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Abstract Recently, the signals captured from a laser Doppler
vibrometer (LDV) sensor have shown the noise robust-
ness to automatic speech recognition (ASR) systems by
enhancing the acoustic signal prior to feature extraction.
In this study, an alternative approach, namely concatenat-
ing the auxiliary features extracted from the LDV signal
with the conventional acoustic features, is proposed to
further improve ASR performance based on the deep
neural network (DNN) for acoustic modeling. The prelim-
inary experiments on a small set of stereo-data including
both LDV and acoustic signals demonstrate its effective-
ness. Thus, to leverage more existing large-scale speech
databases, a regression DNN is designed to map acoustic
features to LDV features, which is well trained from a
stereo-data set with a limited size and then used to generate
pseudo-LDV features from a massive speech data set for
parallel training of an ASR system. Our experiments verify
that both the features from the limited scale LDV data set
as well as the massive scale pseudo-LDV features can yield
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significant improvements of recognition performance over
the system using purely acoustic features, in both quiet and
noisy environments.
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1 Introduction

As one of the most practical and valuable applications of
machine learning and artificial intelligence, constructing a
stable and easy-to-use automatic speech recognition (ASR)
system is always a hot issue in the past decades. Previ-
ously, conventional hidden Markov model (HMM)-based
[1] speech recognizers have been commonly used with
each acoustic state modeling by a Gaussian mixture model
(GMM), referred to as a GMM-HMM system. However,
GMMs have a serious shortcoming that they are statistically
inefficient for modeling data that lie on or near a nonlin-
ear manifold in the data space [2]. On the contrary, artificial
neural networks trained by back-propagating error deriva-
tives have the potential to learn much better models of data
than GMMs. Meanwhile, deep neural networks (DNNs)
have demonstrated a great capacity to extract discriminative
internal representations that are robust to the many sources
of variability in speech signals. Over the last few years, effi-
cient learning methods [3–5] and speed-up hardwares boost
DNN-HMM structure to replace GMM-HMM in speech
recognition. So far, with great mass of data, ASR system
based on DNN-HMM outperforms previous methods by a
large margin and becomes the mainstream method.

Besides those laboratorial success, an available ASR sys-
tem should be able to handle not only clean conditions
but also complex noisy scenes. In fact, most ASR systems
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are likely to suffer severe performance degradation when
speech is mixed with some unavoidable interrupting factors
like environment noise, room reverberation, disturbances
from different microphones and recording non-linearities
[6]. Hence, robust speech recognition under real conditions
is still a knotty problem to be solved.

To solve these problems, many processing techniques
were proposed and could be divided into several categories
[7–9]. First, a batch of speech enhancement methods to
improve speech signal quality [10] thus can help ASR sys-
tem which is well trained in relatively clean conditions. But
to attain the best enhancement performance, these enhance-
ment algorithms should be customized under certain con-
ditions, such as noisy or reverberation conditions, single-
channel or multi-channel scenes. There are also investiga-
tions focusing on finding robust acoustic features [11, 12],
which emphasize the temporal structure in speech. Some
open challenges are held such as REVERB (REverberant
Voice Enhancement and Recognition Benchmark) challenge
[13], CHiME challenge [14], ASpIRE (Automatic Speech
Recognition In Reverberant Environments) [15] in order to
bring more efforts to improve robust speech recognition.

Recently, auxiliary information gathered from non-
acoustic sensors like bone-, throat- and air- microphones is
shown to be effective for ASR systems to make better deci-
sions under noisy environments [16–18]. Photo-acoustic
technique shows promising results on robust recognition due
to their inherent immunity to acoustic noise as well as non-
contact operation [19, 20]. Combining traditional acoustic
features with speech information captured by these sensors,
recognition performances are further improved [21].

Laser doppler vibrometer (LDV) sensor [22, 23] is a kind
of non-contact measurement device that is capable of mea-
suring the vibration frequencies of moving targets. When it
is directed to a speaker’s larynx, it captures valuable speech
information at certain frequency bands. Due to its insen-
sitivity to environments, LDV signal is appropriate as a
supplement to strengthen the robustness of ASR system. In
[23, 24], LDV sensors are presented as making accurate and
reliable voice activity detection (VAD) decision, as well as
improving the speech recognition results.

