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Abstract

We propose three algorithms to address the mismatch prob-
lem in deep neural network (DNN) based speech enhancement.
First, we investigate noise aware training by incorporating noise
information in the test utterance with an ideal binary mask based
dynamic noise estimation approach to improve DNN’s speech
separation ability from the noisy signal. Next, a set of more
than 100 noise types is adopted to enrich the generalization ca-
pabilities of the DNN to unseen and non-stationary noise con-
ditions. Finally, the quality of the enhanced speech can further
be improved by global variance equalization. Empirical results
show that each of the three proposed techniques contributes to
the performance improvement. Compared to the conventional
logarithmic minimum mean squared error speech enhancement
method, our DNN system achieves 0.32 PESQ (perceptual e-
valuation of speech quality) improvement across six signal-to-
noise ratio levels ranging from -5dB to 20dB on a test set with
unknown noise types. We also observe that the combined strate-
gies can well suppress highly non-stationary noise better than
all the competing state-of-the-art techniques we have evaluated.
Index Terms: Speech enhancement, deep neural networks,
noise aware training, ideal binary mask, non-stationary noise

1. Introduction
Speech enhancement has been widely used in many real-world
applications, such as automatic speech recognition (ASR), mo-
bile communication and hearing aids [1]. Considering the pro-
cess of noise corruption on speech is very complicated, the en-
hancement performance is still unsatisfactory and many issues
should be explored.

Various speech enhancement approaches have been pro-
posed, such as spectral subtraction [2], Wiener filtering [3],
minimum mean squared error (MMSE) estimation [4, 5] and
optimally-modified log-spectral amplitude (OM-LSA) speech
estimator (e.g., [6, 7]). In most of these algorithms, it is as-
sumed that an estimate of the noise spectrum is available [19].
The optimal noise estimate in traditional methods (e.g., [6]) is
usually updated by averaging the noisy speech power spectrum
using time and frequency dependent smoothing factors, which
are adjusted based on the estimated speech presence probabil-
ity in individual frequency bins (e.g., [6], [19]). Nonetheless,
its noise tracking capacity is limited for highly non-stationary
noise cases, and it tends to distort the speech component in
mixed signals if it is tuned for a better noise reduction. Even
so, they are on-line algorithms and the dynamic noise informa-
tion of the testing utterance is well estimated and utilized.

In developing deep learning techniques (e.g., [9, 10]), a
deep architecture was adopted to model the complicated rela-
tionship between the noisy speech and the clean speech (e.g.,
[11, 12, 15, 16]). We have also introduced a speech enhance-
ment framework based on DNNs taking advantage of the abun-
dant acoustic context information and large training data [13],
and it was shown to achieve better generalization to new speak-
ers, different SNRs and even other languages, etc. Although
these mapping functions can be effective to deal with the seen
noisy conditions, the evaluation on the mismatch noise type-
s was not extensively investigated. Yet a large number of d-
ifferent noise environments could be included in the training
set to address this mismatch problem. In [17], many differen-
t kinds of noise types were used to train DNNs to predict the
ideal binary mask (IBM), and robustness to unseen noise type-
s was demonstrated. However, the IBM-based speech separa-
tion method might improve the intelligibility but not the speech
quality [18]. The stacked denoising autoencoder (SDA) trained
in dozens of noise types could also well generalize to new noise
conditions [14]. Therefore one advantage of DNN-based speech
enhancement method is that the relationship between the noisy
speech and the clean speech could be well learned from the
multi-condition data off-line. In addition, if the noise informa-
tion could be estimated and given to DNNs as an additional cue,
the mismatch problem could be alleviated to a great extent.

In [20], a static noise aware training (NAT) technique was
firstly proposed to help the DNN to suppress the noise interfer-
ence for noise robust speech recognition. It assumes the noise
is stationary and uses a noise estimate that is fixed over the ut-
terance [20], which is not the case in practice considering the
fast changing characteristics of the noise. In this paper, we try
to estimate the noise signal in a dynamic manner and help the
DNN to separate the clean speech from the mixture signal. An
IBM-based noise estimation method is proposed and then feed
it into the DNN in an informing way.

