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Abstract

For the acoustic scenes classification, the main challenge is dis-
tinguishing similar acoustic segments between different scenes.
To solve this problem, many deep learning based approaches
have been proposed without considering the relevance of dif-
ferent acoustic scenes. In this paper, we propose a novel
acoustic segment model (ASM) for acoustic scene classifica-
tion. ASM aims at giving finer segmentation and covering all
acoustic scenes through searching for the underlying phoneme
like acoustic units. Furthermore, acoustic segments are mod-
eled by Hidden Markov Models (HMMs) and each audio is de-
coded into ASM sequences without prior linguistic knowledge.
Similar to the term vector of a text document, these ASM se-
quences are converted into co-occurrence statistics feature vec-
tors and SVM/DNN is used as classifier back-end. Validated
on the DCASE 2018 task, the proposed approach can achieve
a competitive performance with single model and no data aug-
ment. By using visualization analysis, we excavate the potential
similar units hidden in auditory sense.

Index Terms: acoustic scene classification, acoustic segment
models, hidden Markov models, latent semantic analysis

1. Introduction

Acoustic scene classification (ASC) is a task to identify sounds
in realistic soundscapes. Acoustic scenes carry much useful in-
formation and its analysis has huge potentiality in several ap-
plications such as context-aware devices [1], audio based mul-
timedia search [2] etc. Therefore, a significant amount of re-
search on ASC has been investigated in recent years. However,
there are several difficulties to develop practical ASC system.
First, not all information in a piece of audio has a high degree
of discrimination. Second, the sound events in recorded audio
overlap (simultaneously occurring) and the boundary between
them is often blurry. Last but not the least, samples in differ-
ent scene categories may have commonalities, e.g. the similar
speech components in most scenes.

Recently, many new techniques have emerged and been
widely used for ASC, including traditional classifier methods
such as Gaussian mixture models (GMM) [3, 4], hidden Markov
models (HMM) [4] and deep learning based approaches: deep
neural networks (DNN) [5], convolutional neural networks
(CNN) [6], recurrent neural networks (RNN) [7], and convolu-
tional recurrent neural networks (CRNN) [8]. While researchers
have explored many different approaches for speech/audio pro-
cessing, most state-of-the-art results in ASC task were obtained
by CNN based methods. In DCASE2017 challenge [9], genera-
tive adversarial nets (GAN) scored first place by training data
augmentation [10]. Sakashita [11] extractd mel-spectrogram
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from various channels, adaptively divided the spectrogram into
multiple ways and learned 9 neural networks for ASC to obtain
good score in DCASE2018 challenge [12]. Even though the
previous methods have improved perfomance a lot, there still
exist a lot of basic problems worth exploring. For example, the
purpose of CNN is simply to learn the feature mapping rela-
tionship between input features and labels, which makes such
kind of CNN-based approaches fail to capture the correlation of
segments in different scenes.

To address the challenge of confusion in ASC, this paper
presents acoustic segment model (ASM) framework. ASM was
first proposed to characterize fundamental units and acoustic
lexicons [13] for automatic speech recognition. Recently, ASM
has also been applied to spoken language recognition [14], mu-
sic retrieval [15] and emotion recognition [16] which achieves
quite good performance. Just as language governs the syntax of
phonemes and words, there are also fundamental units (acous-
tic events) and internal relevance in different acoustic scenes.
Therefore, we make the assumption that the sound character-
istics of all scene audios can be covered by a universal set of
automatically derived acoustic units with no direct link to pho-
netic definitions.

To find the universal acoustic units, much of the proposed
approach is inspired by previous work conducted by Jeremy
Reed for music genre classification [17]. A typical ASM pro-
cess involves two stages, namely initial segmentation and iter-
ative modeling. In the initialization phase, a novel method has
been proposed. Unlike the typical initial segmentation based on
maximum likelihood segmentation [13], we model each class
using GMM-HMMs [18] and divide a continuous scene audio
into variable-length segments defined by the hidden states. In
other words, the hidden state in each topology corresponds to
a GMM and similar frames are clustered onto the same GMM
which is regarded as the initial acoustic model for an ASM unit.
These initial acoustic models are then used for scene audios so
as to generate initial label sequences. Specially, these ASM
units are generated in a data-driven way without any prior lin-
guistic knowledge. For iterative modeling, each ASM is often
modeled by a GMM-HMM and then scene audios are decoded
into a sequence of acoustic units. The transcription of each
audio is similar to the term vector of a text document. Natu-
rally, by using lattent semantic analysis (LSA) [19] , we convert
the ASM sequences to co-occurrence statistics feature vectors,
which are then fed the final classifiers. This approach provides
an initial foundation for future improvements through the use of
“scene language”-based rules.