The novelty of this work is to derive LDV features from
LDV sensor information, combine these with the corre-
sponding traditional acoustic features to improve recogni-
tion performance under both clean and noisy conditions. In
comparison to the recent work on LDV sensor for speech
recognition [24], the main difference is we directly use LDV
features for acoustic modeling while in [24] LDV informa-
tion is adopted to improve the VAD and indirectly help to
boost ASR system. In this sense, our proposed approach
can be perfectly incorporated with [24]. In this paper, all
experiments are conducted on two datasets, a small LDV
dataset which contains both normal acoustic signals and
LDV signals, the other is a large recorded dataset contains

only normal acoustic signals. Log Mel-filter-bank (LMFB)
features are extracted from all datasets and are used for
DNN modeling. First, we train a baseline acoustic-only
model (denoted as DNNN) on LDV dataset using only
acoustic features. Then we concatenate the normal acoustic
features with LDV features, and train another acoustic-
LDV model (denoted as DNNC). The latter system yields a
relative 10.97% reduction of word error rate (WER) which
demonstrates the effectiveness of using LDV features.

Due to the limited size of existing LDV datasets, DNN
models may not be trained sufficiently. Hence, we use
the large dataset to pre-train the network as a better ini-
tialization for DNN fine-tuning. Because the large dataset
lacks of LDV signals, to construct an acoustic-LDV system
we consider obtaining LDV features by converting normal
acoustical features from a large dataset into pseudo-LDV
features. Accordingly, we create a regression DNN to learn
a mapping relationship from normal acoustic features into
LDV features. The trained feature-mapping network allows
pseudo-LDV features to be generated in parallel with acous-
tic features from acoustic-only training data, yielding a
very well trained DNN-based ASR system with dual input
features. The promoting performance of recognition accu-
racies confirms the validity of both initialization DNN and
feature-mapping network.

This work is an extension of the recently disclosed ver-
sion [25] with the new contributions: (1) more comprehen-
sive introduction of LDV signals, (2) more technical details
of feature mapping DNN, (3) the clearer training procedure
for each system, (4) more experiments and analysis.

The rest of the paper is organized as follows. Section 2
introduces the details of LDV signal. In Section 3, we
propose the auxiliary LDV features for building an ASR
system. Section 4 demonstrates the use of feature-mapping
DNN to derive pseudo-LDV features from a large dataset,
and then use them to jointly optimize the DNN network.
Section 5 gives the experimental conditions, datasets, sys-
tem operation and discusses results. Finally we conclude the
paper in Section 6.

2 Details of LDV Signal

Unlike traditional sound pick-up equipments, an LDV sen-
sor is a non-contact measurement device which can detect
the vibration signal of a moving target based on the principle
of interferometry, as illustrated in Fig. 1. It is composed of
several major parts, including a laser, a Bragg cell, a photo
detector, an optical lens, and many beam splitters (BS),
etc. First a laser beam with frequency f0 is emitted from
the laser, then divided into a reference beam and an object
beam by BS1. Along a straight line through BS2 and the
lens, the object beam can arrive at the target vibrated object
(speaker’s larynx). The corresponding backscattered beam
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Figure 1 Basic components of a laser Doppler vibrometer.

with a Doppler shift fd will be reflected to BS3. Meanwhile,
the reference beam passes through a Bragg cell, which pro-
duces a frequency shift of fb. After BS3, the two beams
are mixed together to generate a signal with frequency shift
of fb + fd , which is then converted to a voltage signal by
a photo-detector. Finally, an FM-demodulator outputs the
signal z(t) with fb and fd respectively being its carrier and
modulated frequencies. More details can be found in [23,
24]. Figure 2 shows the spectrograms of an acoustic signal
and corresponding LDV signal of the same utterance at a
sample rate of 16kHz.

Obviously, the LDV signal is a sensitive signal to vibra-
tion of the object target. Simultaneously, to those acoustical
disturbances which severely degrade ASR performance,
LDV signals have instinctive robustness. Thus, LDV signals
could be strongly complementary with the traditional acous-
tic signals. In Fig. 2, the LDV signal mainly contains the
information at low-frequency (up to 3 kHz) and is shown
to be robust to environmental disturbances in comparison
the normal acoustic signal. In [23], speech enhancement
algorithm based on LDV signals was proposed to attenuate

Figure 2 Comparison between two kinds of signals: a spectrogram of
normal speech. b spectrogram of LDV signal.

a kind of random impluses named speckle noise in [26]
which would limit the applicability of LDV-based mea-
surement devices. Then a soft-decision VAD was derived
in time-frequency domain and the gain function of the
optimally-modified log-spectral amplitude (OM-LSA) was
appropriately modified. Despite the effectiveness of z highly
non-stationary noises, this method often fails to retain weak-
speech components and may lead to the degradation of
speech quality [24]. Rather than reducing the speckle noises,
VAD strategy in [24] ignored them by detecting spectral
harmonic patterns. Similarly, the resulting VAD informa-
tion was used to improve OM-LSA performance under low
SNR conditions. It’s demonstrated that the proposed ASR
system using LDV information can substantially improve
recognition accuracies. Unlike this method, in this study we
directly extract the features of LDV signals and combine
with traditional acoustic features for acoustic modeling.

