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Abstract
In this paper, we propose a novel progressive learning (PL)
framework for deep neural network (DNN) based speech en-
hancement. It aims at decomposing the complicated regres-
sion problem of mapping noisy to clean speech into a series of
subproblems for enhancing system performances and reducing
model complexities. As an illustration, we design a signal-to-
noise ratio (SNR) based PL architecture by guiding each hidden
layer of the DNN to learn an intermediate target with gradual S-
NR gains explicitly. Furthermore, post-processing, with the rich
set of information from the multiple learning targets, can fur-
ther be conducted. Experimental results demonstrate that SNR-
based progressive learning can effectively improve perceptual
evaluation of speech quality and short-time objective intelligi-
bility in low SNR environments, and reduce the model param-
eters by 50% when compared with the DNN baseline system.
Moreover, when combined with post-processing, the proposed
approach can be further improved.
Index Terms: speech enhancement, SNR, progressive learning,
deep neural networks, nonlinear regression

1. Introduction
Single channel speech enhancement has been an open research
problem for a long time. The goal of speech enhancement is to
improve the speech quality and intelligibility in the presence of
an interfering noise signal [1]. The background noise can cause
performance degradation for real-world applications, including
speech communication, hearing aids and speech recognition [2].
Many algorithms have been proposed to solve this problem, and
they can be classified into two categories, namely unsupervised
and supervised methods.

As for unsupervised approaches, there are, spectral subtrac-
tion [3], Wiener filtering [4, 5], minimum mean squared er-
ror (MMSE) estimation [6] and optimally-modified log-spectral
amplitude (OM-LSA) speech estimator [7, 8]. However, many
assumptions were made during the derivation process of these
solutions. The noise tracking capacity is limited for highly non-
stationary noise cases, and the resulting enhanced speech often
suffers from an annoying artifact called musical noise. More
recently, some phase-aware speech enhancement methods were
investigated in [9, 10, 11].

Supervised and unsupervised nonnegative matrix factoriza-
tion (NMF) methods were investigated in [12, 13] for speech
enhancement. The basic idea is to decompose the noisy speech
data into bases and weights matrices for the speech and noise,
respectively. On the other hand, supervised deep learning ap-
proaches have also been developed in recent years. The appli-

cations of DNN in speech signal processing area, create a new
direction of single channel speech enhancement. In [14, 15],
masking techniques were used to make binary classification on
time-frequency (T-F) units for speech separation. Xu et, al.
[16, 17] proposed a DNN-based speech enhancement frame-
work in which DNN was regarded as a regression model to pre-
dict the clean log-power spectra (LPS) features [18] from noisy
LPS features. In [19, 20], DNN-based method was demonstrat-
ed to be more effective than the NMF-based method in speech
separation. In [21], we proposed a joint framework combin-
ing speech enhancement with voice activity detection (VAD)
to increase the speech intelligibility in low SNR environments.
In [22], Long Short-Term Memory (LSTM) based speech en-
hancement was explored. In [23], Kim et, al. aimed at a fine-
tuning scheme at the test stage to improve the performance of a
well-trained Denoising AutoEncoder (DAE).

From the view of machine learning, the challenge of DNN-
based speech enhancement is the optimization of the compli-
cated and non-convex objective function. Recently, multi-task
learning (MTL) [24] has been adopted in speech enhancemen-
t. In [25], a multi-objective framework was proposed to im-
prove the generalization capability of regression DNN. Based
on MTL method, Jiang et, al. [26] proposed a framework to
improve DNN-based speech denoising with ideal binary mask
(IBM) as the targets at different time-frequency scales simulta-
neously and collaboratively.

Another notable machine learning strategy is the curricu-
lum learning [27] originated from cognitive science. The basic
idea is to start small, learn easier aspects of the task or easier
sub-tasks, and then gradually increase the difficulty level. Cur-
riculum learning is related with MTL where the initial tasks are
boosted to guide the learner for the better achievement on the
final task. However the motivation of MTL is to improve the
generalization of the target task by leveraging on other tasks.

In this paper, based on previous work and inspired by cur-
riculum learning, we propose a progressive learning framework
to improve the performance of DNN-based speech enhance-
ment especially in low SNR environments. As a demonstration
of DNN training, the direct mapping from the noisy speech to
clean speech is decomposed into multiple stages with SNR in-
creasing progressively. We guide hidden layers to learn targets
explicitly, which can significantly reduce the model complexity.
And the subproblem solving in each stage can boost the subse-
quent learning of the next stage. Furthermore, the estimated tar-
gets of different stages provide rich information for multi-target
fusion as a post-processing. Experimental results demonstrate
that the proposed approach can not only significantly improve
both objective measures of speech quality and intelligibility but
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Figure 1: Overall development flow and architecture.

also reduce model parameters by 50% when compared with the
conventional DNN.

