our conclusions.

2. REVIEW OF SPLICE

The flowchart of HMM-based pseudo-clean speech synthesis for
SPLICE is illustrated in Fig. 1. In this section, we will give a brief
description of SPLICE module. SPLICE is a general framework
used to model and remove the effect of any consistent degradation
of speech cepstra. The probabilistic formulation is described below.

2.1. Two assumptions of speech modeling and degradation

The first assumption is that the noisy speech cepstral vector follows
the distribution of mixture of Gaussians:

p(yt) =
�

m

p(yt|m)p(m)

p(yt|m) = N (yt; μm,Σm) (1)

The second assumption is that conditional distribution for clean
vector xt given the noisy speech vector yt in each component m is
Gaussian whose mean vector is a linear transformation of yt with
the bias vector rm as follows:

p(xt|yt, m) = N (xt; yt + rm,Γm) (2)

2.2. SPLICE training

First, the GMMs of noisy speech in each environment are trained us-
ing standard EM algorithm. Then, if stereo-data is available, the bias
parameters rm can be trained using maximum likelihood criterion:

rm =

�
t p(m|yt)(xt − yt)�

t
p(m|yt)

p(m|yt) =
p(yt|m)p(m)�

l
p(l|yt)p(l)

(3)

where this training procedure requires a set of stereo-data (two chan-
nels). One channel contains the clean speech, and the other contains
time-synchronized noisy speech. The requirement of stereo-data is a
main disadvantage of SPLICE.
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Fig. 1. System overview

2.3. Environment selection

In denoising stage, first we should select the corresponding environ-
ment for the current utterance in Bayesian framework:

E∗ = arg max
E

p(E|Y ) = arg max
E

p(Y |E)p(E) (4)

where Y is the sequence of the noisy speech vectors in the current
utterance, p(E) is set equally for all E.

2.4. Cepstral Enhancement

After environment selection, MMSE estimation of clean speech,
which is the conditional expectation of clean speech given the ob-
served noisy speech, can be derived:

x̂t = Ex[xt|yt] = yt +
�
m

p(m|yt)rm (5)

3. OUR MODIFICATIONS

The main objective of this section is to introduce HMM-based
pseudo-clean speech synthesis and ML-based bias adaptation as
shown in Fig. 1.

3.1. State-level force-alignment

Imagine the scenario that we only have multi-training set, which con-
sists of various speech from different noisy environments. It is hard
to collect the ideal time-synchronized clean speech. So first, using
multi-training speech features, we can get ML-trained HMMs. To
some extent, multi-training HMMs is noise-robust. Then state-level

force-alignment of multi-training features is performed. With this
state sequence and multi-training HMMs, we can do the following
HMM-based speech synthesis.

3.2. HMM-based speech synthesis

Our problem is corresponding to the Case 1 discussed in [11]. Multi-
training HMMs are denoted as λ, and the speech parameter vector
sequence to be determined is described as:

O =
�
o
�
1 , o�

2 , ..., o�
T

��
(6)

we assume that ot consists of the static cepstral feature vec-
tor ct and dynamic feature vectors Δct,Δ2ct, that is, o =�
c�

t , Δc�
t , Δ2c�

t

��
, where dynamic features and static features

should satisfy some constraints:

O = W C (7)

C is the sequence of static cepstral vectors, the transformation ma-
trix W is decided by the relation between static and dynamic fea-
tures.

On the other hand, from the state-level force-alignment, the state
sequence for all frames can be given:

S = {s1, s2, ..., sT } (8)

and we calculate the mean and covariance of state st as follows:

μst
=

�
m

p(m|ot)μstm

Σst
=

�
m

p(m|ot)(Σstm + μstmμ
�
stm)− μst

μ
�
st

(9)

which can be considered as the ”average parameters” of all Gaussian
components in state st.