3 The Auxiliary LDV Features

In this section, we exploit the concatenation of auxiliary
LDV features with acoustic features, in comparison to
acoustic-only speech features for acoustic modeling. Both
systems are built on our LDV dataset consisting of paral-
lel acoustic microphone and LDV data for each sentence.

Figure 3 aDNNN is trained using traditional acoustic features from nor-
mal speech,bDNNC is trained using a combination of traditional acous-
tic features and LDV features. Both of them are trained on LDV dataset.
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Figure 3 shows the difference between two DNN-based
systems. The acoustic-only baseline system DNNN uses
acoustic features extracted from normal speech. Corre-
spondingly, the acoustic-LDV system DNNC introduces
LDV features to be concatenated with the acoustic features.
The acoustic-only approach is to obtain the LMFB features
from normal speech and feed them into the DNN input
layer with adjacent context frames. However, our proposed
acoustic-LDV approach combines the LMFB features of
normal speech with the LMFB features extracted from the
LDV signals. The two types of LMFB features have the
same dimension. Suppose an acoustic-only feature vector is
with the dimension of D. After concatenation, the merged
feature vector is with the dimension of 2D. During the
training process, we introduce pre-training methods to bet-
ter initialize the parameters prior to back propagation (BP),
preventing being stuck in poor local optima. Contrastive
divergence (CD) criterion is used to train each pair of layers
in the networks as restricted Boltzmann machines (RBM)
and grow the network layer-by-layer in an unsupervised way
[27]. To better illustrate these procedures, we rewrite them
in Algorithm 1.

Algorithm 1 Training procedure for acoustic-only and

acoustic-LDV systems

Step1:Extract two types of features

1. Extract acoustic features of normal speech utterances in

LDV dataset.

2. Extract features of the corresponding LDV signals in

LDV dataset.

3. Concentrate normal acoustic features and LDV features

in the frame-level.

Step2:Train DNN-based acoustic models

1. Use layer-by-layer generative pre-training algorithm to

initialize parameters in each layer with normal acoustic

features, we refer it as DNNN.

2. Use layer-by-layer generative pre-training algorithm to

initialize parameters in each layer with concatenated

features, we refer is as DNNC.

3. Fine-tune DNNN and DNNC with the corresponding

features, respectively.

4 Extension to a Large Dataset

4.1 Acoustic-only ASR with a Large Dataset

While the use of LDV features is shown to improve recog-
nition performance in Section 5, the overall accuracies of
both DNNN and DNNC are still quite low as the DNN-
based ASR systems are not trained sufficiently well with the
small size of the LDV dataset (i.e. the availability of stereo-
data containing both recordings of acoustic speech and LDV

signals). We therefore aim to make use of much larger
datasets. Specifically, a large scale dataset including the
recordings of conversational speech in moving vehicles col-
lected by the iFlytek company [28] is adopted, denoted
as the CZ speech corpus (from the initials of the Man-
darin phrase meaning ‘in car’). Although both CZ and LDV
datasets are recorded in similar car environments, the speak-
ing styles and contents are totally different, which will be
elaborated in Section 5.1.

Considering the mismatch between CZ and the LDV
datasets, instead of using RBM and CD algorithms to
pre-train the DNN acoustic model, we first train an acoustic-
only DNN model from the CZ database alone, which is
then fine-tuned by using the acoustic-only data from the
LDV dataset. As shown in Fig. 4, the resulting acoustic-only
ASR system is named as DNNLN. To better illustrate the
procedure, we rewrite them in Algorithm 2.

Algorithm 2 Training procedure for the acoustic-only sys-

tem with a large dataset

Step1:Use a large dataset for pre-training

1. Extract acoustic features of normal speech utterances

from the large dataset.

2. Use layer-by-layer generative pre-training algorithm to

initialize parameters in each layer, and then fine-tune

the DNN model.

