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Abstract
In this paper, we propose a novel boosted mixture learning
(BML) framework for Gaussian mixture HMMs in speech
recognition. BML is an incremental method to learn mix-
ture models for classification problem. In each step of BML,
one new mixture component is calculated according to func-
tional gradient of an objective function to ensure that it isadded
along the direction to maximize the objective function the most.
Several techniques have been proposed to extend BML from
simple mixture models like Gaussian mixture model (GMM)
to Gaussian mixture hidden Markov model (HMM), including
Viterbi approximation to obtain state segmentation, weight de-
cay to initialize sample weights to avoid overfitting, combining
partial updating with global updating of parameters and using
Bayesian information criterion (BIC) for parsimonious model-
ing. Experimental results on the WSJ0 task have shown that
the proposed BML yields relative word and sentence error rate
reduction of 10.9% and 12.9%, respectively, over the conven-
tional training procedure.
Index Terms: functional gradient, boosted mixture learning,
acoustic models, speech recognition

1. Introduction
In the state-of-the-art automatic speech recognition (ASR) sys-
tems, we normally use Gaussian mixture HMMs as acoustic
models to model basic speech units, ranging from context-
independent whole words in small vocabulary ASR tasks to
context-dependent phonemes (e.g., triphones) in large vocabu-
lary ASR. Traditionally the HMM-based acoustic models are
estimated from available training data using the well-known
EM algorithm based on maximum likelihood (ML) criterion.
To deal with data sparseness problems in model training, we
normally use phonetic decision trees to tie HMM states from
different triphone contexts, which leads to the so-called state-
tying triphone HMMs. In order to derive a simple closed-
form solution, we normally grow the decision trees based on
single Gaussian HMMs[7]. After the state-tying structure is
determined from the decision trees, a separate “mixture-up”
step is performed to gradually increase number of Gaussian
mixtures in each HMM state until the optimal performance is
achieved. In most today’s ASR systems, the “mixture-up” is
usually implemented as two steps: i) all existing Gaussiansin
an HMM state is first randomly split; ii) all split Gaussians are
re-estimated based on k-means or EM algorithm. Obviously, we
are facing several problems when increasing model complexity
in the above-mentioned “mixture-up” strategy. First of all, the
random splitting strategy is not optimal in terms of model es-
timation criterion. For example, there is no guarantee thatthe
newly added Gaussian components from random splitting al-
ways increase the likelihood function. Secondly, since thesub-

sequent EM-based re-estimation is sensitive to the initialpara-
meters of randomly split Gaussians, there is no guarantee that
the EM-based re-estimation can always converge to any good
optimal point when starting from the randomly split Gaussians
as initial values.

Recently, the concept of boosting has been widely applied
to various pattern classification problems. The basic idea of
boosting is to derive and combine a large number of weak clas-
sifiers to achieve strong and reliable classifier [1]. Some theo-
retical work has shown that the boosting algorithms can result in
impressive generation performance, which can be attributed to
large margin achieved by the boosting algorithms in the training
data. More recently, the traditional boosting algorithms have
been extended to some learning problems of mixture models
[2, 3], which is called boosted mixture learning (BML). The
basic idea of BML is to learn mixture models in an incremen-
tal and recursive manner. The BML always starts from single
mixture model and gradually adds a new mixture component in
such a way that it always optimizes a predefined objective func-
tion. The essential point of BML is that a new mixture compo-
nent is calculated in each step according to functional gradient
of the objective function so that each new component is always
added to the direction that increases the objective function the
most. Compared with the traditional random splitting, BML is
less sensitive to the initial parameter values and it may probably
converge to a better optimal point.

