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Abstract

This paper proposes a novel data-driven approach based on deep
neural networks (DNNs) for single-channel speech separation.
DNN is adopted to directly model the highly non-linear rela-
tionship of speech features between a target speaker and the
mixed signals. Both supervised and semi-supervised scenarios
are investigated. In the supervised mode, both identities of the
target speaker and the interfering speaker are provided. While
in the semi-supervised mode, only the target speaker is given.
We propose using multiple speakers to be mixed with the tar-
get speaker to train the DNN which is shown to well predict
an unseen interferer in the separation stage. Experimental re-
sults demonstrate that our proposed framework achieves better
separation results than a GMM-based approach in the super-
vised mode. More significantly, in the semi-supervised mode
which is believed to be the preferred mode in real-world oper-
ations, the DNN-based approach even outperforms the GMM-
based approach in the supervised mode.
Index Terms: single-channel speech separation, supervised
mode, semi-supervised mode, deep neural networks

1. Introduction
Speech separation aims to separate the voice of each speaker
when multiple speakers talk simultaneously, which is impor-
tant for many applications such as speech communication and
automatic speech recognition. In this study, we focus on the
separation of two voices from a single mixture, namely single-
channel (or cochannel) speech separation. Based on the infor-
mation used in cochannel speech separation, the algorithms can
be classified into two categories: unsupervised and supervised
approaches. In unsupervised approaches, speaker identities and
the reference speech of each speaker for pre-training are not
available, while the information of both target and interfering
speakers is provided in supervised approaches.

One broad class of single-channel speech separation is the
so-called computational auditory scene analysis (CASA) [1],
usually in an unsupervised mode. CASA-based approaches [2]-
[6], use the psychoacoustic cues such as pitch, onset/offset, tem-
poral continuity, harmonic structures, and modulation correla-
tion, and segregate a voice of interest by masking the interfer-
ing sources. For example, in [5], pitch and amplitude modu-
lation are adopted to separate the voiced portions of cochan-
nel speech. In [6], unsupervised clustering is used to separate
speech regions into two speaker groups by maximizing the ra-
tio of between-cluster distance and within-cluster distance. Re-
cently, a data-driven approach [7] separates the underlying clean
speech segments by matching each mixed speech segment a-
gainst a composite training segment.

In supervised approaches, speech separation is often formu-

lated as an estimation problem based on:

xm = xt + xi (1)

where xm, xt, xi are speech signals of the mixture, target s-
peaker, and interfering speaker, respectively. To solve this un-
derdetermined equation, a general strategy is to represent the
speakers by two models, and use a certain criterion to recon-
struct the sources given the single mixture. An early study in [8]
adopts a factorial hidden Markov model (FHMM) to describe a
speaker, and the estimated sources are used to generate a binary
mask. To further impose temporal constraints on speech sig-
nals for separation, the work in [9] investigates the phone-level
dynamics using HMMs. For FHMM based speech separation,
2-D Viterbi algorithms and approximations have been used to
perform the inference [10]. In [11], FHMM is adopted to mod-
el vocal tract characteristics for detecting pitch to reconstruct
speech sources. In [12, 13, 14] Gaussian mixture models (G-
MMs) are employed to model speakers, and the minimum mean
squared error (MMSE) or maximum a posteriori (MAP) estima-
tor is used to recover the speech signals. The factorial-max vec-
tor quantization model (MAXVQ) is also used to infer the mask
signals in [15]. Other popular approaches include nonnegative
matrix factorization (NMF) based model [16].

