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Abstract

In this paper, we propose a novel boosted mixture learning
(BML) framework for Gaussian mixture HMMs in speech
recognition. BML is an incremental method to learn mix-
ture models for classification problem. In each step of BML,
one new mixture component is calculated according to func-
tional gradient of an objective function to ensure that @dsled
along the direction to maximize the objective function thesin
Several techniques have been proposed to extend BML from
simple mixture models like Gaussian mixture model (GMM)
to Gaussian mixture hidden Markov model (HMM), including
Viterbi approximation to obtain state segmentation, wedg:

cay to initialize sample weights to avoid overfitting, comihg
partial updating with global updating of parameters anaaisi
Bayesian information criterion (BIC) for parsimonious netd
ing. Experimental results on the WSJO0 task have shown that
the proposed BML yields relative word and sentence errer rat
reduction of 10.9% and 12.9%, respectively, over the conven
tional training procedure.

Index Terms: functional gradient, boosted mixture learning,
acoustic models, speech recognition

1. Introduction

In the state-of-the-art automatic speech recognition (PSR-
tems, we normally use Gaussian mixture HMMs as acoustic
models to model basic speech units, ranging from context-
independent whole words in small vocabulary ASR tasks to
context-dependent phonemes (e.g., triphones) in largabusc
lary ASR. Traditionally the HMM-based acoustic models are
estimated from available training data using the well-know
EM algorithm based on maximum likelihood (ML) criterion.
To deal with data sparseness problems in model training, we
normally use phonetic decision trees to tie HMM states from
different triphone contexts, which leads to the so-calledes
tying triphone HMMs. In order to derive a simple closed-
form solution, we normally grow the decision trees based on
single Gaussian HMMs[7]. After the state-tying structuse i
determined from the decision trees, a separate “mixtufe-up
step is performed to gradually increase number of Gaussian
mixtures in each HMM state until the optimal performance is
achieved. In most today’s ASR systems, the “mixture-up” is
usually implemented as two steps: i) all existing Gaussians
an HMM state is first randomly split; i) all split Gaussiane a
re-estimated based on k-means or EM algorithm. Obviousy, w
are facing several problems when increasing model contplexi
in the above-mentioned “mixture-up” strategy. First of #ile
random splitting strategy is not optimal in terms of model es
timation criterion. For example, there is no guarantee tiat
newly added Gaussian components from random splitting al-
ways increase the likelihood function. Secondly, sincesthie
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sequent EM-based re-estimation is sensitive to the irpaah-
meters of randomly split Gaussians, there is no guarantge th
the EM-based re-estimation can always converge to any good
optimal point when starting from the randomly split Gaussia

as initial values.

Recently, the concept of boosting has been widely applied
to various pattern classification problems. The basic idea o
boosting is to derive and combine a large number of weak clas-
sifiers to achieve strong and reliable classifier [1]. Sone®th
retical work has shown that the boosting algorithms canltasu
impressive generation performance, which can be attribigte
large margin achieved by the boosting algorithms in theingi
data. More recently, the traditional boosting algorithnasen
been extended to some learning problems of mixture models
[2, 3], which is called boosted mixture learning (BML). The
basic idea of BML is to learn mixture models in an incremen-
tal and recursive manner. The BML always starts from single
mixture model and gradually adds a new mixture component in
such a way that it always optimizes a predefined objective-fun
tion. The essential point of BML is that a new mixture compo-
nent is calculated in each step according to functionaligrad
of the objective function so that each new component is adway
added to the direction that increases the objective fundtie
most. Compared with the traditional random splitting, BML i
less sensitive to the initial parameter values and it malpginty
converge to a better optimal point.