The remainder of this paper is organized as follows. In Sec-
tion 2, we discussed the method of the hybrid approach. In
Section 3, experimental results and and analysis are discussed.
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Figure 1: Overall framework of ASC system with ASM acoustic units. (a)Universal acoustic modeling approach. (b)Latent semantic

analysis. (c)Vector-based classifiers

Finally, our conclusions are given in Section 4.

2. Method

The ASC framework based on universal acoustic models is il-
lustrated in Figure 1. The purpose of the ASM method is to
find a dictionary of ASM units and transcribes each acoustic
scene recording into ASM sequences. Incidentally, the acous-
tic model generated during the iteration is used to transcribe
the testing data. The final transcripts (ASM sequences) can be
regarded as text symbols which are used to characterize each
scene recording. And the validated text categorization methods
commonly applied in the information retrieval community can
be used to handle such symbol formats, such as LSA. While
the transcribed sequence is converted to a vector through LSA
and singular value decomposition (SVD) [20], the entire train-
ing data set is mapped to a matrix. The test scene audios are
converted in a similar fashion to create the test vectors. In this
study, we compare the support vector machine (SVM) and DNN
for vector-based classifier design.

2.1. Acoustic Segment Modeling

The key idea of using acoustic segment models here is to repre-
sent an acoustic scene recording as a temporal cascade of basic
sound units, just like that sentences are made up of phonemes
and words. The ASM approach consists of two stages. First, the
initial segmentation stage explores the boundaries between the
changes of acoustic features. Instead of using the vector quan-
tization (VQ) [13], we use a novel GMM-HMM-based method
to refine the segment boundaries and the segment labels by the
hidden states. Then the hidden states serve as the standard cor-
pus to transcribe each scene audio to a sequence of units. Sec-
ond, the universal set of units called ASMs are represented and
estimated by HMMs.

2.1.1. Initial Segmentation

The initial segmentation is a critical procedure to the success
of ASM. To find an appropriate set of segments for each scene
audio, many meaningful segmentation methods have been pro-
posed. The GMM-HMMs are powerful for modeling sequential
data and have been widely applied in automatic speech recog-
nition. Therefore, we use the GMM-HMMs for initial segmen-
tation and clustering of audio frames by the hidden chain.
First, each acoustic scene is modeled with a GMM-HMM
model. As the similar sound events might occur in different
time periods, we adopt a left-to-right HMM topology with a
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swivel structure in each GMM-HMM, which is able to cluster
the similar frames into the same hidden state. Mel-frequency
cepstral coefficients (MFCCs) are adopted as the acoustic fea-
tures. Suppose we have M acoustic scene classes and each
scene class is model by a GMM-HMM with N hidden states.
The parameters of GMM-HMMs can be learned by the Baum-
Welch algorithm [21]. In the decoding stage, one scene audio
recording is represented by a sequence of hidden states with the
corresponding segment for each decoded hidden state. Finally,
all J = M x N hidden states with acoustic segments are col-
lected together as the initialization of ASMs.

2.1.2. ASM/HMM Training

By the initial segmentation, each scene audio is transcribed as a
sequence of ASMs. In order to capture the correlation between
different acoustic scenes, it is desired to model each ASM with
a left-to-right HMM using iterative training procedure. Then
Baum-Welch estimation is applied to update the parameters of
3-state HMMs using the training data. After the estimation,
the Viterbi decoding is performed to re-transcribe the training
recordings to new ASM sequences, which are regarded as new
labels/transcriptions for the training recordings and used to train
the HMMs in the next iteration. This process is repeated until
the training data labels are stably converged. The whole training
procedure is summarized in Algorithm 1.

Algorithm 1 Procedure of ASM Training

Initial Segmentation
Step 1: Each scene class is model by a GMM-HMM.
Step 2: ASM units are initialized by all hidden states.
Step 3: Transcribe the training recordings as 71p.
ASM/HMM Training
Step 4: Each ASM is modeled by a GMM-HMM and ¢ = 0.
Step 5: Update GMM-HMM parameters using 75.
Step 6: Re-transcribe the training recordings into 754 1.
Step 7: i++, go to Step 5 for next iteration until converged.

2.2. Latent Semantic Analysis

After each scene audio is transcribed into a sequence of ASMs,
we characterize each sequence by a vector, which uses the text
vectorization techniques. The dimension of these vectors is
equal to the total number of useful features based on unigram
and bigram counts. Moreover, their co-occurrences could be
seen as a rough syntax in acoustic scenes and reflect connections



to internal sound events. Although, the usage of bigram counts
can achieve the expectation of the discrimination capability of
feature vectors, the sparsity problem will arise. In general, SVD
is used for the feature dimension reduction.