Step2:Use LDV dataset for fine-tuning

1. Extract acoustic features of normal speech utterances

from the LDV dataset.

2. Use the well-trained DNN model in Step1 as initial-

ization, fine-tune the whole network, we refer it as

DNNLN.

4.2 The Feature Mapping Network

Since the large CZ dataset only contains acoustic speech
recordings, we obtain corresponding pseudo-LDV features
by first training a mapping network. For mapping, we use
a regression DNN, shown in Fig. 5, learning the relation-
ship between normal acoustic features and LDV features
from the LDV dataset. In detail, multiple context frames

Figure 4 Pre-training the acoustic-only DNNLN with a large dataset
for initialization.
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Figure 5 Structure of feature-mapping DNN converting acoustic
features to LDV features.

of normal acoustic features are combined together as the
DNN input. Mean squared error (MSE) is used as the
training criterion to minimize the difference between output
pseudo-LDV features and reference LDV features:

E = 1

N

N∑

n=1

‖x̂n+τ
n−τ (y

n+τ
n−τ , W , b) − xn+τ

n−τ‖2
2 + λ‖W‖2

2 (1)

where x̂
n+τ
n−τ and xn+τ

n−τ are the nth D(2τ + 1)-dimensional
vectors of estimated and reference LDV features, respec-
tively. yn+τ

n−τ is a D(2τ + 1)-dimensional vector of input
acoustic features with neighboring left and right τ frames as
the acoustic context. W and b denote all the weight and bias
parameters. λ is the regularization weighting coefficient to

Figure 6 Training DNNLC with a large dataset used for initialization
and LDV dataset used for fine-tuning.

avoid overfitting. The objective function is optimized using
back-propagation with a stochastic gradient descent method
in mini-batch mode of N sample frames. The training
procedure of regression DNN is similar to that in [29].

4.3 Acoustic-LDV ASR with a Large Dataset

Once the DNN mapping network is generated, we can
obtain pseudo-LDV features by mapping the normal acous-
tic features extracted from the CZ dataset, which is shown
in Fig. 6. The feature mapping is only conducted during the
pre-training stage. Then we merge the acoustic and pseudo-
LDV features to pre-train a DNN model in a similar way
to Fig.4. Next, the pre-trained model is transferred to the
next stage as the initialization. In the training stage, we
use data from the LDV dataset, including the parallel LDV
signals and acoustic speech recordings, hence the mapping
network is not required. The two types of features are con-
catenated just like the DNNC system described in Section 3.
The resulting DNN, referred to DNNLC (’L’ for large scale,
’C’ for combined features), will be evaluated in the recogni-
tion stage. To better illustrate these procedures, we rewrite
them in Algorithm 3.

Algorithm 3 Training procedure for the acoustic-LDV sys-

tem with a large dataset

Step1:Use the LDV dataset for mapping DNN

1. Extract acoustic features of normal speech utterances in

LDV dataset.

2. Extract features of corresponding LDV signals in LDV

dataset.

3. Train a feature mapping network with acoustic-LDV

feature pairs with randomly initialized parameters

under MSE criterion.

Step2:Use the large CZ dataset for pre-training

1. Extract normal acoustic features from the large CZ

dataset.

2. Generate pseudo-LDV features by the feature-mapping

DNN trained in Step1.
3. Concentrate both normal acoustic features and pseudo-

LDV features as DNN inputs to train a DNN acoustic

model with generative layer-by-layer pre-training algo-

rithm.

Step3:Use the LDV dataset for fine-tuning

1. Extract acoustic features of normal speech utterances in

LDV dataset.

2. Extract features of corresponding LDV signals in LDV

dataset.

3. Use the well-trained DNNmodel in Step2 as the initial-
ization, fine-tune the whole network with concatenated

features, we refer it as DNNLC.
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5 Experiments and Results

5.1 Corpus

Two independent speech corpora are adopted for the exper-
iments. The first one is the LDV dataset collected by
VocalZoom company [30], which includes speech record-
ings captured by LDV sensors along with corresponding
acoustic recordings. The second one comes from the iFly-
tek company [28], which provides a much larger resource of
recordings of native English speakers to pre-train the DNN
acoustic models.