In this study, inspired by our recent work on speech en-
hancement based on deep neural networks (DNNs) [17], we
propose to solve the separation problem in Eq. (1) in an alter-
native way. DNN is adopted to directly model the highly non-
linear relationship of speech features between a target speaker
and the mixed signals. Eq. (1) plays the role of synthesizing
a large amount of the mixed speech for DNN training, given
the speech sources of the target speaker and interfering speak-
er. Our proposed approach avoids the difficult inference based
on Eq. (1) using complex models for both target and interfer-
ing speakers. As a supervised approach, our experiments show
that DNN-based separation achieves significantly better perfor-
mance than GMM-based separation in [14] due to the powerful
modeling capability of DNN. To further verify the effectiveness
of our DNN-based approach in a more realistic scenario, name-
ly the semi-supervised mode where only the target speaker in-
formation (training data) is given, we propose using multiple
speakers to be mixed with the target speaker to train the DNN
which is shown to well predict an unseen interferer in the sep-
aration stage. More significantly, our DNN-based approach in
the semi-supervised mode even outperforms the GMM-based
approach in the supervised mode.

The remainder of the paper is organized as follows. In Sec-
tion 2, we give a system overview. In Section 3, we introduce
the details of DNN-based speech separation. In Section 4, we
report experimental results and finally we conclude the paper in
Section 5.
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Figure 1: Overall development flow and architecture.

2. System Overview
The overall flowchart of our proposed speech separation system
of a target speaker is illustrated in Fig. 1. In the training stage,
the DNN as a regression model is trained by using log-power
spectral features from pairs of mixed signal and the target s-
peaker. Note that in this work there are only two speakers in
the mixed signal, namely the target speaker and the interfer-
ing speaker. In the separation stage, the log-power spectral fea-
tures of the mixture utterance are processed by the well-trained
DNN model to predict the speech feature of the target speaker,
followed by a post-processing. Then the reconstructed spectra
could be obtained using the estimated log-power spectra from
DNN and the original phase of mixed speech. Finally, an over-
lap add method is used to synthesize the waveform of the es-
timated target speech [17]. In the next section, the details of
DNN training and post-processing are elaborated.

3. DNN-based Speech Separation
In this work, DNN is adopted as a regression model to predict
the log-power spectral features of the target speaker given the
input log-power spectral features of mixed speech with acoustic
context, which is shown in Fig. 2. The log-power spectral fea-
tures can offer perceptually relevant parameters. The acoustic
context information along both time axis (with multiple neigh-
boring frames) and frequency axis (with full frequency bins) can
be fully utilized by DNN to improve the continuity of estimat-
ed clean speech while the conventional GMM-based approach
do not model the temporal dynamics of speech. As the train-
ing of this regression DNN requires a large amount of time-
synchronized stereo-data with target and mixed speech pairs,
the mixed speech utterances are synthesized by corrupting the
clean speech utterances of the target speaker with interferers at
different signal-to-noise (SNR) levels (here we consider inter-
fering speech as noise) based on Eq. (1). Note that the gener-
alization to different SNR levels in the separation stage can be
well addressed by the full coverage of SNR levels in the training
stage levels inherently.

Training of DNN consists of two key steps: unsupervised
pre-training and supervised fine-tuning. The pre-training treats
each consecutive pair of layers as a restricted Boltzmann ma-
chine (RBM) while the parameters of RBM are trained layer
by layer with the approximate contrastive divergence algorith-
m [18]. For the supervised fine-tuning, we aim at minimizing
mean squared error between the DNN output and the reference
clean features of the target speaker:

E =
1

N

N∑
n=1

∥x̂t
n(x

m
n±τ ,W , b)− xt

n∥22 + κ∥W ∥22 (2)

where x̂t
n and xt

n are the nth D-dimensional vectors of esti-

Figure 2: DNN for speech separation.

mated and reference clean features of the target speaker, re-
spectively. xm

n±τ is a D(2τ + 1)-dimensional vector of in-
put mixed features with neighbouring left and right τ frames
as the acoustic context. W and b denote all the weight and
bias parameters. κ is the regularization weighting coefficient
to avoid over-fitting. The objective function is optimized us-
ing back-propagation procedure with a stochastic gradient de-
scent method in mini-batch mode of N sample frames. Based
on our preliminary experiment, we observe that the estimated
clean speech has a muffling effect when compared with refer-
ence clean speech. To alleviate this problem, global variance
equalization (GVE), as a post-processing, is used to further en-
hance the speech region of the target speaker and suppress the
residue of the interferer simultaneously. In GVE, a dimension-
independent global equalization factor β can be defined as:

β =

√
GVref

GVest
(3)

where GVref and GVest are the dimension-independent global
variance of the reference clean features and the estimated clean
features, respectively. Then the post-processing is:

x̃t
n = βx̂t

n (4)

where x̃t
n is the final estimated clean speech feature vector.