In this work, we study how to use BML to learn Gaussian
mixture HMMs for speech recognition. As the first step, we
only consider the maximum likelihood (ML) estimation crite-
rion in BML, where the objective function of BML is defined as
the likelihood function of model parameters. In this paper,we
first consider to apply the standard BML algorithm to Gaussian
mixture models (GMMs) and then extend it to Gaussian mix-
ture HMMs. Furthermore, several modifications have been pro-
posed to make BML feasible and effective in the HMM frame-
work. Firstly, Viterbi approximation is proposed to obtainstate
segmentation and BML of HMMs is conducted according to
the Viterbi state segmentation. In this way, BML of Gaussian
mixture HMMs can be formulated as the same BML problem
of GMMs. Secondly, weight decay [4] using power scaling is
proposed to deal with the over-fitting problem caused by un-
bounded sample weights. Thirdly, we propose to update the
entire Gaussian mixture model whenever a new component is
added to the mixture while only the newly added mixture com-
ponent is normally updated in each traditional BML step. This
is called global updating, which is found to significantly im-
prove recognition performance in speech recognition. Finally,
Bayesian information criterion (BIC) [6] is used as the conver-
gence criterion in BML to control the size of model parameters
for parsimonious modeling.



2. BML of Mixture Models
First of all, a mixture modelFK(x) is defined as:

FK(x) =

KX
k=1

ckfk(x), ck ≥ 0,

KX
k=1

ck = 1 (1)

whereK is the mixture number,x is a feature vector,ck and
fk(x) are the weight and component ofkth mixture, respec-
tively.

Learning of mixture models has been extensively studied in
machine learning. The traditional method is based on random
splitting and EM-based re-estimation. In this work, we focus
on a different method to learn mixture models, which is named
as boosted mixture learning (BML). At each stage of BML, a
new component (ck, fk) is added to the previous mixture model
Fk−1 with k−1 mixture components to grow into a new mixture
modelFk with k mixture components as follows:

Fk(x) = (1 − ck)Fk−1(x) + ckfk(x). (2)

This procedure is repeated until some convergency condition is
met. The key idea of BML is how to derive the new component
fk and its mixture weightck in an optimal way.

Table 1: Description of BML procedure
Step 1: InitializeFk(k = 1) .
Step 2: Fork = 2, 3, ...

{c∗k, f∗
k } = arg maxck,fk

C(Fk)
Continue to add the new component?
Yes:Fk(x) = (1 − c∗k)Fk−1(x) + c∗kf∗

k (x)
No: go to Step 3

Step 3: Output final mixture modelFk

To learn parametersck and fk, we should define an ob-
jective functionC. If we consider maximum likelihood (ML)
estimation, the objective function is defined as log likelihood
function of mixture models as follows:

C(Fk) =

NX
n=1

log Fk(xn) (3)

whereN is the number of training samples. Then the general
procedure of BML can be described in Table 1. In order to de-
rive each new mixture component and its weight optimally in
Step 2, a functional gradient method [2, 3] is used. Assume the
objective functionC(F ) is viewed as a functional of mixture
modelF . When a new mixture componentfk is added, hope-
fully it will increase the objective function as much as possible:

C((1 − ε)Fk−1 + εfk) > C(Fk−1) (4)

whereε is a small constant. If we use the Taylor series to expand
the left hand side of the above equation, we have:

C((1 − ε)Fk−1 + εfk)

= C(Fk−1 + ε(fk − Fk−1))

= C(Fk−1) + ε〈∇C(Fk−1), (fk − Fk−1)〉

+O(||ε(fk − Fk−1)||)

≈ C(Fk−1) + ε〈∇C(Fk−1), (fk − Fk−1)〉 (5)

where∇C(Fk−1) = ∇C(F )|F=Fk−1
is the functional gradient

of the objective function atFk−1. If ε is small enough, high-
order itemO(||ε(fk −Fk−1)||) can be ignored. By considering

both Eq.(4) and Eq.(5), the optimization of objective function,
which is equivalent to optimization of the first-order item with
the form of inner product in Eq.(5), can be derived as follows:

f∗

k = arg max
fk

〈∇C(Fk−1), (fk − Fk−1)〉. (6)

This equation clearly shows that the new mixture compo-
nentfk is calculated along the direction of functional gradient
where the objective function grows the most. The reason to take
the inner product between the functional gradient and the mix-
ture model is to ensure that the new componentfk is calculated
in such a way that the new modelFk still falls into the same
model space asFk−1.