In this work, we study how to use BML to learn Gaussian
mixture HMMs for speech recognition. As the first step, we
only consider the maximum likelihood (ML) estimation crite
rion in BML, where the objective function of BML is defined as
the likelihood function of model parameters. In this papes,
first consider to apply the standard BML algorithm to Gaussia
mixture models (GMMs) and then extend it to Gaussian mix-
ture HMMs. Furthermore, several modifications have been pro
posed to make BML feasible and effective in the HMM frame-
work. Firstly, Viterbi approximation is proposed to obtaitate
segmentation and BML of HMMs is conducted according to
the Viterbi state segmentation. In this way, BML of Gaussian
mixture HMMs can be formulated as the same BML problem
of GMMs. Secondly, weight decay [4] using power scaling is
proposed to deal with the over-fitting problem caused by un-
bounded sample weights. Thirdly, we propose to update the
entire Gaussian mixture model whenever a new component is
added to the mixture while only the newly added mixture com-
ponent is normally updated in each traditional BML step.sThi
is called global updating, which is found to significantly-im
prove recognition performance in speech recognition. I§ina
Bayesian information criterion (BIC) [6] is used as the camv
gence criterion in BML to control the size of model parameter
for parsimonious modeling.



2. BML of Mixture Models

First of all, a mixture modeF'x (x) is defined as:

K K
:chfk(x), CkZO,ZCkzl
k=1 k=1

where K is the mixture numberx is a feature vectorg, and
fx(x) are the weight and component &f' mixture, respec-
tively.

Learning of mixture models has been extensively studied in
machine learning. The traditional method is based on random
splitting and EM-based re-estimation. In this work, we facu
on a different method to learn mixture models, which is named
as boosted mixture learning (BML). At each stage of BML, a
new componentdy, f%) is added to the previous mixture model
Fy.—1 with k—1 mixture components to grow into a new mixture
model F, with & mixture components as follows:

Fi(x) = (1 c) Fir (%) + e fu(). @

This procedure is repeated until some convergency condgio
met. The key idea of BML is how to derive the new component
fx and its mixture weight;, in an optimal way.

@)

Table 1: Description of BML procedure
Step 1: InitializeF,(k =1) .
Step2: Fok =2,3,...
{ck, fr} = argmax., 5, C(F)
Continue to add the new component?
Yes: Fy(x) = (1 - ¢)Fi-1(x) + ¢} i (%)
No: go to Step 3
Output final mixture modéf,

Step 3:

To learn parameters, and f, we should define an ob-
jective functionC. If we consider maximum likelihood (ML)
estimation, the objective function is defined as log liketid
function of mixture models as follows:

N
Fy) = Z log Fi(xn)
n=1

where N is the number of training samples. Then the general
procedure of BML can be described in Table 1. In order to de-
rive each new mixture component and its weight optimally in
Step 2, a functional gradient method [2, 3] is used. Assurae th
objective functionC(F) is viewed as a functional of mixture
model F. When a new mixture componejfi is added, hope-
fully it will increase the objective function as much as pbks

C((l—E)Fk71 +€fk) >C(Fk—1) 4)

wherez is a small constant. If we use the Taylor series to expand
the left hand side of the above equation, we have:

C((1—¢e)Fr—1+efr)
C(Fi—1+e(fx — Fr—1))
C(Fi-1) + e(VC(Fi—-1), (fe — Fr-1))
+O(lle(fr = Fr-1)I)
~  C(Fr-1) +&(VC(Fr-1), (fk = Fr-1)) ()
whereVC(Fy_1) = VC(F)|r=r,_, is the functional gradient

of the objective function aF_;. If ¢ is small enough, high-
order itemO(||e(fx — Fr—1)||) can be ignored. By considering

@)

both Eq.(4) and Eq.(5), the optimization of objective fuot
which is equivalent to optimization of the first-order itenithw
the form of inner product in Eq.(5), can be derived as follows

fr= arg max (VC(Fr-1), (fx — Fr_1)). (6)

This equation clearly shows that the new mixture compo-
nent fx is calculated along the direction of functional gradient
where the objective function grows the most. The reasorki ta
the inner product between the functional gradient and the mi
ture model is to ensure that the new compongrnis calculated
in such a way that the new modeg}. still falls into the same
model space aB);_.