LSA has been successfully applied to information retrieval,
question and answer systems and clustering in the field of text
processing. In this work, we use LSA to extract features from
the term-document matrix of the training set. The rows corre-
spond to the transcribed scene audio recordings and the columns
of this term-document matrix are related with the ASM units.
Like lexical constraints, the constrains of acoustic segments can
be typically described by the ASM n-grams. Suppose there is
an ASM transcription (S1,S2,.53). The statistics of unigram
terms are derived form S7,S2,S3 and the statistics of bigram
terms are derived from (51, S2), (S2, S3) to account for left and
right contexts. If there are J terms in an scene corpus and as-
sume all unigrams and bigrams exist, each column is a vector
with the dimension of K = J x (J + 1).

In the text retrieval, the term counts are often composed of
two parts: term frequency (TF) and inverse document frequency
(IDF) [22]. The former is the frequency of occurrence of indi-
vidual word in the text and the latter reflects the frequency of
a word in all text. For example, the “a” word that appears in
the text is high, but these words are less informative than that of
professional vocabulary. Therefore, IDF is to help us to reflect
the importance of the word, and then to correct the word eigen-
values expressed only by word frequency. The TF of ASM term
7 in the ¢-th scene transcript is given by

Cj,i
Sy G
k=1 Ck.i

where c;,; is the count of j in ASM transcription ¢. The IDF is
given by

TF;; = (1

L+1

L(j)+1
where L is the number of training scene transcripts and L(j) is
the total number of times that ASM unit j appears in the training
scene transcripts. Finally, each element in the matrix W is given
by

IDF; = log )

Wj,; = TFj’i X IDFJ 3)
The term-document matrix W calculated by TF-IDT is
quite sparse due to the sparsity problem of bigrams. The di-
mension of vector K is determined by the number of unigrams
and bigrams. Therefore, singular value decomposition is used
for dimensionality reduction of the K x L matrix W. Define
the SVD of matrix W as
w=Usv’. )
The matrix W is decomposed into the product of three matrices:
the left-singular K x K matrix U, the right-singular L x L ma-
trix V' and the diagonal K x L matrix ¥ consisting of singular
values of W. The rank of W is R (R < min(K, L)) and U de-
scribes an orthonormal basis in the domain. The first r largest
singular values and the first  rows of their corresponding U
matrices are taken out to form a mapping space U, (r x K).
The mapping space converts the original matrix W into a lower-
dimensional “concept” space by W,. = U,, x W and W, serves
as the training data for the vector-based classifier. The value
of r is determined by the percentage of sum of squares of the
singular values we need.
In the testing stage, we first perform LSA using the TF
values calculated based on Eq. (1) and the decoded ASMs of
one testing recording. Please note that IDF values calculated in
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the training stage are directly adopted here. Then a new term-
document matrix W' of one testing recording is actually a
K -dimensional vector (L = 1). The final vector fed to the clas-
sifier is generated by U, x W'*.

2.3. Vector-Based Classifiers

In this study, two vector-based classifiers, namely SVM and
DNN, are investigated to generate the acoustic scene classes.
The multi-class SVM is based on one-against-one approach, in
which suppose there are @ classes, Q(Q — 1) independent bi-
nary SVM classifiers are trained for all pairs of categories. The
posterior probabilities are reckoned by the algorithm built in lib-
SVM [23]. In addition, DNN has proven to be more efficient in
variety of multi-class problem. The back-propagation algorithm
with stochastic gradient decent method is used to update DNN
parameters. In this study, we design a simple DNN structure to
classify the vectors due to the limited training data.

3. Experiments and Analysis
3.1. Dataset and Feature Extraction

The experiments are conducted on DCASE2018 Task 1A [24],
which is widely used as a benchmark for acoustic scene clas-
sification. The audio recordings with 48 kHz sampling rate in
10 different scenes were recorded by electret binaural micro-
phone. The length of each audio recording is 10 seconds. For
this study, we convert the binaural audio recording into mono
recoding. Then, 60-dimensional MFCC features including the
corresponding delta and delta-delta features are extracted by ap-
plying a 40-ms observation window with a 20-ms overlap. Ac-
cording to the official requirement, the development dataset is
divided into training and test subsets. The training subset in-
cludes 6122 segments while the test subset has 2518 segments.

3.2. Experiments on Different Settings

In this subsection, we explore the different configurations of the
proposed hybrid approach. First, we use hidden states of GMM-
HMM of each scene to achieve initial segmentation and find the
generic ASM units. Then, each ASM unit is modelled by a
left-to-right HMM with 3 states. Each state has 50 Gaussian
mixtures. By iteration, the new transcription of every scene au-
dio and the corresponding ASM units are created. Second, LSA
and SVD are performed on the entire training dataset to obtain
the IDF and mapping space, respectively, which can be directly
adopted in the testing stage. Finally, the transformed features
are fed into classifiers. The SVM employs the “one-against-
one” voting scheme [25] to classify acoustic scenes. The DNN
used here has three hidden layers and every hidden layer has
512 neurons with the fixed dropout rate 0.2. The parameters of
DNN are learned by using the SGD [26] algorithm. The initial
learning rate is set to 0.1 and 70 epochs are conducted. Based
on the DNN classifier, we discuss the following critical issues:
1) ASM resolution; 2) dimensionality reduction in SVD.

