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Abstract. We propose a joint framework combining speech enhance-
ment (SE) and voice activity detection (VAD) to increase the speech
intelligibility in low signal-noise-ratio (SNR) environments. Deep Neural
Networks (DNN) have recently been successfully adopted as a regres-
sion model in SE. Nonetheless, the performance in harsh environments
is not always satisfactory because the noise energy is often dominat-
ing in certain speech segments causing speech distortion. Based on the
analysis of SNR information at the frame level in the training set, our
approach consists of two steps, namely: (1) a DNN-based VAD model
is trained to generate frame-level speech/non-speech probabilities; and
(2) the final enhanced speech features are obtained by a weighted sum
of the estimated clean speech features processed by incorporating VAD
information. Experimental results demonstrate that the proposed SE ap-
proach effectively improves short-time objective intelligibility (STOI) by
0.161 and perceptual evaluation of speech quality (PESQ) by 0.333 over
the already-good SE baseline systems at -5dB SNR of babble noise.
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1 Introduction

Speech enhancement (SE) has been an open research problem for the past several
decades. Many approaches are developed to solve this problem, and they can be
classified into two categories, namely unsupervised and supervised methods. As
for the unsupervised approaches, there are, spectral subtraction [1], MMSE-
based log-spectral amplitude estimator [2] and optimally modified log-MMSE
estimator [3], etc. However, many assumptions were made during the derivation
process of these solutions, and the resulting enhanced speech often suffers from
an annoying artifact called musical noise.
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Various supervised methods have also been developed in recent years, which
have been demonstrated to generate enhanced speech with better quality. Non-
negative matrix factorization (NMF) based SE [4] was one of the notable meth-
ods. Speech and noise basis were learned from the speech data and noise data,
respectively. Then the clean speech could be decomposed given the noisy speech.
In [5, 6], masking techniques were used to train DNNs for speech separation and
recognition. More recently, our proposed DNN-based SE where the DNN was
regarded as a regression model to predict the clean log-power spectra (LPS) [7]
from the noisy LPS has been successfully applied to noisy speech enhancement
[8, 9], separation [10] and recognition [11, 12].

 

0 20 40 60 80 100 120 140 160
-0.5

0

0.5
Clean speech waveform

0 20 40 60 80 100 120 140 160
-0.5

0

0.5
Noisy speech waveform (babble, SNR = 0dB)

0 20 40 60 80 100 120 140 160

-20

0

20

Frame index

S
N

R
 (

d
B

)

Frame-level SNR

Fig. 1. Illustration of an utterance example in the babble noise environment at SNR =
0dB along with the corresponding clean speech and frame-level SNR sequence.

Fig. 1 shows noisy speech mixed with babble noise from the NOISEX-92 [13]
corpus at SNR = 0dB along with the corresponding clean speech and frame-level
SNR sequence. Speech segment covered by high-energy noises, such as the noted
part in Fig. 1, remains difficult to handle. When noise is removed from those
segments by conventional DNN approaches, the quality of speech is also severely
degraded as it is not easy for a DNN to distinguish in those segments between
speech and noise. The noisy speech segments with very weak speech energy are
very similar to those pure noise segments in terms of frame-level SNR, which is
a challenge for the data-driven approaches using a single DNN. In the frame-
level DNN-based SE, local SNR distribution is more meaningful than global (e.g.
utterance-level) for learning convergence. From the Fig. 1, we observe that the
frame-level SNR values have a high fluctuation from the global SNR at 0dB.
This indicates that the training set with a fixed, global SNR is multifarious at



frame level especially in low SNR conditions, and it will undoubtedly increase
the difficulty of model learning.

In this paper, we propose a combined VAD+SE framework using DNNs in
low SNR environments. The main contributions of this paper are summarized
as follows: (i) We employ a system with dual outputs of speech features for both
target and interference sources in the output layer as our baseline. (ii) We use
the speech segments of the multi-condition training set using VAD [14, 15, 16]
annotations from the corresponding clean speech to train a conservative speech
enhancement (denoted as CSE) DNN model to well preserve the weak-energy
speech segments in low SNR environments and conservatively remove the pure
noise segments. (iii) A DNN-based VAD model is trained for system fusion.
Empirical results demonstrate that the proposed framework can significantly
improve the performance in low SNR environments.

Enhancement Stage

Noisy

Samples
Feature

Extraction
Classification

CSE

Enhancing

Baseline

Enhancing

1
ˆ* X 

2
ˆ(1 )* X !1  !

"

Training

Samples
Feature

Extraction

Training Stage

Speech

segments

 

X̂

CSE DNN

Training

VAD DNN

Training

Baseline

DNN

Training

Classification 

DNN

Regression

DNN

Regression

DNN

Fig. 2. The proposed system.