To investigate the effectiveness of the proposed DNN-based
separation approach, experiments in both supervised and semi-
supervised modes are designed. One case is a mixture consist-
s of one target and only one interferer, denoted as 1+1 mode.
Then each mixture utterance for training of DNN is synthesized
by adding the randomly selected segment of the interferer with
a specified SNR to the utterance of the target speaker. In the
separation stage, only the mixture with the same target and in-
terferer is tested in a supervised manner. The other case is a
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Figure 3: Output SNR comparison of different approaches with
four gender combinations in the 1+1 supervised mode.

mixture consists of one target and N possible interferers, denot-
ed as 1+N mode. Then each mixture utterance for training of
DNN is synthesized by adding the randomly selected segment
of one interferer from N possible interferers with a specified
SNR to the utterance of the target speaker. In the separation
stage, if the interferer in the mixture is still among the N possi-
ble interferers used in the training stage, then the separation is
in a supervised manner. Otherwise, the separation is in a semi-
supervised manner with an unseen interferer.

4. Experiments and Result Analysis
Our experiments were conducted on the Speech Separation
Challenge (SSC) corpus [19]. For training of DNNs, all the
utterances of the target speakers in the training set were used
while the corresponding mixtures were generated by adding
randomly selected interferers to the target speech at SNRs rang-
ing from -10 dB to 10 dB with an increment of 1 dB. We use the
test set of the SSC corpus with two-speaker mixtures at SNRs
from -9 dB to 6 dB with an increment of 3 dB for evaluation.
Note that the mixture utterances were the same across different
SNRs. Obviously, the mixtures in the training set have a good
SNR coverage for the test set. The method in [14] is adopted
for performance comparison with our DNN approach, which is
denoted as “GMM” approach in the following experiments.

As for signal analysis, all waveforms were down-sampled
from 25kHz to 16kHz, and the frame length was set to 512
samples (or 32 msec) with a frame shift of 256 samples. A
short-time Fourier analysis was used to compute the DFT of
each overlapping windowed frame. Then 257-dimensional log-
power spectra features were used to train DNNs. The separation
performance was evaluated using two measures, namely output
SNR [14] and short-time objective intelligibility (STOI) [20]
believed to be highly correlated to speech intelligibility.

The DNN architecture used in the experiments was 1799-
2048-2048-2048-257, which denoted that the sizes were 1799
(257*7, τ=3) for the input layer, 2048 for three hidden layers,
and 257 for the output layer. The number of epoch for each
layer of RBM pre-training was 20 while the learning rate of
pre-training was 0.0005. For the fine-tuning, learning rate was
set at 0.1 for the first 10 epochs, then decreased by 10% after
every epoch. The total number of epoch was 50 and the mini-
batch size was set to 128. Input features of DNNs were globally

Figure 4: STOI comparison of different approaches with four
gender combinations in the 1+1 supervised mode.

Figure 5: STOI comparison of different approaches with the fe-
male (F) and the male (M) targets in the 1+N supervised mode.

normalized to zero mean and unit variance. Other parameter
settings can refer to [21].