If we consider the objective function in Eq.(3), it is easy
to show that the functional gradient can be calculated as
VC(Fi-1) = 57— As aresult, Eq.(6) can be re-written as
follows:

— F— 1(Xn)
Fk 1(Xn)

fa = argmaX—ka

= arg maX Z

Obviously, Eq.(7) is a general form to derive each new
mixture component in BML based on the maximum likelihood
(ML) estimation criterion. In the following, we consider ap-
ply itto Gaussian mixture models (GMMs), where each mixture
componentfy, is a multivariate Gaussian distribution with mean
vector i, and diagonal covariance mati®; as

fk(xn) :N(xnﬂj/[wzk)- (8)

There is no closed-form solution to solve the optimization
problem for GMMs in Eq.(7). In this work, we propose to
optimize Eq.(7) iteratively using EM algorithm to search fo
the optimal componenf;,. That is, by taking dog opera-
tion, Eq.(7) becomes a log-sum maximization which can be op-
timized by conventional lower-bound maximization techuq
using Jensen’s inequality. Then the parameters of Gaussian
function f; can be iteratively estimated as follows:

fk xn
Fk 1 Xn
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wherew(x,) denotes sample weights in each iteration, simi-
lar to the ones used in the traditional boosting algorithiitse
physical meaning of sample weight is that samples with low
probability F.—, are given higher weights than the highly likely
samples according tB),_;. Hence, the new componelfi fo-
cuses on these samples poorly modeled by a simpler distribu-
tion F.—1. For initialization, we often set” (x) = 5—5—
in the first iteration and then use Eq.(10), Eq.(11) and Bq.(9
to update mean vector, covariance matrix and sample weights
iteratively until f;, converges.

After f; is estimated from the above EM method, the mix-
ture weightc;, can be obtained by using the following line
search:

cr, = arg max C((1— cx)Fr_1 + cxfr)- (12)

¢, €[0,1]



In practice, the optimal mixture weighf, can be found effi-
ciently by using a grid search in the intery@J 1].

3. BML of HMMsfor Speech Recognition

In this section, we extend the above BML algorithm of GMMs

to estimation of Gaussian mixture HMMs in speech recognitio
Several techniques have been proposed to make the above BML
procedure feasible and effective under the HMM framework.

3.1. Viterbi approximation for state segmentation

Under the HMM framework, the likelihood function can be
viewed as a mixture of all possible hidden state sequences. A
a result, it is not straightforward to directly apply the BML
method in Eq.(7) to HMMs. In this work, we simply accept
the Viterbi approximation where the likelihood functioncial-
culated based on the optimal Viterbi path instead of sunonati
over all possible state sequences. In this way, the above BML
algorithm of GMMs can be directly used to estimate GMMs for
all HMM states independently.

N

log Z s H s,y ' (Xn|sn)

8081---SN n=1

C(F)

Q

N
> log F(xalsy) + C (13)
n=1

whereX = {x1, X2, ..., xx } is a set of training sampleér; }
and{a;;} denote the initial state probabilities and state tran-
sition probabilities of HMMs, respectively, angs;...sy de-
notes the optimal state sequence based on the Viterbi approx
imation. In above, we usé’(x,|s,) to represent each state
output probability distribution, which is modeled by a GMM i
Gaussian mixture HMMs.

Based on Eq.(13), the BML problem of HMMs can be sim-
plified as BML of GMMs as defined in Eq.(3). Given a set of
training data X, we first use an initial HMM to decode the op-
timal Viterbi paths. Then all the feature vectors are altytee
different HMM states based on the Viterbi paths and the BML
method in Section 2 is used to estimate GMMs for all HMM
states based on the aligned feature vectors. It is noted that
and{a;; } are not updated in the BML procedure since they are
not critical for performance of speech recognition.

3.2. Initialization of sample weightswith weight decay

After state segmentation, GMM parameters of each HMM state
can be learned as the BML algorithm in Section 2. But there
are several problems when we apply the BML to HMMs. The
first problem is initialization of sample weights for eachwne
mixture component using sample weightt(x,,) = m

In Gaussian mixture HMMs for speech recognition, it is found
that dynamic range of;_; is so large that the initial sam-
ple weights,w®(x,), are dominated by only a small number
of samples with low probability, which may cause overfitting
problem in BML. To deal with this problem, weight decay [4]
using power scaling is used to calculate initial sample tisig
as follows:

1

F oy (%n) 4

w (xn) =

wherea is the exponential scaling factor < « < 1. It has
been observed that weight decay is critical to achieve geed p

formance in speech recognition and typically the value pbex
nential factorx is not sensitive to different ASR tasks.