2. System Overview
A block diagram of the proposed speech enhancement frame-
work is illustrated in Fig. 1. A DNN is adopted as the map-
ping function from noisy to clean speech features. Our base-
line system [13] is constructed in two stages. In the training
stage, a DNN-based regression model was trained using the log-
power spectral features from pairs of noisy and clean speech
data. As for the DNN training, as in [27], we first perfor-
m pre-training of a deep generative model with the log-power
spectra of noisy speech by a stacking of multiple restricted
Boltzmann machines (RBMs) [9]. Then the back-propagation
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Figure 1: A block diagram of the proposed DNN-based speech
enhancement system.

algorithm with the MMSE-based object function between the
log-power spectral features of the estimated and the reference
clean speech is adopted to train the DNN. This corresponds to
the perceptually-motivated log-spectral amplitude estimator [5].
A stochastic gradient descent algorithm is performed in mini-
batches with multiple epochs to improve learning convergence
as follows,

Er =
1

N

N∑
n=1

∥X̂n(Yn+τ
n−τ ,W, b)− Xn∥22 + κ∥W∥22. (1)

where Er is the mean squared error with a regularization term,
X̂n(Yn+τ

n−τ ,W, b) and Xn denote the estimated and reference
log-spectral features at sample index n, respectively, with N
representing the mini-batch size, Yn+τ

n−τ being the noisy log-
spectral feature vector where the window size of context is
2 ∗ τ + 1, (W, b) denoting the weight and bias parameters to
be learned. And ∥W∥22 =

∑
i,j w

2
i,j , κ is the regularization

weighting coefficient to avoid over-fitting. In the enhancemen-
t stage, the noisy speech features are processed by the well-
trained DNN model to predict the clean speech features. Af-
ter we obtain the estimated log-power spectral features of clean
speech, X̂ l(d), the reconstructed spectrum X̂ f(d) could be ob-
tained using IDFT with the noisy phase. Finally an overlap-
add method is used to synthesize the waveform of the estimated
clean speech [26].

Compared with the baseline system, we proposed the im-
proved system in Fig. 1. Firstly, we trained the DNNs by a
large training data containing more than 100 noise types. This
can improve the generalization capacity to unseen noise types.
Then the noise estimation module will be discussed in the fol-
lowing sections. Finally to alleviate the over-smoothing prob-
lem of the DNN-based speech enhancement, the global variance
(GV) equalization is proposed to post-process the DNN out-
put, and it could improve the overall listening quality. Hence, a
dimension-independent global equalization factor β can be de-
fined as:

β =

√
GVref

GVest
(2)

Where GVref and GVest represented the dimension-independent
global variance of the reference features and the estimation fea-
tures, respectively.

X̂ ′(d) = X̂(d) ∗ β ∗ v(d) +m(d) (3)

where m(d) and v(d) are the d-th component of the mean and
variance of the input noisy speech features, respectively. Since
the DNN output X̂(d) was in the normalized log-power spec-
trum domain, the multiplicative factor β was just operated as a

exponential factor in the linear spectrum domain. And this ex-
ponential factor could effectively sharpen the formant peaks of
the recovered speech and suppress the residual noise.

3. Dynamic Noise Aware Training
As the DNN for speech enhancement presented in [13] is off-
line trained, the noise information of each utterance was not
specifically utilized. To enable this noise awareness, the DNN
is fed with the noisy speech samples augmented with an esti-
mate of the noise. In this way, the DNN can use additional
on-line noise information to better predict the clean speech. Al-
so the estimated noise could be regarded as a specific code for
adaptation, like a speaker code in speaker adaptation [21]. Here
the input vector of the DNN is similar to what was adopted in
[20] with a noise estimate appended:

Vn = [Yn−τ , ...,Yn−1,Yn,Yn+1, ...,Yn+τ , Ẑn] (4)

In [20], the noise Ẑn was fixed over the utterance as:

Ẑn =
1

T

T∑
t=1

Yt (5)

where the noise Ẑn is estimated using the first T frames. We
call this method as the static noise aware training, denoted as
SNAT. While investigating dynamic noise aware training in
DNNs, an obvious method is to replace the noise variable Ẑn

in Eqs. (4)-(5) by the dynamic noise information using the con-
ventional MMSE-based noise estimation method [22] at each
frame, which is represented as DNAT1. However, some non-
linear distortion exists in the estimated noise spectrum in D-
NAT1, which might lead to much more difficult for the DNN
learning. Inspired by the work in [24] where the traditional
MMSE-based estimator was improved by incorporating mask-
ing properties of the auditory system, two kinds of real noise es-
timation via IBM will be presented below and the related frame-
work is illustrated in Fig. 2.