3.2.1. ASM Resolution

The number of ASM units reflects the acoustic coverage in
terms of characterizing the sound space. Depending on the na-
ture of acoustic scene, too few ASM units are not sufficient to
represent their internal variations while too many ASM units
lead to a large computational complexity and overfitting prob-
lem due to limited training data. In order to explore the impact
of the number of ASM units on the classification results, Table 1



lists the experimental results for different ASM units ranging
from 10 to 40. All systems use 80% of the singular values in
SVD to extract input vector of DNN. From Table 1, it is clear
to observe that a middle-level resolution with 20 ASM units is
conductive to correctly comprehend.

Table 1: Performance comparisons with different ASM units.

ASM units 10

61.6%

20
66.1%

30
64.5%

40
62.7%

Accuracy

3.2.2. Dimensionality Reduction in SVD

In our proposed approach to extract the matrix from ASM se-
quences, all information are useful. Besides, it leads to a sparse
matrix. One common technique is to retain only the top singu-
lar values in a matrix. In other words, the input dimension for
vector-based classifier is determined by the percentage of sum
of squares of the singular values. In Table 2, we discuss the ef-
fects of retained information in SVD by controlling the percent-
age. These experiments take 20 ASM units and corresponding
dimension of each vector is 401 before dimension reduction.
Please note that K = 401 is smaller than 20%21 = 420 as some
bigrams do not exist due to the limited training data. The results
show that a proper dimension reduction (80%) can reduce data
redundancy and make different scenes more distinguishable.

Table 2: Performance comparisons with different reduced di-
mensions in SVD for vector-based classifier.

100%
65.0%

90%
65.8%

85%
65.7%

80%
66.1%

75%
65.8%

Percentage

Accuracy

3.2.3. Overall Comparison

As shown in Table 3, compared with the CNN-based approach
officially provided by DCASE2018 [27], the proposed “Hybrid-
DNN” approach using a simple DNN architecture for vector-
based classifier can obtain a remarkable improvement of ac-
curacy from 59.7% to 66.1%. From the results of “Hybrid-
SVM” and “Hybrid-DNN”, DNN demonstrates its superiority
over SVM for text-based classifier with a significant perfor-
mance gap of 12.8%, which also inspires us to investigate more
advanced text-based classifier in the future work.

Table 3: Overall comparison of different approaches.

System CNN [27]

59.7%

Hybrid-SVM  Hybrid-DNN
53.3% 66.1%

Accuracy

3.3. Results Analysis

In Figure 2 and Figure 3, the CNN-based system [27] con-
fuses between the tram and bus scenes, but our Hybrid-DNN
system can distinguish these two scenes. For visual analysis,
we show the decoded ASM sequences of examples from tram
and bus scenes in Figure 2 and Figure 3 using the Hybrid-DNN
approach with the best configuration mentioned above. More-
over, each decoded ASM unit is accompanied by the explicit
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Figure 2: The spectrogram and ASM sequence of an example
recording from the tram scene. This example was misclassified
by CNN-based approach [27] as the bus scene but correctly
classified by our Hybrid-DNN approach.
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Figure 3: The spectrogram and ASM sequence of an example
recording from bus scene. This example was misclassified by
CNN-based approach [27] as the tram scene but correctly clas-
sified by our Hybrid-DNN approach.

segment. Each audio recording is transcribed by the dictionary
of 20 ASM units named from MO to M19. Based on the spec-
trograms and human listening of these two examples, the acous-
tically similar parts can be represented by the same ASM unit,
like M10. The differences between two scenes can be captured
by other ASM units such as M1 for tram scene and M11 for
bus scene. In this way, our approach is able to explicitly show
the correlation of segments in different scenes and give better
classification results than CNN-based approach.

4. Conclusions

The approach we have proposed achieves a competitive perfor-
mance with simple classification model. Inspired by speech
recognition, we create a dictionary for acoustic scene utter-
ances and transcribe each utterance into units in the dictionary
to achieve the purpose of capturing similar segments in acoustic
scenes. By utilizing a new initial segmentation, the dictionary of
ASM units is built, which is then used to conduct ASM/HMM
training. Finally, the word-document matrix can be classified
by different classifiers back-end, such as SVM and DNN.
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