3.3. Partial and global updatingin BML

In the traditional BML, when a new mixture componefat is
added to the mixture model, we first estimate a new mixture
component as in Eq.(7) and then the mixture weight is esti-
mated from a separate line search process as in Eq.(12)isIn th
section, we propose an alternative method to estimate elxeh m
ture component and its weight. As in [5], we directly applg th
EM algorithm to optimize the original log likelihood funoti
only with respect to the new mixture compongitand weight

¢, while Fj,_; are assumed to be constants. For GMMs, it can
be easily derived that mixture weight, mean vector and co-
variance matrix off;, are estimated iteratively as follows:

fe(xn)

W) = R T (e Fay )
N
. = %chw(xn) (16)
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In this work, this estimation method is namedpastial EM.
Compared with the re-estimation based on the functional gra
dient method from Eq.(9) to Eq.(11), the updating formula fo
mean vector and covariance matrix are the same and the main
difference is the estimation formula of sample weights. €om
paring the estimation formula Eq.(9) with Eq.(15), it is yas
to see that sample weights in partial EM have much smaller dy-
namic range due to normalization in Eqg.(15). As a resultaym
lead to robust and reliable estimation of the new comporant.
partial EM, we simply initialize each mixture weight as1/k.

Our experimental results show that in each stage of BML, if
only the newly-added mixture component is updated, the con-
vergence of recognition performance is quite slow. Theegfo
similar to the re-estimation in partial EM, additional ENMd®d
re-estimation can be applied to re-estimate all mixturemmm
nents inFy, which is calledglobal EM in this work. It has
been shown that the additional global EM step can signifigant
improve performance of Gaussian mixture HMMs in speech
recognition.

3.4. BIC for parsimonious modeling

BML is an incremental and recursive learning process where
only one new mixture component is added in each iteration. In
this section, we consider to use Bayesian information rivite
(BIC) to select the optimal number of mixture componentse Th
BIC criterion has been widely used as a popular model selecti
criterion and it can be viewed as a regularized likelihoaatfu
tion as follows:

BIC(K) = C(F) — % « My * log(N) (19)
whereC(F}) is the conventional log likelihood function defined
in Eq.(3). My is the number of parameters used in mixture
model Fy. In our BML procedure, we first run BML to grad-
ually increase the number of mixture components until @erta
point. At last, we use the BIC criterion to roll back modelesiz



Table 2: Performance (word error rate and sentence ergyrgaimparison on the WSJ-5k test set.

WER(%) K=l | K=2 | K=3 | K=4 | K=5 | K=6 | K=7 | K=8
HTK 1098 | 9.88 | 859 | 8.03 | 7.08 | 598 | 534 | 5.14
l-passBML| N/A | 751 | 6.18 | 5.75| 570 | 5.34 | 499 | 4.84
2-passBML| N/A | 6.61| 5.62 | 5.68 | 5.14 | 4.86 | 4.63 | 4.58
+BIC Avg. 6.6 Gaussians per state, WER is 4.58%
SER(%) K=l | K=2 | K=3 | K=4 | K=5 | K=6 | K=7 | K=8
HTK 69.1 | 67.0| 64.6 | 63.3| 56.1 | 47.9 | 46.1 | 44.6
l-passBML| N/A | 555 | 49.4| 47.3 | 46.4 | 42.7 | 40.3 | 41.2
2-passBML| N/A | 50.0 | 44.6 | 45.8 | 42.4| 40.0 | 38.2 | 38.8
+BIC Avg. 6.6 Gaussians per state, SER is 38.8%

and select the optimal value hfwhich maximizes the BIC cri-
terion in Eq.(19). By doing so, we can typically reduce model
size significantly for parsimonious modeling.