5.1.1 LDV Dataset

The LDV dataset contains 13 thousand recordings in total at
a sample rate of 16 kHz. Speakers use mainly United States
English and Hebrew to utter a selection of common sen-
tences from daily life, such as “I see, that is a problem”.
Some human-to-machine style sentences are also included,
especially in cars, such as “FM ninety five point three”. In
practice, the LDV sensor is directed to a speaker’s throat
region at a certain distance and measures its vibration veloc-
ity, like vocal-fold vibrations. Besides capturing in a quiet
environment, recordings were also made where interfering
acoustic noises were present. In those recordings undesired
speakers and background noises (from a moving vehicle)
were presented in addition to the desired speaker. Mea-
surements by the LDV and acoustic sensors were recorded
simultaneously. More details can be found in [23]. For sys-
tem training and evaluation, the LDV corpus was partitioned
into: training set consisting of data from 54 speakers with
a total duration of 9.9 hours; development set consisting of
data from 4 speakers with a total duration of 0.62 hours; test-
ing set also consisting of data from 4 speakers with a total
duration of 0.75 hours.

5.1.2 Large CZ Dataset

The CZ corpus contains more than 66 thousand recorded
sentences over a total duration of 620 hours, which is
much larger than the LDV dataset. Similarly, all files
were recorded at a sample rate of 16 kHz. Native speak-
ers from USA (133 speakers), Canada (78 speakers) and
England (26 speakers) were asked to conduct conversations
in three common environments relating to: cars, includ-
ing the commands to machines, the names and locations
recorded in vehicles; tourism, including shopping-related
utterances, numbers and the names of famous tourist attrac-
tions; daily communications involving education, catering
and health-care conversations. These were recorded first
into high-quality audio files, then replayed in three different
vehicles, namely Toyota, Volkswagen and BMW cars, with

5 different scenarios, shown in Table 1. The dataset is named
CZ after the initials of the phrase ‘in-car’ in Mandarin Chi-
nese. The ‘Outside’ column details the environment that the
car is parked in or moving through, while the ‘AC’ column
indicates whether the air conditioner is operating, either on
a medium setting or turned off.

5.2 Experimental Settings

The features we use for both DNN-based feature mapping
and acoustic modeling are 72-dimensional LMFB features
(24-dimensional static LMFB features with Δ and ΔΔ) and
include an input context of 10 neighboring frames (±5)
yielding a final dimensionality of 792 (72 × 11). Further-
more, when combining the two LMFB feature vectors of
normal speech and LDV signal, a merged acoustic feature
vector is with dimensionality of 1584(72 × 2 × 11).

To train the regression DNN, we use 792-dimensional
LMFB features of normal speech as input to learn the target
LDV features with the same dimension. There are 2 hidden
layers with 2048 hidden units in each layer and a final linear
output layer, i.e. a structure of 792-2048-2048-792.

The DNN acoustic model uses a regular structure with 6
hidden layers having 2048 hidden units in each layer and a
final soft-max output layer with 9004 units, corresponding
to the senones of the HMM system. For DNNN and DNNC

systems, the networks were initialized using layer-by-layer
generative pre-training with 6,5,5,5,5,5 iterations of the BP
algorithm in each layer. As for DNNLN and DNNLC, they
were initialized from a well trained DNN using the large
scale CZ dataset and combined LMFB features of two
signals respectively. In all experiments, the decoding is per-
formed by using a 3-gram language model (LM) with a
dictionary consisting of more than 240 thousand words of
native English.

5.3 The Effectiveness of Using LDV Features

The recognition performance is evaluated by word error rate
(WER in %) and sentence error rate (SER in %). Table 2
lists a performance comparison of the two systems with
or without using the combined auxiliary features from the

Table 1 Detailed information of 5 scenes used for recording within
the CZ corpus.

No. Car Speed Window Outside AC

1 stationary closed downtown middle

2 stationary open car park off

3 ≤ 40km/h closed downtown off

4 41 − 60km/h closed countryside middle

5 80 − 120km/h closed highway middle
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Table 2 Results of LDV feature combination.

System Feature dim SER WER

DNNN 72 89.71% 58.88%

DNNC 144 84.23% 52.42%

LDV sensors. The only difference of DNNN and DNNC

is the input feature dimension, namely 72 versus 144 for
one frame. Both the WER and SER of feature combina-
tion DNNC system can be improved by about 6% over
the DNNN system using normal speech, which verifies the
effectiveness of the auxiliary LDV features.

To further explore the effectiveness of using LDV infor-
mation in different environments, we test those two systems
on two subsets of utterances recorded in clean and noisy
environments, as shown in Table 3. From the results, we can
make an observation that the auxiliary LDV features can
improve the recognition performances for both clean and
noisy environments, with relative WER reductions of 11.5%
and 12.5%, respectively.