If we consider the objective function in Eq.(3), it is easy
to show that the functional gradient can be calculated as
∇C(Fk−1) = 1

Fk−1

. As a result, Eq.(6) can be re-written as
follows:

f∗

k = arg max
fk

1

N

NX
n=1

fk(xn) − Fk−1(xn)

Fk−1(xn)

= arg max
fk

NX
n=1

fk(xn)

Fk−1(xn)
(7)

Obviously, Eq.(7) is a general form to derive each new
mixture component in BML based on the maximum likelihood
(ML) estimation criterion. In the following, we consider toap-
ply it to Gaussian mixture models (GMMs), where each mixture
componentfk is a multivariate Gaussian distribution with mean
vectorµk and diagonal covariance matrixΣk as

fk(xn) = N (xn; µk,Σk). (8)

There is no closed-form solution to solve the optimization
problem for GMMs in Eq.(7). In this work, we propose to
optimize Eq.(7) iteratively using EM algorithm to search for
the optimal componentf∗

k . That is, by taking alog opera-
tion, Eq.(7) becomes a log-sum maximization which can be op-
timized by conventional lower-bound maximization technique
using Jensen’s inequality. Then the parameters of Gaussian
functionfk can be iteratively estimated as follows:

w(xn) =
fk(xn)

Fk−1(xn)
(9)

µ̂k =

PN

n=1 w(xn)xnPN

n=1 w(xn)
(10)

Σ̂k =

PN

n=1 w(xn)(xn − µ̂k)(xn − µ̂k)⊤PN

n=1 w(xn)
(11)

wherew(xn) denotes sample weights in each iteration, simi-
lar to the ones used in the traditional boosting algorithms.The
physical meaning of sample weight is that samples with low
probabilityFk−1 are given higher weights than the highly likely
samples according toFk−1. Hence, the new componentfk fo-
cuses on these samples poorly modeled by a simpler distribu-
tion Fk−1. For initialization, we often setw0(xn) = 1

Fk−1(xn)

in the first iteration and then use Eq.(10), Eq.(11) and Eq.(9)
to update mean vector, covariance matrix and sample weights
iteratively untilfk converges.

After f∗
k is estimated from the above EM method, the mix-

ture weightc∗k can be obtained by using the following line
search:

c∗k = arg max
ck∈[0,1]

C((1 − ck)Fk−1 + ckf∗

k ). (12)



In practice, the optimal mixture weightc∗k can be found effi-
ciently by using a grid search in the interval[0, 1].

3. BML of HMMs for Speech Recognition
In this section, we extend the above BML algorithm of GMMs
to estimation of Gaussian mixture HMMs in speech recognition.
Several techniques have been proposed to make the above BML
procedure feasible and effective under the HMM framework.

3.1. Viterbi approximation for state segmentation

Under the HMM framework, the likelihood function can be
viewed as a mixture of all possible hidden state sequences. As
a result, it is not straightforward to directly apply the BML
method in Eq.(7) to HMMs. In this work, we simply accept
the Viterbi approximation where the likelihood function iscal-
culated based on the optimal Viterbi path instead of summation
over all possible state sequences. In this way, the above BML
algorithm of GMMs can be directly used to estimate GMMs for
all HMM states independently.

C(F ) = log
X

s0s1...sN

πs0

NY
n=1

asn−1sn
F (xn|sn)

≈
NX

n=1

log F (xn|s
∗

n) + C (13)

whereX = {x1,x2, ..., xN} is a set of training samples,{πi}
and{aij} denote the initial state probabilities and state tran-
sition probabilities of HMMs, respectively, ands∗0s

∗
1...s

∗
N de-

notes the optimal state sequence based on the Viterbi approx-
imation. In above, we useF (xn|s

∗
n) to represent each state

output probability distribution, which is modeled by a GMM in
Gaussian mixture HMMs.

Based on Eq.(13), the BML problem of HMMs can be sim-
plified as BML of GMMs as defined in Eq.(3). Given a set of
training data,X, we first use an initial HMM to decode the op-
timal Viterbi paths. Then all the feature vectors are aligned to
different HMM states based on the Viterbi paths and the BML
method in Section 2 is used to estimate GMMs for all HMM
states based on the aligned feature vectors. It is noted that{πi}
and{aij} are not updated in the BML procedure since they are
not critical for performance of speech recognition.