4.1. Evaluation in 1+1 mode

In the 1+1 supervised mode, information of both the target and
interferer is provided in advance and there is only one interferer.
As the training of each DNN with one target and one interferer
was time-consuming, 16 combinations of targets and interferers
were randomly selected for training and evaluation, which were
equally assigned for four possible gender combinations, name-
ly female and female (F+F), male and male (M+M), female and
male (F+M), male and female (M+F). For each combination,
about 30 hours of mixed speech were synthesized by the target
and interferer for corresponding DNN training. Fig 3 gives a
performance (output SNR) comparison of different separation
approaches with four gender combinations in 1+1 supervised
mode. First, all DNN systems significantly improved the out-
put SNR over the GMM systems across different input SNRs
(more than 2 dB improvement in the best case). Second, the
output SNRs for different gender combinations in both GMM
and DNN approaches roughly followed a certain trend across
different input SNRs, namely, monotonically decreased in the
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Figure 6: STOI comparison of different approaches with the
female target (F) and the male target (M) in the 1+N semi-
supervised mode.

order of M+F, F+M, F+F, and M+M. Fig 4 presents the corre-
sponding STOI comparison. Not surprisingly, DNN still con-
sistently outperformed GMM. However, it was interesting that
our proposed DNN approach was more robust to the decreased
input SNRs than GMM. Even in the -9 dB condition, STOI of
DNN could achieve about 0.85, which was comparable to that
of the GMM approach at 3 dB.

4.2. Evaluation in 1+N mode

In the 1+N mode, 1 target and N interferers were used to gen-
erate the mixed speech with two speakers in the training stage.
In the test stage of separating the target, if the interferer is one
of the N interferers in the training stage, then it is still a su-
pervised mode. Otherwise, it is a semi-supervised mode with
an unknown interferer. To test the effect of N , experiments on
N=6 and N=27 were conducted. The data amount of mixed
speech synthesized as the training set for N=6 and N=27 were
about 30 hours and 140 hours, respectively. Training of DNN
with such an amount of data was time-consuming. So only one
female target and one male target were selected, and all the
mixtures with those two targets on the test set were used for
evaluation in the following experiments. Fig. 5 shows an S-
TOI comparison of different approaches with the female target
(F) and the male target (M) in the 1+N supervised mode. We
can observe that increasing N with more training data could al-
ways improve STOI in the proposed DNN approach. Similar to
Fig 4, the STOIs of DNN were much better than those of GMM
even with more confusing interferers included. Fig. 6 lists an
STOI comparison of the different approaches with the female
target (F) and the male target (M) in the 1+N semi-supervised
mode. Note that the results for GMM in Fig. 6 are still in a su-
pervised mode. Similar observations can also be made as those
in Fig. 5. There was only one exception that DNN(F,N=6) at
3 dB generateed worse STOI than GMM. Overall, the DNN
approach with N=27 achieved consistently the best separation
performance. These results were very encouraging as our DNN
approach without any information about the interferers could
beat the conventional GMM approach with information of both
the target and the interferer. This confirms that using many in-
terferers in training DNN can well predict an unseen interferer
in the separation stage due to the powerful modeling capability
of DNN.

Figure 7: Illustration of spectrograms for separating the target
male utterance from the mixed utterance with a female interfer-
er in the semi-supervised 1+N mode (N=27).

Finally, the spectrograms of an utterance example are il-
lustrated in Fig. 7 with Fig. 7(a) for a mixed utterance with a
male target and a female interferer at -9 dB and Fig. 7(b) for the
target male. While Fig. 7(c) is for a corresponding version with
energy normalization as in [14], which is used as a reference for
Fig. 7(d) using a GMM approach where energy normalization
should be performed. Fig. 7(e) is the spectrogram of our pro-
posed approach in the semi-supervised 1+N mode (N=27). To
give a fair comparison with Fig. 7(d), the normalized version of
our result is also shown in Fig. 7(f). Obviously, our results are
closer to the target reference than that of the GMM approach. It
is also interesting to note that no interferer information is given.

5. Conclusion and Future Work
In this paper, we present a novel DNN-based approach to single-
channel speech separation. We demonstrate its effectiveness
over state-of-the-art approaches of separating a single target s-
peaker from mixtures of two voices in both the supervised and
semi-supervised modes. With more training speech data from
interfering speakers, the performance in the semi-supervised
mode can even surpass that of the GMM approach in the super-
vised mode. Ongoing future work includes extending the sep-
aration of a single target from the mixture utterance with more
than one interfering speaker and investigating the separation of
multiple target speakers using a single DNN.
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