2. System Overview
The overall flowchart of our proposed SNR-based progressive
learning framework for speech enhancement is illustrated in
Figure 1. In the training stage, a regression DNN model is pro-
gressively trained from a collection of stereo data, consisting of
pairs of noisy speech at different levels of SNR and clean speech
represented by LPS features. In the enhancement stage, the
well-trained DNN model is fed with the noisy features in order
to generate multiple enhanced LPS features (X̂ f

1, X̂
f
2...X̂

f
K ) of

different SNR levels. Another module, namely post-processing,
is proposed to perform the fusion of the multiple estimations.
The additional phase information is calculated from the orig-
inal noisy speech. Finally an overlap-add method is used to
synthesize the waveform of the enhanced speech. A detailed
description of the feature extraction module and waveform re-
construction module can be found in [18].

3. SNR-based Progressive Learning
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Figure 2: Illustration of SNR-based progressive learning.

3.1. Motivation

Although DNN has been successfully adopted as a regression
model for speech enhancement, the resulting enhanced speech
often suffers from speech distortion in low SNR environments.
On the other hand, the conventional microphone array aims to
achieve the SNR gain of input noisy speech with less speech dis-
tortion, which should be complementary to the direct learning
of the clean speech as the targets with potentially more speech
distortion in DNN-based speech enhancement, especially in low
SNR environments. Further inspired by curriculum learning,
SNR-based progressive learning is proposed, as shown in Fig-
ure 2. The direct mapping process from noisy speech to clean
speech in the conventional DNN training is decomposed into
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Figure 3: DNN architecture for speech enhancement.

multiple stages with an SNR gain achieved in each stage. For
example, the input SNR of noisy speech is 0dB, then two inter-
mediate learning targets are 10dB and 20dB speech while the
final target is the clean speech (infinity dB).

3.2. DNN Training

In [16], DNN acted as a regression model to predict the clean
LPS features given the input noisy LPS features with acoustic
context. In this study, the DNN architecture for SNR-based pro-
gressive learning is illustrated in Figure 3. The active function
is linear in the target layers and sigmoidal in the other hidden
layers. All the target layers are designed to learn intermediate
speech with higher SNRs or clean speech. This stacking style
DNN can learn multiple targets progressively and efficiently.
In the forward pass, the enhanced features of the current target
layer are used as the input of the next target layer. Then, the
back-propagation algorithm is adopted with the MMSE criteria
defined for the K (K = 3) target layers (Err1, Err2, Err3)
with the same form of objective function as follows,

Err =
1
N

NX

n=1

(kX̂t
n �Xt

nk22) (1)

where X̂t
n and Xt

n are the nth D-dimensional vectors of esti-
mated and reference target features, respectively, with N rep-
resenting the mini-batch size. Err1, Err2 and Err3 will be
combined together to calculate the back-propagated gradients
in a weighted sum fashion as:

✏ =
@(Err3)

@(W `, b`)
1`L3+1

+ ↵2
@(Err2)

@(W `, b`)
1`L2+1

+ ↵1
@(Err1)

@(W `, b`)
1`L1+1

(2)

where ✏ is the overall gradient of the objective function with
(W `, b`) denoting the weights and bias parameters to be
learned at the `-th layer, L1, L2 and L3 representing the number
of hidden layers between the input layer and each target layer.
The gradients from each target layer only affect the parameters
update of its front-end layers. ↵1 and ↵2 are weighting factors
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to balance multiple targets. If ↵1 = ↵2 = 0, it is similar to the
conventional DNN with a low-rank structure [28]. In this paper,
we set ↵1 = ↵2 = 0.1.

3.3. Post-processing

An important benefit from SNR-based progressive learning is
the estimated features (Out1, Out2, Out3) of different targets
provide rich information for post-processing. Out1, Out2 and
Out3 make different tradeoffs between more noise reduction
and less speech distortion in different input SNR conditions. In
this study, we simply average these estimated features to further
improve the overall performance.

4. Experiments and Result Analysis
First, 115 noise types used in [25] were chosen as our noise
database, including 100 noise types [29] and home-made mu-
sical noises. Clean speech is derived from the WSJ0 corpus
[30]. 7138 utterances (about 12 hours of read speech) from 83
speakers, denoted as SI-84 training set, were corrupted with the
above mentioned 115 noise types at different SNR levels, i.e.,
-5dB, 0dB and 5dB, to build a 36-hour training set, consisting
of pairs of clean and noisy utterances. The 330 utterances from
12 other speakers, namely the Nov92 WSJ evaluation set, were
used to construct the test set for each combination of noise type-
s and SNR levels (-5dB, 0dB, 5dB). Three unseen noises from
the NOISEX-92 corpus [31], namely Babble, Factory and De-
stroyer engine, were adopted for testing.