4. Experiments

The proposed BML algorithms have been evaluated in a large

vocabulary ASR task using the WSJO database. In the WSJO

task, the training set is the standard SI-84 set, consisifng

BML’ and “2-pass BML", we can see that the precision of the
state labels has a significant impact on recognition peidoa

for BML. So HMMs used to generate state segmentation should
be refined as much as possible. Using BIC, the good recogni-
tion performance is maintained even though the model sige ha
been significantly reduced. Finally, our BML procedure gl
the relative word and sentence error rate reduction of 1@8éo
12.9%, respectively, compared with “HTK” procedure. Mean-
while, relative reduction of 17.5% in model size (from 8 Gaus

7133 utterances from 84 speakers (about 12 hours speech datasians to averaged 6.6 Gaussians per tied-state) can beedthie

in total). Evaluation is performed on the standard Nov'92-no
verbalized 5k close-vocabulary test set (WSJ-5k), inclgc30
utterances from 8 speakers. For the baseline system, whaise t
HTK to build standard state-tying cross-word triphone HMMs
[7], which includes a total number of 2774 tied-states. The
feature vectors are 39-dimensional MFCC features (inodi
delta and delta-delta features) after cepstral mean naanal
tion processing in sentence level. A standard trigram laggu
model is used in evaluation.

For the BML configurations, we set the exponential factor
« of weight decay to 0.05. The parametefor BIC is set to
0.98. The initial single Gaussian HMMs are trained using HTK
procedure. And the initial HMM state probabilities and stat
transition probabilities are not updated in the BML stager F
each boosting stage of BML, firstly we initialize the new mix-
ture component using functional gradient based samplehigeig
with weight decay in Eq.(14) and set initial new mixture wig
to 1/k. Then re-estimation of partial EM is used to refined both
the new mixture component and weight. Finally, global EM is
applied for all mixture components in current mixture model

4.1. Experimental resultson WSJO0 task

We compare recognition performance of HMMs from different
training procedures in terms of word error rate and sentence
ror rate on the WSJ-5k test set. As shown in Tabl&2Jenotes

the mixture number of GMM in each tied HMM state. “HTK”
stands for the HTK-trained baseline system which uses the co
ventional random splitting and EM-based re-estimationrgur
the model training process. “1-pass BML’ means Viterbiestat
segmentation is regenerated using currently updated HMMSs i
each step. “2-pass BML" represents Viterbi state labelgare
generated by using the best HMM (witti = 8) from “1-pass
BML" and then the same BML training produce is repeated
without regenerating the state labels. “+BIC” means BIC is
applied to “2-pass BML" to reduce model size for parsimo-
nious modeling. It is observed that for both word error rate
and sentence error rate, the proposed BML procedures signifi
cantly outperform the traditional “HTK" procedure, espalyi
when the number of Gaussians is small. By comparing “1-pass

by using BIC without any loss in recognition performance.

5. Conclusion

In this paper, we have presented a novel boosted mixture-lear
ing (BML) framework based on maximum likelihood (ML) cri-
terion for Gaussian mixture HMMs in speech recognition. The
Viterbi approximation has been accepted for state segriemta
to extend the BML of GMMs into Gaussian mixture HMMs.
Several techniques have been proposed to improve perfeeman
of BML in speech recognition, such as weight decay to initial
ize sample weights to avoid overfitting, combining partipt u
dating with global updating of parameters and using BIC for
parsimonious modeling. Experimental results on the WSslO ta
have shown that the proposed BML method yields significantly
better performance than the conventional HMM training proc
dure.

6. References

[1] L. Mason, J. Baxter, P. Bartlett, and M. Frean. “Boosting
algorithms as gradient descent in function spabéPS
11, 1999.

[2] V. Pavlovic, “Model-based motion clustering using
boosted mixture modeling.Proc. of CVPR, 2004, pp.
811-818.

M. Kim and V. Pavlovic, “A recursive method for discrim-
inative mixture learning.Proc. of ICML, 2007, pp. 409-
416.

S. Rosset, “Robust boosting and its relation to bagging.
Proc. of ACM SGKDD, 2005, pp. 249-255.

G. McLachlan. “Finite mixture models.John Willey &
Sons, Inc., 2001.

G. Schwarz, “Estimating the dimension of a moderi-
nals of Satistics, Vol. 6, No. 2, pp. 461-464, 1978.

P. Woodland, J. Odell, V. Valtchev, and S. Young, “Large
vocabulary continuous speech recognition using HTK.”
Proc. of ICASSP, 1994, \ol. 2, pp. 125-128.

(3]

(4]
(5]
(6]
(7]