2 System Overview

The overall flowchart of the proposed SE system is illustrated in Fig. 2. First,
the acoustic features of both clean speech and synthesized noisy speech training
data are extracted. Then three DNNs, namely VAD DNN, baseline DNN and
CSE DNN, are trained. In the enhancement stage, after feature extraction of the
noisy utterance, frame-level soft decision is first given by the DNN-based VAD.
To achieve better VAD performance, a long-term smoothing of the multiple DNN
outputs with a half-window size τ can be applied. The classification DNN with
smoothing is quite similar to the boosted DNN proposed in [17]. Then both the
noisy features and speech/non-speech probabilities are presented to CSE and
baseline system simultaneously. A fusion is performed with VAD classification
probability to obtain the final enhanced speech signals as shown in Fig. 2. α is
the probability of speech class, and (1 − α) belong to the non-speech class. X̂,



X̂1 and X̂2 are the vectors of final enhanced speech, enhanced speech processed
by CSE and by baseline system, respectively. This fusion can smooth the final
enhanced speech and improve system performance. The details of both regression
and classification DNNs are elaborated in Section 3.

3 DNN-based VAD and Speech Enhancement

3.1 DNN-based VAD

DNN for VAD is designed as a classification model where the output refers to
the probabilities of two classes. The input to DNN is the noisy LPS features
with neighboring frames. The training of this DNN consists of unsupervised pre-
training and supervised fine-tuning. The former treats each consecutive pair of
layers as a restricted Boltzmann machine (RBM) while the parameters of RBM
are trained layer by layer with the approximate contrastive divergence algorith-
m [18]. After pre-training for initializing the weights of the first several layers,
supervised fine-tuning of the parameters in the whole network is performed via
a frame-level cross-entropy criterion. The main difference from other DNN ap-
proaches, e.g. [17], is the training data. In [17], only three noise types are used
for training with a small amount of utterances and the noise types of the test
set are the same as those of the training set. In this work, a large training set
is formed by synthesizing the noisy speech data with a wide range of additive
noises at different SNRs.

3.2 DNN-based Speech Enhancement

In [9], DNN was adopted as a regression model to predict the clean LPS features
given the input noisy LPS features with acoustic context. This work improves
the framework to predict the clean LPS and noise LPS features simultaneously
in the output layer [10]. We believe the estimation of noise LPS will act as a
regularization to the clean part. As for the DNN training, we first perform pre-
training of a deep generative model with the LPS features of noisy speech by a
stacking of multiple RBMs. Then the back-propagation with the MMSE-based
objective function between the LPS features of the estimated and the reference
(clean speech and noise) is adopted to train the DNN. Another two techniques,
namely dropout training and noise-aware training (NAT) can be found in [19]. A
stochastic gradient descent algorithm is performed in minibatches with multiple
epochs to improve learning convergence as follows,

Er =
1

N
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the vectors of estimated and reference noise features. β is used to tune the



contribution from the speech part and the noise part. As the noise variance
is large and not stable, we mainly focus on the speech part. The second term
of Eq.(1) can be considered as a regularization term, which leads to a better
generalization capacity for estimating the clean speech. Another benefit from
the dual outputs DNN is the estimation of noise can be used in the following
ideal ratio mask (IRM) based post-processing module:

ÎRMn(d) =

√√√√ exp(X̂
clean

n (d))

exp(X̂
clean

n (d)) + exp(X̂
noise

n (d))
(2)

Different from [6] where the IRM is directly predicted by a well trained IRM-
DNN, the IRM here is estimated by the DNN output for each dimension d, which
is used for post-processing as follows

X̂n(d) =


Yn(d) ÎRMn(d) > γ

X̂
clean

n (d) ÎRMn(d) < λ

(X̂
clean

n (d) + Yn(d))/2 otherwise

(3)

where, X̂n and Yn are the vectors of final enhanced speech and noisy speech,
respectively. γ and λ are the thresholds to improve the overall performance.