As for signal analysis, speech waveform was sampled at 16
kHz, and the corresponding frame length was set to 512 samples
(or 32 msec) with a frame shift of 256 samples. A short-time
Fourier analysis was used to compute the DFT of each overlap-
ping windowed frame. Then the 257-dimensional LPS features
were used to train DNNs. PESQ [32] and STOI [33] were used
to assess the quality and intelligibility of the enhanced speech.
For DNN training, global mean and variance normalization was
applied to the input and output reference feature vectors, and
the DNN was initialized with random weights. A configura-
tion with 3 hidden layers, 2048 sigmoidal units at each hidden
layer, 7-frame input and 1-frame output was used to train our
DNN baseline system. The DNN architecture for SNR-based
progressive learning was 1799-2048-257-2048-257-2048-257,
denoting 7-frame input and 1-frame output in target layers. Ac-
cording to the SNR diversity of the input data, two sets of exper-
iments, namely single-SNR and multi-SNR training were de-
signed as follows.

4.1. Single-SNR training

For single-SNR training part, the input data contains only one
SNR level. Table 1 lists the SNR configuration of single-SNR
training for progressive learning. For example, if the input
speech was at -5dB SNR, the three learning targets were set
as 5dB, 15dB and clean speech. And for DNN baseline sys-
tem, the learning target was clean speech. Table 2 gives a de-
tailed PESQ and STOI comparison of different systems on the
test set at 0dB of three unseen noise environments. ”Noisy”
and ”Baseline DNN (12.6M)” represent the systems of original
noisy speech and the conventional DNN for speech enhance-
ment with 12.6 million weight parameters, respectively. ”SNR-
PL DNN: Out1”, ”SNR-PL DNN: Out2” and ”SNR-PL DNN:
Out3” are estimations of noisy speech at 10dB, 20dB and clean
speech. ”SNR-PL DNN: PP (6.3M)” denotes SNR-based pro-
gressive learning combined with post-processing.

Table 1: Target SNR configurations of progressive learning for
single-SNR training.

Input Target 1 Target 2 Target 3
-5dB 5dB 15dB clean speech
0dB 10dB 20dB clean speech
5dB 15dB 25dB clean speech

From Table 2, several observations could be made. First,
the baseline DNN system could improve PESQ consistently
over the unprocessed system while STOI was degraded across
three noise types, which implied that the baseline DNN intro-
duced some perceptible speech distortions at low SNRs. How-
ever, the intermediate results of SNR-based progressive learn-
ing provided rich information for the analysis in comparison to
the conventional DNN training. At the first stage of SNR-based
progressive learning, Out1 could improve both PESQ and STOI
compared with the noisy speech results, which indicated that the
direct mapping from noisy speech at low SNR to clean speech
might not be satisfactory in real practice due to its complicated
relationship to be learned. Then, Out2 achieved additional gains
over Out1 in most cases. As for the final stage, the performance
of Out3 was degraded when compared with Out2 due to a large
span of SNR increase, but Out3 still outperformed DNN base-
line in terms of both speech quality and intelligibility. Based on
simply average operation as the post-processing, our final result
SNR-PL DNN: PP could take advantage of Out1, Out2 and Out3
to further improve the overall performance. Compared with the
results of DNN baseline, SNR-PL DNN: PP not only yielded
significant improvements of PESQ and STOI across all noise
types but also reduced parameters by 50%.

Table 3 also lists the results of different single-SNR training
systems for -5dB and 5dB on the test set of three unseen noise
environments. In comparison to the 0dB case in Table 2, our
proposed approach was still quite effective for all measures at
the lower SNR while remarkable gains could be achieved espe-
cially in STOI measure at the higher SNR.

4.2. Multi-SNR training

In [16, 17, 25], all experiments were conducted in multi-SNR
training style with the input noisy speech at different SNR level-
s. For a fair comparison to further demonstrate the effectiveness
of the progressively trained DNNs, we also design the experi-
ments for multi-SNR training conditions in the following. The
input and target features at different SNRs in Table 1 for every
learning stage were combined for DNN training. The first and
second stages of progressive learning aimed at generating a 10d-
B SNR gain for the input speech with different SNRs. Table 4
shows the results for multi-SNR training on the test set at -5dB
and 0dB SNR. Obviously, the performance of the baseline was
not satisfactory in low SNR environments. However, the perfor-
mance of SNR-PL DNN was consistent with that in single-SNR
training, i.e., significantly outperforming noisy speech and the
DNN baseline, especially for speech intelligibility.