3.1. Direct IBM-based noise estimation

The estimation of the IBM is suggested as a primary goal of
computational auditory scene analysis (CASA) [18]. The IBM
is a time-frequency (T-F) binary mask with value 0 standing for
the noise dominance and value 1 representing the speech domi-
nance. The direct IBM estimator is obtained by training a DNN,
denoted as IBM-DNN. Similar to [28], the IBM-DNN is trained
on the noisy log-power spectra to predict the desired outputs
across all frequency bands, and the mean squared error (MSE)
is used as the cost function. The sigmoid activation functions
are used in the output layer considering the IBM range {0, 1}.
The label information could be constructed under the definition
of the IBM [28] for training the IBM-DNN.

Note that although the label information is binary in train-
ing, the DNN will give the posterior probabilities in testing
to indicate the possibility of being noise-dominant or speech-
dominant at the certain T-F unit. Since the real noise informa-
tion is expected to be estimated from the noisy spectra, a thresh-
old γ is set to make a decision of the binary value as follow,

ÎBMn(d) =

{
0 posteriorn(d) < γ
1 otherwise (6)

where γ belongs to [0, 1]. Then the estimated log-power noise
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Figure 2: A block diagram of the proposed two stages of DNAT
based on the dynamic noise estimation via IBM.

spectrum N̂n(d) could be calculated as follows,

N̂n(d) =

{
Yn(d) ÎBMn(d) = 0

−50 ÎBMn(d) = 1
(7)

where value -50 is the minima log-power spectrum in the
overlap-add waveform reconstruction algorithm [26]. This
method is denoted as DNAT2.

3.2. IBM-based noise estimation through post-processing

Different from DNAT2 with the IBM is directly predicted by
a well trained IBM-DNN, the IBM here is estimated by com-
paring the baseline DNN with linear output enhanced speech
X̂n(d) with the noisy speech Yn(d) as follows,

α =
exp(X̂n(d))

exp(Yn(d))
(8)

ÎBMn(d) =

{
0 α < λ
1 otherwise (9)

where λ is the threshold to exclude speech from the estimated
log-power noise spectrum N̂n(d) as in Eq. (7). This method is
denoted as DNAT3. It should be noted that IBM is common-
ly estimated to completely eliminate the influence of the noise
to improve the speech intelligibility in CASA [18], on the con-
trary, here it was adopted to obtain the real noise information
for helping the DNN fine-tuning.

4. Experimental Results and Analysis
4.1. Experimental configurations

In [13], only four noise types, namely AWGN, Babble, Restau-
rant and Street, from the Aurora2 database [30] were used as
the noise signals for synthesizing the noisy speech. In this study
we increased the number of noise types to 104 with another 100
environmental noises [33]1. The clean speech data was still de-
rived from the TIMIT database [31]. All 4620 utterances from
the training set of the TIMIT database were corrupted with the
abovementioned 104 noise types at six levels of SNR, i.e., 20d-
B, 15dB, 10dB, 5dB, 0dB, and -5dB, to build a multi-condition
training set, consisting of pairs of clean and noisy speech.

We randomly selected part of them to construct a 10-hour
training subset with 11550 utterances. Another 200 randomly
selected utterances from the TIMIT test set were used to con-
struct the test set for each combination of noise types and S-
NR levels. As we only conducted the evaluation of mismatched

1The 104 noise types are N1-N17: Crowd noise; N18-N29: Ma-
chine noise; N30-N43: Alarm and siren; N44-N46: Traffic and car
noise; N47-N55: Animal sound; N56-N69: Water sound; N70-N78:
Wind; N79-N82: Bell; N83-N85: Cough; N86: Clap; N87: Snore; N88:
Click; N88-N90: Laugh; N91-N92: Yawn; N93: Cry; N94: Show-
er; N95: Tooth brushing; N96-N97: Footsteps; N98: Door moving;
N99-N100: Phone dialing. To compare with the results of [13], N101:
AWGN, N102: Babble, N103: Restaurant, N104: Street, were used.