For given λ and S, our target is to maximize likelihood func-
tion p(O|S, λ) with respect to O under the condition Eq. 7. The
objective function can be written as:

log p(O|S, λ) = −
1

2
O

�
Σ

−1
O + O

�
Σ

−1
U + K (10)

where

Σ
−1 = diag

�
Σ

−1

s1
,Σ−1

s2
, ...,Σ−1

sT

�

U
−1 =

�
μ

�
s1

, μ�
s2

, ..., μ�
sT

��
(11)

the constant K is independent of O, by optimizing Eq. 10, we obtain
a set of equations:

W
�
Σ

−1
W C = W

�
Σ

−1
U

� (12)

By utilizing the special structure of W �
Σ

−1W , Eq. 12 can be
solved efficiently in a time-recursive manner by the QR decompo-
sition.

3.3. Post-processing

If we directly use the above synthesized pseudo-clean features, the
recognition performance of SPLICE is not promising. As the post-
processing, gain normalization should be taken based on the ob-
servation that there are big differences among the dynamic range
of clean speech features, noisy speech features and synthesized
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speech features, respectively. So a simple cepstral gain normaliza-
tion (CGN) [14] is adopted:

x
syn
t = (ot −

1

T

T�

t=1

ot)/( max
1≤t≤T

ot − min
1≤t≤T

ot) (13)

where x
syn
t is the final synthesized pseudo-clean features applied to

SPLICE algorithm.

3.4. ML-based bias adaptation

In order to handle the mismatch between training and testing, a sim-
ple ML-based bias adaptation algorithm is proposed. First, for a
testing utterance after environment selection, the bias parameters are
adapted as follows:

r̂m = rm + b (14)

where r̂m is the adapted bias vector for the mixture m, b is the
global bias shift to describe the mismatch between training and test-
ing. Here we do not use mixture-dependent bias shift for each m
because there is not enough data to estimate it accurately. b can be
iteratively estimated using the maximum likelihood criterion:

b′i =

�
t

�
m

p(m|yt, b)(yt,i − μm,i)/σ2

m,i�
t

�
m

p(m|yt, b)/σ2

m,i

(15)

p(m|yt, b) =
p(m)N(yt; μm + b, σ2

m)�
l p(l)N(yt; μl + b, σ2

l )
(16)

where the subscript i denotes the dimensional index, yt is the feature
vector of the current utterance at frame t, μm and σ2

m are the mean
and variance vectors of mixture m, respectively. The initial value
of b is set to a zero vector. With this adaptation procedure, the bias
parameters obtained from the training sets, are globally shifted to the
current testing environment.

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

Our experiments are performed on the aurora2 database. The au-
rora2 task consists of English digits in the presence of additive noise
and linear convolutional distortion. These distortions have been syn-
thetically introduced to clean TIDigits data. Two training conditions
(clean-traing/multi-training) and three testing sets (Set A/B/C) are
defined by aurora2.

The cespstral features used in this paper are produced by the ref-
erence WI007 front-end with some modifications. The WI007 base-
line uses a LogE (log-energy) feature and computes cepstra based
on the magnitude frequency spectrum. We replace these with cep-
stral coefficient C0, and the power spectral density. And CMN is
applied before SPLICE algorithm. The bias parameters are trained
using the pseudo clean and real multi-style data for each of 17 noise
conditions as described in [2]. The noisy speech model consists of a
mixutre of 256 Gaussians with diagonal covariance matrices. HMMs
in the back-end are trained in the manner prescribed by the scripts
included with the aurora task. The details of baseline front-end and
back-end can be found in [15, 16].

4.2. Experimental results

Table 1& 2 summarize performance comparison among differ-
ent methods. “P-SPLICE” represents “SPLICE” using synthesized
pseudo-clean features, and “P-SPLICE-BA” means “P-SPLICE”

Table 1. Performance (word accuracy in %) comparison of sev-
eral methods, averaged over SNRs between 0dB and 20dB across
all noise conditions on three different test sets of aurora2 database.

Clean Training - Results
Methods Set A Set B Set C Overall
Baseline 63.66 57.83 72.30 63.06
SPLICE 87.65 87.12 86.70 87.25

P-SPLICE 88.43 86.32 86.89 87.28
P-SPLICE-BA 88.59 86.48 87.16 87.46

Multi Training - Results
Methods Set A Set B Set C Overall
Baseline 87.74 87.63 85.44 87.24
SPLICE 91.95 89.59 90.89 90.79

P-SPLICE 91.49 88.87 90.39 90.22
P-SPLICE-BA 91.53 88.93 90.48 90.28

Table 2. Performance (word accuracy in %) comparison of several
methods, averaged over three test sets of aurora2 database at each
SNR.