Figure 4 shows spectrograms of an utterance corrupted by
Destroyer engine noise at -5dB SNR and enhanced by multi-
SNR training systems. The conventional DNN can achieve a
good noise reduction but with severe speech distortion. Mean-
while, our proposed approach could generate the enhanced
speech with less speech distortion, for example, as shown in
the three solid line box areas. Furthermore, although post-
processing retained more background noises, speech distortion
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Table 2: A detailed PESQ and STOI comparison of different single-SNR training systems at 0dB SNR on the test set of three unseen
noise environments (N1: Babble, N2: Factory, N3: Destroyer engine), among: Noisy, DNN baseline, estimations of different levels of
SNR and SNR-based progressive learning combined with post-processing (denoted as SNR-PL DNN: PP).

Single-SNR training
N1 (0dB) N2 (0dB) N3 (0dB)

System PESQ STOI PESQ STOI PESQ STOI
Noisy 1.683 0.711 1.689 0.757 1.636 0.749

Baseline DNN (12.6M) 1.775 0.710 1.875 0.702 1.760 0.694
SNR-PL DNN: Out1 1.828 0.730 1.850 0.764 1.693 0.763
SNR-PL DNN: Out2 2.015 0.747 2.023 0.764 1.866 0.757
SNR-PL DNN: Out3 1.789 0.731 1.894 0.722 1.760 0.710

SNR-PL DNN: PP (6.3M) 2.007 0.766 2.017 0.783 1.928 0.781

Table 3: PESQ and STOI comparison of different single-SNR training systems for -5dB and 5dB cases on the test set of three unseen
noise environments (N1: Babble, N2: Factory, N3: Destroyer engine).

Single-SNR training
N1 (-5dB) N2 (-5dB) N3 (-5dB) N1 (5dB) N2 (5dB) N3 (5dB)

System PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
Noisy 1.449 0.587 1.387 0.634 1.422 0.627 2.002 0.824 2.032 0.862 1.899 0.853

Baseline DNN (12.6M) 1.156 0.531 1.468 0.562 1.247 0.523 2.367 0.834 2.391 0.825 2.323 0.824
SNR-PL DNN: PP (6.3M) 1.514 0.618 1.550 0.648 1.414 0.637 2.369 0.864 2.431 0.878 2.352 0.879

Table 4: PESQ and STOI comparison for multi-SNR training system at -5dB and 0dB SNR on the test set of three unseen noise
environments (N1: Babble, N2: Factory, N3: Destroyer engine).

Multi-SNR training
N1 (-5dB) N2 (-5dB) N3 (-5dB) N1 (0dB) N2 (0dB) N3 (0dB)

System PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
Noisy 1.449 0.587 1.387 0.634 1.422 0.627 1.683 0.711 1.689 0.757 1.636 0.749

Baseline DNN (12.6M) 1.371 0.582 1.599 0.625 1.396 0.583 1.961 0.742 2.090 0.761 1.924 0.732
SNR-PL DNN: PP (6.3M) 1.545 0.630 1.690 0.683 1.541 0.673 2.053 0.771 2.147 0.800 1.999 0.797

(a) noisy speech (PESQ=1.278, STOI=0.619)

(c) DNN baseline (PESQ=1.496, STOI=0.566)

(b) clean speech

(d) out3 of SNR-progressive learning (PESQ=1.578, STOI=0.709)

(e) SNR-progressive learning+post-processing (PESQ=1.628, STOI=0.722)

Figure 4: Spectrograms of an utterance corrupted by De-
stroyer engine noise at -5dB SNR and enhanced by multi-SNR
training: (a) noisy speech, (b) clean speech, (c) DNN base-
line (PESQ=1.496, STOI=0.566); (d) out3 in the proposed
DNN (PESQ=1.578, STOI=0.709); (e) further post-processing
(PESQ=1.628, STOI=0.722).

could be further reduced especially in the speech segment (box
area in Figure 4 (e)) with quite low SNR, which improved both
speech quality (PESQ) and speech intelligibility (STOI).

5. Conclusions
In this study, we propose a novel SNR-based progressive learn-
ing framework to improve the performance of regression DNN
based speech enhancement in low SNR environments. The di-
rect mapping from noisy to clean speech is decomposed into
multiple stages with SNR increasing progressively by guiding
hidden layers in the DNN architecture to learn targets explic-
itly. We test the effectiveness of the proposed framework in
single-SNR and multi-SNR training conditions under three un-
seen noise environments. Experimental results demonstrate that
this approach can effectively improve the enhancement perfor-
mance and reduce parameters by 50% when compared with the
conventional DNN approach. Furthermore, multiple estimated
targets provide rich information for post-processing. The sim-
ple average operation as post-processing can further generate
significant performance gains, especially for speech intelligibil-
ity. In the future, other progressive learning strategies combined
with post-processing will be further explored.
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