noise types in this study, 3 other unseen noise types2, from the
Aurora2 database [30] and the NOISEX-92 corpus [25], were
used for testing. An improved version of OM-LSA [6, 7], de-
noted as LogMMSE, were used for performance comparison.
All of the waveforms were down-sampled to 8KHz. Perceptual
evaluation of speech quality (PESQ) [32] was used as a com-
pressive objective measure. The regularization weighting coef-
ficient κ in Eq. (1) was 0.00001. The first T = 6 frames of
each utterance were used for noise estimation in SNAT. Mean
and variance normalization was applied to the input and target
feature vectors of the DNN. All DNN configurations were fixed
at L = 3 hidden layers, 2048 units at each hidden layer, and
11-frame input. γ in Eq. (6) was set to 0.4 and λ in Eq. (9) was
set to 0.1. Other detail of the setup can be found in [13].

4.2. Evaluations of different NAT methods

In Table 1, we compare the average PESQ results among noisy,
LogMMSE, DNN baseline, SNAT, DNAT1, DNAT2, DNAT3,
DNAT3 improved by GV equalization (denoted as DNAT3-
GV) and two oracle DNAT experiments assuming the real noise
spectrum or real IBM information was known on the test set at
different SNRs of the three unseen noise environments, namely
Exhibition, Destroyer engine and HF channel.

4.2.1. SNAT and DNAT1 experiments

The DNN baseline trained with only 10-hour data of 104 noise
types is better than the LogMMSE method at low SNRs (less
than 10dB), especially at SNR=-5dB with PESQ going from
1.38 to 1.71. Here the abundant noise types in training set were
crucial to improve the generalization capacity to unseen noise
conditions. After improved by SNAT, the DNN model outper-
formed the LogMMSE method at all SNR levels. And SNAT
was more beneficial at high SNRs. This is reasonable because
SNAT assumed that the noise was unchanging across all frames
of the utterance, which might be not the case if the noise was
non-stationary and at high level. DNAT1 achieved almost the
same performance with SNAT or even a little worse at high S-
NRs, e.g., PESQ going down from 3.38 to 3.35 at SNR=20dB.
We conjecture that conventional MMSE-based noise estima-
tion would introduce some non-linear distortion which might
be even more difficult to learn for DNNs.

4.2.2. Oracle experiments

Then we examine in detail the last two columns in Table 1 the
two oracle DNAT experiments assuming the real noise spectrum
or the real IBM information was known. It is interesting to
find that the oracle IBM DNAT is much better than the oracle
noise DNAT, especially at low SNRs, e.g., PESQ jumping from
2.28 to 2.74 at SNR=-5dB. Fig. 3 shows an utterance example
corrupted by Exhibition noise at SNR=0dB. It was enhanced by
oracle noise DNAT (upper right) and oracle IBM DNAT (upper
left), respectively. The oracle IBM DNAT (upper left) achieved
the best PESQ and its spectrogram was much better with clearer
harmonic components and less residual noise. This indicates
that it is unnecessary to reduce noise at the speech-dominant T-
F units and human may not perceive the noise component when
the speech energy is higher than the noise energy [18].

2The 3 unseen environment noises for evaluation are Exhibition, De-
stroyer engine and HF channel. The first one noise is from the Aurora2
database and the others are collected from the NOISEX-92 corpus.
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Table 1: Average PESQ comparison on the test set at different SNRs of the three unseen noise environments, among: Noisy, LogMMSE
approach, DNN baseline, SNAT, DNAT1, DNAT2, DNAT3, DNAT3 improved by GV equalization (denoted as DNAT3-GV) and two
oracle DNAT experiments supposed the real noise spectrum information or the real IBM information was known.