Clean Training - Results
Methods 0dB 5dB 10dB 15dB 20dB
Baseline 19.72 43.70 70.61 87.03 94.23
SPLICE 62.96 84.92 93.35 96.83 98.19

P-SPLICE 64.09 84.91 93.27 96.36 97.75
P-SPLICE-BA 64.24 85.31 93.54 96.47 97.75

Multi Training - Results
Methods 0dB 5dB 10dB 15dB 20dB
Baseline 60.72 86.98 94.42 96.54 97.51
SPLICE 73.25 89.75 95.42 97.40 98.16

P-SPLICE 72.75 89.03 94.84 96.81 97.68
P-SPLICE-BA 72.68 89.13 95.04 96.85 97.71

with bias adaptation. From these results, several observations can
be made. First, all the methods based on SPLICE algorithm out-
perform “Baseline” system. Second, in clean-training condition,
from Table 1, “P-SPLICE” performs better than “SPLICE” on SetA
whose noise scenarios are the same as those for bias training while
the opposite observation is obtained on SetB which are mismatch
noise conditions with training conditions. On SetC the performance
of “P-SPLICE” is slightly better than that of “SPLICE”. From the
viewpoint of different SNRs, “P-SPLICE” is more effective than
“SPLICE” under lower SNRs as shown in Table 2. Third, in multi-
training conditon, the performance of “P-SPLICE” is a little worse
than that of “SPLICE” for different test sets and SNRs. In a word,
our “P-SPLICE” method without stereo-data constrain is compara-
ble with SPLICE for both clean-training and multi-training condi-
tions. Finally, “P-SPLICE-BA” using bias adaptation is consistently
outperforms “P-SPLICE”, although the gain is not significant, which
is due to the simple global strategy. The detailed results are listed in
Table 3.

5. CONCLUSIONS

The modified version of SPLICE is described in this paper. First,
we remove the constraint of stereo-data by exploiting HMM-based
synthesis method to generate the pseudo-clean speech parameters.
Experimental results show that the pseudo-clean features are even
more effective than the real clean features in the clean training condi-
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Table 3. Detailed results of P-SPLICE-BA on aurora2 database.
Clean Training - Results

Set A Set B Set C
Subway Babble Car Exhibition Restaurant Street Airport Station Subway M Street M Avg.

Clean 98.71 98.37 98.27 98.61 98.71 98.37 98.27 98.61 98.46 98.28 98.47
20dB 97.76 97.88 97.49 97.99 98.25 97.28 97.79 98.21 97.82 97.07 97.75
15dB 96.62 96.77 96.48 96.79 96.9 95.71 96.9 96.27 96.53 95.71 96.47
10dB 93.98 94.59 94.18 93.55 92.94 92.38 94.48 94.11 93.49 91.69 93.54
5dB 87.72 85.25 88.52 86.21 83.3 82.19 84.94 84.23 88.73 82.04 85.31
0dB 69.73 58.34 72.47 69.55 55.6 60.4 64.24 63.53 68.5 60.04 64.24
-5dB 35.52 20.31 35.76 36.35 20.23 24.79 28.03 28.79 34.39 25.48 28.97
Avg. 89.16 86.57 89.83 88.82 85.40 85.59 87.67 87.27 89.01 85.31 87.46

Multi Training - Results
Set A Set B Set C

Subway Babble Car Exhibition Restaurant Street Airport Station Subway M Street M Avg.
Clean 97.97 97.67 97.41 97.5 97.97 97.67 97.41 97.5 97.88 97.76 97.67
20dB 97.88 97.55 97.58 98.15 97.94 97.13 97.61 97.99 98.13 97.13 97.71
15dB 97.21 97.25 97.02 97.19 97.27 96.34 96.78 96.73 96.68 95.98 96.85
10dB 95.24 95.92 95.65 96.08 94.01 93.77 95.47 95.12 95.18 93.95 95.04
5dB 91.46 89.6 92.57 90.34 86.09 86.97 87.98 86.98 91.86 87.48 89.13
0dB 78.57 67.38 81.6 76.43 62.85 70.13 71.43 69.98 78.72 69.71 72.68
-5dB 46.24 26.18 49.42 47.02 24.96 34.04 34.03 37.03 44.49 32.92 37.63
Avg. 92.07 89.54 92.88 91.64 87.63 88.87 89.85 89.36 92.11 88.85 90.28