All the above results indicate that the LDV signal can
provide more useful discriminative information in addition
to the normal speech, which can boost the ASR system in
all environments.

5.4 Extension to a Large Dataset

5.4.1 The Validity of Feature Mapping

Figure 7 is an illustration which is slightly modified in color
gamut to better exhibit the validity of feature mapping net-
work. A sentence from LDV dataset is selected. As we can
see, the features of normal acoustic speech and LDV signal
are totally different not only in intensity but also in distri-
bution. After feature mapping, the generated pseudo LDV
features in Fig. 7c can roughly imitate the profile of real
LDV features in Fig. 7b. Limited by the small size of LDV
dataset, the feature mapping network can not be perfectly
trained. From another perspective of preventing overfitting,
the data availability in this study is expedient and a larger
stereo dataset should be adopted in the future.

Table 3 Results of LDV feature combination in different environment
conditions.

System Feature dim SER WER

DNNN clean 72 89.64% 56.44%

noisy 72 93.43% 71.96%

DNNC clean 144 81.07% 49.96%

noisy 144 88.89% 62.93%

Figure 7 An example of feature mapping network.

5.4.2 Acoustic-LDV ASR with a Large Dataset

The results of the systems initialized by the large CZ dataset
are shown in Table 4. With more training data, the DNNLN

system using acoustic-only features significantly outper-
forms DNNN system in Table 2, with the WERs from
58.88% to 32.93%. The DNN systems initialized from the
large CZ dataset in the pre-training stage always perform
better, irrespective of whether the LDV features are used.
Moreover, by the comparison of DNNLN with DNNLC, the
use of LDV features achieves a relative WER reduction of
20.6%, which is even more significant than that under the
smaller LDV dataset with all real LDV features in Table 2.
This implies that the LDV features are potentially more
powerful with larger training data even with the pseudo-
LDV features generated from the regression DNN learned
on a small stereo dataset of both the normal speech and LDV
data.

The system in Table 4, denoted as joint-DNNLC, is a
modified version of DNNLC where the training data used for
DNN initialization in the pre-training stage includes both
the LDV and CZ datasets. A remarkable performance gain
is achieved by joint-DNNLC over DNNLC, which indicates
that more diversified data in the pre-training stage is always

Table 4 Results of the systems with the large CZ dataset for DNN
initialization.

System Feature dim WER

DNNLN 72 32.93%

DNNLC 144 26.13%

joint-DNNLC 144 25.22%
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helpful. However, this gain is not quite significant as the
proportion of LDV dataset is too small compared with the
large CZ dataset.

Finally, to give the reader a better understanding of the
differences between the LDV and CZ datasets, more exper-
iments are designed. First, as shown in Fig. 2, the auxiliary
LDV features extracted from LDV signals are quite differ-
ent from the conventional acoustic features. If we only use
the LDV features to construct an ASR system, the perfor-
mance is extremely poor with a WER of 93.54%. So in the
current ASR framework, LDV features can only be used as
auxiliary features. Second, if the test set of LDV-acoustic
data is directly evaluated by the pre-trained model using CZ
dataset as in Fig. 6, the recognition performance is much
worse, which confirms that those two datasets are quite dif-
ferent in speaking styles, speech contents, etc. Third, when
the pre-trained model of joint-DNNLC system is adopted for
testing, WER is 37.04%, which performs much better than
DNNC with a WER of 52.42%. From these experiments,
we can make an interesting observation that the recogni-
tion performance is not satisfactory if the model is trained
on each dataset (LDV or CZ) separately while the model
trained with two datasets merged can yield a very signif-
icant improvement of recognition accuracy, which implies
the two datasets are strongly complementary in terms of the
data coverage for speaking styles and speech contents.

6 Conclusion

In this paper, we have investigated the use of auxiliary infor-
mation derived from an LDV sensor for improving ASR
performance. Due to the properties of LDV data which
make it immune to acoustic interference, we combine LDV
features with normal acoustic speech features to train a
DNN acoustic model. Experimental results show significant
improvements of recognition accuracy under both clean and
noisy conditions. Furthermore, after pre-training the DNN
model with pseudo-LDV features combined with acous-
tic features extracted from a large data set, ASR system
achieves much better performance than that trained with
smaller LDV datasets alone. In the future, we will find the
method to collect more LDV data and try to accelerate the
practical progress.
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