Noisy LogMMSE Baseline SNAT DNAT1 DNAT2 DNAT3 DNAT3-GV Oracle noise DNAT Oracle IBM DNAT
SNR20 2.88 3.37 3.33 3.38 3.35 3.43 3.46 3.60 3.80 3.95
SNR15 2.55 3.07 3.05 3.09 3.08 3.17 3.19 3.31 3.58 3.78
SNR10 2.22 2.73 2.75 2.78 2.76 2.87 2.90 2.99 3.31 3.59
SNR5 1.90 2.32 2.42 2.45 2.45 2.53 2.57 2.65 3.00 3.35
SNR0 1.61 1.87 2.07 2.09 2.08 2.18 2.22 2.27 2.66 3.07
SNR-5 1.37 1.38 1.71 1.73 1.73 1.77 1.82 1.86 2.28 2.74

Ave 2.09 2.46 2.55 2.59 2.58 2.66 2.69 2.78 3.11 3.41

Figure 3: Spectrograms of an utterance tested on Exhibi-
tion noise at SNR = 0dB: oracle IBM DNAT (upper left,
PESQ=2.76), oracle noise DNAT (upper right, PESQ=2.24),
clean speech (bottom left, PESQ=4.50), and noisy speech (bot-
tom right, PESQ=1.24).

4.2.3. Proposed IBM-based DNAT experiments

With this analysis, IBM-based DNAT2 and DNAT3 were pro-
posed in Sec. 3. In Table 1, DNAT3 achieved a better perfor-
mance, e.g., PESQ jumping from 2.75 to 2.90 at SNR=10dB
when compared with the DNN baseline. Since we only learned
the IBM with the log-power spectra feature as the input, D-
NAT2 was a little worse than DNAT3. While in [28, 29], a
set of complementary features, such as, amplitude modulation
spectrogram (AMS), pitch-based features, etc., were adopted to
learn the IBM in DNNs. Even so, the DNAT2 is much better
than SNAT and the DNN baseline. The best DNAT3 system can
be further improved at all SNRs by GV equalization which was
more helpful for high SNRs, e.g., PESQ going up from 3.46 to
3.60 at SNR=20dB. The final system outperformed LogMMSE
by 0.32 in PESQ on average.

Fig. 4 shows an utterance example corrupted in succes-
sion by different unseen noise types at several speech segments.
These noise types were Machine Gun, F16, Destroyer engine
and Exhibition. The DNN-enhanced spectrograms shown in
Fig. 4(a)-(b) successfully removed most of the noises while the
LogMMSE-enhanced spectrogram shown in Fig. 4(c) failed to
remove most of them. This was reasonable as the LogMMSE
method predicted the noise in a recursive averaging mode ac-
cording to previous frames and it was hard to track the po-
tentially dramatic changes in non-stationary noises. However,
the DNN model processed the noisy spectrum in a frame-by-
frame manner, and the relationship between the clean speech
and noise had been learned off-line. The non-stationary noise
components were shown in Fig. 4(d) in dashed rectangular box-
es. Compared to the SNAT enhanced spectrogram shown in
Fig. 4(b), especially for that in the dashed ovals, the DNAT3
enhanced spectrogram shown in Fig. 4(a) could suppress more
non-stationary noise and highlight the speech spectrum. Hence
DNAT3 could obtain higher PESQ score jumping from 2.57 to
2.76, which indicates that the IBM-based dynamic noise esti-
mation scheme can accurately track the non-stationary noise in
the noisy speech.

(a) DNAT3 

(b) SNAT 

(c) LogMMSE 

(d) Noisy 

(e) Clean 

Figure 4: Spectrograms of an utterance corrupted in succes-
sion by different noise types tested on changing noise envi-
ronments at SNR = 0dB: (a) DNAT2 enhanced (PESQ=2.76),
(b) SNAT enhanced (PESQ=2.57), (c) LogMMSE enhanced
(PESQ=2.06) (d) noisy (PESQ=2.05), and (e) clean speech
(PESQ=4.50).

5. Conclusion and Future Work
In this paper, different noise aware training schemes were com-
pared in DNN-based speech enhancement. We found that IBM-
based real noise estimation and informing strategy were effec-
tive to track the change of the noise. Two dynamic noise aware
training methods, namely, DNAT2 and DNAT3, were proposed,
and the latter achieved a better performance. DNAT3 could
be further improved by GV equalization. Moreover, multi-
condition training with many kinds of noise types could achieve
a good generalization capability to unseen noise environments.
Finally the proposed DNN-based system is also powerful to
cope with non-stationary noises with quickly changing charac-
teristics. For future work, we will concentrate on accurately
estimating the IBM target using some complementary features
like in [28, 29]. Therefore the performance of the dynamic noise
aware training in DNNs could reach the oracle performance up-
per bound indicated in Table 1.
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