tion on aurora2. Then a simple ML-based bias adaptation algorithm
to handle the mismatch between training and testing, which yields
consistent improvements of different testing sets on aurora2, is pro-
posed. In our future work, we will further study the noise robust-
ness of the HMM-based speech parameters generation, which can
be combined with other robust techniques for noisy speech recogni-
tion.

6. REFERENCES

[1] Gong, Y., “Speech Recognition in Noisy Environments: A Sur-
vey”, Speech Communication, vol. 16, no. 3, pp. 261–291,
Apr. 1995.

[2] Droppo, J., Deng, L., and Acero A., “Evaluation of the
SPLICE Algorithm on the Aurora2 Database”, Proc. EU-
ROSPEECH’01, pp. 217–220, 2001.

[3] Acero, A, “Acoustical and Environmental Robustness in Au-
tomatic Speech Recognition”, Ph.D. thesis, Carnegie Mellon
University, 1990.

[4] Moreno, P. J., “Speech Recognition in Noisy Environments”,
Ph.D. thesis, Carnegie Mellon University, 1996.

[5] Wu, J. and Huo, Q., “An Environment-Compensated Minimum
Classification Error Training Approach Based on Stochastic
Vector Mapping”, IEEE Trans. on Audio, Speech and Lan-
guage Processing, vol. 14, no. 6, pp. 2147–2155, Nov. 2006.

[6] Huo, Q. and Zhu, D.-L., “A Maximum Likelihood Training
Approach to Irrelevant Variability Compensation Based on
Piecewise Linear Transformations”, Proc. of ICSLP’06, pp.
1129–1132, 2006.

[7] Droppo, J. and Acero A., “Maximum Mutual Information
SPLICE Transform for Seen and Unseen Conditions”, Proc.
EUROSPEECH’05, pp. 989–992, 2005.

[8] Povey, D., Kingsbury, B., Mangu, L., Saon, G., Soltau, H.,
and Zweig, G., “fMPE: Discriminatively Trained Features for
Speech Recognition”, Proc. ICASSP’05, 2005, pp. I-961–I-
964.

[9] Deng, L., Wu, J., Droppo J., and Acero, A., “Analysis and
Comparison of Two Speech Feature Extraction/Compensation
Algorithms”, IEEE Signal Process. Lett., vol. 12, no. 6, pp.
477–480, Jun. 2005.

[10] Zhu, D.-L. and Huo, Q., “A Maximum Likelihood Approach
to Unsupervised Online Adaptation of Stochastic Vector Map-
ping Function for Robust Speech Recognition”, Proc. of
ICASSP’07, 2007, pp. IV-773–IV-776.

[11] Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., and
Kitamura, T., “Speech Parameter Generation Algorithms for
HMM-based Speech Synthesis”, Proc. of ICASSP’00, 2000,
pp. 1315–1318.

[12] Yan, Z.-J., Soong, F. K., and Wang, R.-H., “Word Graph Based
Feature Enhancement for Noisy Speech Recognition”, Proc. of
ICASSP’07, 2007, pp. IV-373–IV-376.

[13] Cerisara, C. and Daoudi, K., “Evaluation of the SPACE De-
noising Algorithm on Aurora2”, Proc. of ICASSP’06, 2006,
pp. I-521–I-524.

[14] Yoshizawa, S., Hayasaka, N., Wada, N. and Miyanaga, Y.,
“Cepstral Gain Normalization for Noise Robust Speech Recog-
nition”, Proc. of ICASSP’04, 2004, pp. I-209–I-212.

[15] Hirsch, H. G. and Pearce, D., “The AURORA Experimen-
tal Framework for the Performance Evaluations of Speech
Recognition Systems under Noisy Conditions”, ISCA ITRW
ASR2000, Paris, September 2000.

[16] Young, S., et al., “The HTK Book”, Version 3.2, 2002.

4573