4 Experimental Results and Analysis

4.1 Experimental Setup

In [9], 104 noise types were used as the noise signals for synthesizing the noisy
speech training samples. In this study, we add another home-made 200 hours
real-world noises 4 to handle a wide range of additive noise in the real-world
situations. 100 hours clean Mandarin data collected by iFlytek were added with
the above-mentioned background noises and 5 levels of SNR, at 20dB, 15dB,
10dB, 5dB and 0dB, to build a multi-condition stereo training set. The whole
100-hour training data was used for baseline system and VAD model training.
As for VAD training, the frame-level reference labels of each noisy utterance
were generated by conventional VAD tool on the corresponding clean utterance.
Then, we use the speech segments of the multi-condition training set (about 60
hours) for CSE model training. The training method is same with the baseline
enhancement subsystem. The final joint DNN based SE system designed for
low SNR environments was obtained under the framework illustrated in Fig. 2,
denoted as JDNN-SE. Another 200 clean utterances covering 20 males and 17
females were used to construct the test set for each combination of noise types
(NOISEX-92 corpus: babble and factory, real-recorded: mess hall and Karaoke

4 The noise types are vehicle: bus, train, plane and car; exhibition hall; meeting room;
office; emporium; family living room; factory; bus station; mess hall; KTV; musical
instruments.



Table 1. PESQ and STOI comparisons of four DNN-based SE systems averaged on
the test sets for the four unseen noise conditions at different SNRs.

PESQ STOI
Noise Type SNR Noisy Baseline JDNN-

SE
Oracle Noisy Baseline JDNN-

SE
Oracle

5dB 1.709 2.043 2.248 2.279 0.778 0.795 0.840 0.856
Babble 0dB 1.341 1.307 1.732 1.802 0.678 0.603 0.717 0.758

-5dB 1.057 0.793 1.126 1.174 0.567 0.396 0.557 0.606

5dB 1.594 1.990 2.300 2.353 0.778 0.761 0.839 0.861
Factory 0dB 1.233 1.500 1.905 1.951 0.679 0.606 0.745 0.772

-5dB 0.950 1.030 1.332 1.332 0.571 0.463 0.601 0.627

5dB 1.655 2.048 2.286 2.280 0.787 0.809 0.854 0.863
Mess Hall 0dB 1.311 1.506 1.895 1.894 0.689 0.664 0.761 0.778

-5dB 1.057 0.927 1.272 1.291 0.579 0.478 0.609 0.633

5dB 1.885 2.347 2.416 2.403 0.829 0.874 0.885 0.891
KTV 0dB 1.526 1.939 2.077 2.066 0.754 0.796 0.824 0.835

-5dB 1.198 1.394 1.595 1.619 0.665 0.672 0.726 0.741

Television (KTV)) and SNR levels (-5dB, 0dB, 5dB). All the noises, speakers
and texts in test set are different from those in the training set.

For both the regression DNN and classification DNN, sigmoid activation
function was used and the number of units in each hidden layer was set to 2048
by default. The mini-batch size N was set to 128. The regularization weighting
coefficient β in Eq.(1) was 0.8. γ and λ in Eq.(3) were set to 0.75 and 0.1,
respectively. The other tuning parameters of DNN were set according to [19,
20]. The half-window size τ for VAD smoothing was 5. The performance was
evaluated using two measures, namely short-time objective intelligibility (STOI)
[21] and perceptual evaluation of speech quality (PESQ) [22] measures.

4.2 Results and Analysis

Table 1 gives a performance comparison of different DNN-based SE systems
for the four unseen noise environments with different SNRs averaged on the
test set. Noisy means the original noisy speech without any processing. The
difference between Oracle and JDNN-SE is whether they use clean reference
VAD annotations in the enhancement stage. Compared with the noisy speech
results, baseline system showed that the speech quality is very poor at SNR =
-5dB, and the performance was not satisfactory at SNR = 0dB. Our proposed
JDNN-SE system overwhelmed baseline at all SNRs, especially at low SNRs,
e.g., 0.333 PESQ improvement and 0.161 STOI improvement at SNR = -5dB in
babble noise environment. Finally, the gap between JDNN-SE and Oracle was
small compared with that between Baseline and JDNN-SE. This implied that
our DNN-based VAD was effective and robust to noise types. Fig. 3 presented
spectrograms of an utterance. The improved DNN could enhance the speech



Fig. 3. Four spectrograms of an utterance corrupted by babble noise at 0dB SNR: JDNN-
SE system (upper left, PESQ = 2.115), DNN baseline (upper right, PESQ = 1.585),
noisy (bottom left, PESQ = 1.602) and clean speech (bottom right, PESQ = 4.5).

with less speech distortion, especially at the noisy speech segments which are
similar to noise. More results can be found at the demo website 5.

5 Conclusion

We have proposed an improved speech enhancement framework to increase
speech intelligibility in low SNR environments. In this method, speech and non-
speech frames are presented to specific subsystem separately. With frame-level
VAD prediction and corresponding soft decision fusion, we obtain the final en-
hanced speech. The proposed joint DNN based SE system can yield a significant
improvement when compared with our baseline, especially in low SNR condi-
tions. As for future work, we will focus on designing multiple DNNs with even
more detailed resolution at various frame-level SNRs.
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