3.2. Initialization of sample weights with weight decay

After state segmentation, GMM parameters of each HMM state
can be learned as the BML algorithm in Section 2. But there
are several problems when we apply the BML to HMMs. The
first problem is initialization of sample weights for each new
mixture component using sample weightw0(xn) = 1

Fk−1(xn)
.

In Gaussian mixture HMMs for speech recognition, it is found
that dynamic range ofFk−1 is so large that the initial sam-
ple weights,w0(xn), are dominated by only a small number
of samples with low probability, which may cause overfitting
problem in BML. To deal with this problem, weight decay [4]
using power scaling is used to calculate initial sample weights
as follows:

w0(xn) =
1

F α
k−1(xn)

(14)

whereα is the exponential scaling factor0 < α < 1. It has
been observed that weight decay is critical to achieve good per-

formance in speech recognition and typically the value of expo-
nential factorα is not sensitive to different ASR tasks.

3.3. Partial and global updating in BML

In the traditional BML, when a new mixture componentfk is
added to the mixture model, we first estimate a new mixture
component as in Eq.(7) and then the mixture weight is esti-
mated from a separate line search process as in Eq.(12). In this
section, we propose an alternative method to estimate each mix-
ture component and its weight. As in [5], we directly apply the
EM algorithm to optimize the original log likelihood function
only with respect to the new mixture componentfk and weight
ck while Fk−1 are assumed to be constants. For GMMs, it can
be easily derived that mixture weightck, mean vector and co-
variance matrix offk are estimated iteratively as follows:

w(xn) =
fk(xn)

ckfk(xn) + (1 − ck)Fk−1(xn)
(15)

ĉk =
1

N

NX
n=1

ckw(xn) (16)

µ̂k =

PN

n=1 w(xn)xnPN

n=1 w(xn)
(17)

Σ̂k =

PN

n=1 w(xn)(xn − µ̂k)(xn − µ̂k)⊤PN

n=1 w(xn)
(18)

In this work, this estimation method is named aspartial EM.
Compared with the re-estimation based on the functional gra-
dient method from Eq.(9) to Eq.(11), the updating formula for
mean vector and covariance matrix are the same and the main
difference is the estimation formula of sample weights. Com-
paring the estimation formula Eq.(9) with Eq.(15), it is easy
to see that sample weights in partial EM have much smaller dy-
namic range due to normalization in Eq.(15). As a result, it may
lead to robust and reliable estimation of the new component.In
partial EM, we simply initialize each mixture weightck as1/k.

Our experimental results show that in each stage of BML, if
only the newly-added mixture component is updated, the con-
vergence of recognition performance is quite slow. Therefore,
similar to the re-estimation in partial EM, additional EM-based
re-estimation can be applied to re-estimate all mixture compo-
nents inFk, which is calledglobal EM in this work. It has
been shown that the additional global EM step can significantly
improve performance of Gaussian mixture HMMs in speech
recognition.

3.4. BIC for parsimonious modeling

BML is an incremental and recursive learning process where
only one new mixture component is added in each iteration. In
this section, we consider to use Bayesian information criterion
(BIC) to select the optimal number of mixture components. The
BIC criterion has been widely used as a popular model selection
criterion and it can be viewed as a regularized likelihood func-
tion as follows:

BIC(k) = C(Fk) −
λ

2
∗ Mk ∗ log(N) (19)

whereC(Fk) is the conventional log likelihood function defined
in Eq.(3). Mk is the number of parameters used in mixture
modelFk. In our BML procedure, we first run BML to grad-
ually increase the number of mixture components until certain
point. At last, we use the BIC criterion to roll back model size



Table 2: Performance (word error rate and sentence error rate) comparison on the WSJ-5k test set.
WER(%) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8

HTK 10.98 9.88 8.59 8.03 7.08 5.98 5.34 5.14
1-pass BML N/A 7.51 6.18 5.75 5.70 5.34 4.99 4.84
2-pass BML N/A 6.61 5.62 5.68 5.14 4.86 4.63 4.58

+BIC Avg. 6.6 Gaussians per state, WER is 4.58%

SER(%) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8
HTK 69.1 67.0 64.6 63.3 56.1 47.9 46.1 44.6

1-pass BML N/A 55.5 49.4 47.3 46.4 42.7 40.3 41.2
2-pass BML N/A 50.0 44.6 45.8 42.4 40.0 38.2 38.8

+BIC Avg. 6.6 Gaussians per state, SER is 38.8%

and select the optimal value ofk which maximizes the BIC cri-
terion in Eq.(19). By doing so, we can typically reduce model
size significantly for parsimonious modeling.

4. Experiments
The proposed BML algorithms have been evaluated in a large
vocabulary ASR task using the WSJ0 database. In the WSJ0
task, the training set is the standard SI-84 set, consistingof
7133 utterances from 84 speakers (about 12 hours speech data
in total). Evaluation is performed on the standard Nov’92 non-
verbalized 5k close-vocabulary test set (WSJ-5k), including 330
utterances from 8 speakers. For the baseline system, we use the
HTK to build standard state-tying cross-word triphone HMMs
[7], which includes a total number of 2774 tied-states. The
feature vectors are 39-dimensional MFCC features (including
delta and delta-delta features) after cepstral mean normaliza-
tion processing in sentence level. A standard trigram language
model is used in evaluation.

For the BML configurations, we set the exponential factor
α of weight decay to 0.05. The parameterλ for BIC is set to
0.98. The initial single Gaussian HMMs are trained using HTK
procedure. And the initial HMM state probabilities and state
transition probabilities are not updated in the BML stage. For
each boosting stage of BML, firstly we initialize the new mix-
ture component using functional gradient based sample weights
with weight decay in Eq.(14) and set initial new mixture weight
to 1/k. Then re-estimation of partial EM is used to refined both
the new mixture component and weight. Finally, global EM is
applied for all mixture components in current mixture model.

4.1. Experimental results on WSJ0 task

We compare recognition performance of HMMs from different
training procedures in terms of word error rate and sentenceer-
ror rate on the WSJ-5k test set. As shown in Table 2,K denotes
the mixture number of GMM in each tied HMM state. “HTK”
stands for the HTK-trained baseline system which uses the con-
ventional random splitting and EM-based re-estimation during
the model training process. “1-pass BML” means Viterbi state
segmentation is regenerated using currently updated HMMs in
each step. “2-pass BML” represents Viterbi state labels arere-
generated by using the best HMM (withK = 8) from “1-pass
BML” and then the same BML training produce is repeated
without regenerating the state labels. “+BIC” means BIC is
applied to “2-pass BML” to reduce model size for parsimo-
nious modeling. It is observed that for both word error rate
and sentence error rate, the proposed BML procedures signifi-
cantly outperform the traditional “HTK” procedure, especially
when the number of Gaussians is small. By comparing “1-pass

BML” and “2-pass BML”, we can see that the precision of the
state labels has a significant impact on recognition performance
for BML. So HMMs used to generate state segmentation should
be refined as much as possible. Using BIC, the good recogni-
tion performance is maintained even though the model size has
been significantly reduced. Finally, our BML procedure yields
the relative word and sentence error rate reduction of 10.9%and
12.9%, respectively, compared with “HTK” procedure. Mean-
while, relative reduction of 17.5% in model size (from 8 Gaus-
sians to averaged 6.6 Gaussians per tied-state) can be achieved
by using BIC without any loss in recognition performance.

5. Conclusion
In this paper, we have presented a novel boosted mixture learn-
ing (BML) framework based on maximum likelihood (ML) cri-
terion for Gaussian mixture HMMs in speech recognition. The
Viterbi approximation has been accepted for state segmentation
to extend the BML of GMMs into Gaussian mixture HMMs.
Several techniques have been proposed to improve performance
of BML in speech recognition, such as weight decay to initial-
ize sample weights to avoid overfitting, combining partial up-
dating with global updating of parameters and using BIC for
parsimonious modeling. Experimental results on the WSJ0 task
have shown that the proposed BML method yields significantly
better performance than the conventional HMM training proce-
dure.
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