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Abstract—Multimodal emotion recognition is a challenging
task in emotion computing as it is quite difficult to extract
discriminative features to identify the subtle differences in
human emotions with abstract concept and multiple expressions.
Moreover, how to fully utilize both audio and visual information
is still an open problem. In this paper, we propose a novel
multimodal fusion attention network for audio-visual emotion
recognition based on adaptive and multi-level factorized bilinear
pooling (FBP). First, for the audio stream, a fully convolutional
network (FCN) equipped with 1-D attention mechanism and
local response normalization is designed for speech emotion
recognition. Next, a global FBP (G-FBP) approach is presented
to perform audio-visual information fusion by integrating self-
attention based video stream with the proposed audio stream. To
improve G-FBP, an adaptive strategy (AG-FBP) to dynamically
calculate the fusion weight of two modalities is devised based
on the emotion-related representation vectors from the attention
mechanism of respective modalities. Finally, to fully utilize the
local emotion information, adaptive and multi-level FBP (AM-
FBP) is introduced by combining both global-trunk and intra-
trunk data in one recording on top of AG-FBP. Tested on the
IEMOCAP corpus for speech emotion recognition with only
audio stream, the new FCN method outperforms the state-of-
the-art results with an accuracy of 71.40%. Moreover, validated
on the AFEW database of EmotiW2019 sub-challenge and the
IEMOCAP corpus for audio-visual emotion recognition, the pro-
posed AM-FBP approach achieves the best accuracy of 63.09%
and 75.49% respectively on the test set .

Index Terms—Factorized bilinear pooling, local response nor-
malization, multi-level and adaptive fusion, attention network,
multimodal emotion recognition.

I. INTRODUCTION

DUE to the rapid development of intelligent technology
and the wide applications in human-computer interac-

tion, it is of great significance to realize scientific emotion
recognition [1]. For example, doctors utilize emotion recogni-
tion technology to do research on Parkinson’s disease [2], [3].
In the field of service robots, effective emotion recognition
can bring more comfortable interaction experience to users.
As for the areas of computing advertising and entertainment,
detecting consumers’ emotions helps enterprises provide better
services [4], [5]. Accordingly, automatic multimodal emotion
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recognition, has attracted more and more attention in real-life
cases [6], [7], which is also the focus of this study.

Some progress of multimodal emotion recognition has been
made by combining different modalities such as speech, face,
body gesture, and brain signals, etc [3], [8], [9]. Audio and
video, more specifically, the speech and facial expressions
are two kinds of most powerful, natural and universal sig-
nals for human beings to convey their emotional states and
intentions [10]. For speech emotion recognition (SER) using
only audio stream, distinguishing acoustic features [11], [12]
are often extracted from original raw speech signals, followed
by different classifiers [13], [14]. For video-based emotion
recognition, video frame or image preprocessing [15] is nec-
essary correspondingly, referring to face detection, alignment
and face key point detection and so on. Then image feature
vectors are also fed into a classifier for prediction [16]. As
for integrating audio and video modalities, it usually involves
at the feature, model and decision levels. In feature-level
fusion, features extracted from each of the two modalities
are concatenated as one vector for emotion classification [17],
which does not take into account the differences in modal-
specific emotional characteristics. Moreover, this strategy is
difficult to model the time synchronization between audio and
visual modalities. For decision-level fusion, the posterior prob-
abilities of the two individual classifiers are combined, e.g.,
using linear weighted combination, support vector machine
(SVM), etc. [18] to obtain the final recognition results. This
technique fully considers the differences of audio and visual
features, but it is weak in modeling the interactions between
the two modalities. As a compromise between feature-level
and decision-level fusions, model-level fusion has also been
used for audio-visual emotion recognition (AVER). A tripled
hidden Markov model (THMM) was introduced to perform
the recognition which allowed the state asynchrony of the
audio and visual observation sequences while preserving their
natural correlation over time [19]. In [20], multi-stream hidden
Markov model (MFHMM) was proposed which adopted a
variety of learning methods to achieve a robust multi-stream
fusion result according to the maximum entropy principle.

With recent developments of deep learning in the multi-
modal field, recurrent neural network (RNN) and 3D convolu-
tional networks (C3D) were used to solve the problem of video
classification in [21]. It encodes appearance and motion infor-
mation in different ways and combines them into a late-fusion
manner. Researchers have also investigated how to extract
more representative features [22], [23] as expression forms of
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Fig. 1: An overall architecture of the proposed multimodal attention and fusion network based on adaptive and multi-level
factorized bilinear pooling for audio-visual emotion recognition. The detected face and spectrogram are initially encoded by
video encoder and audio encoder respectively. The outputs are subsequently weighted by 1-D attention. Then AG-FBP and
M-FBP are employed to fuse audio-visual information based on whole sentence and segmentation respectively. FBP module
is shown in Fig. 2. The outputs are finally concatenated and fed into classifier to determine the emotion class.

audio and video are often quite different. Deep learning shows
better performances than other traditional machine learning
algorithms in this kind of fusion. [24] proposed to bridge
the emotional gap by using a hybrid deep model, which first
produces audio-visual segment features with convolutional
neural networks (CNNs) and 3D-CNN, then fuses them in
deep belief networks (DBNs). In [25], a concatenation of
different modalities was performed after an encoder which
yielded significant improvements. In our recent work [26], we
introduced global-trunk based factorized bilinear pooling (G-
FBP) to integrate the audio and visual features, achieving a
state-of-the-art performance.

Audio-visual emotion recognition has been investigated for
quite a few years and considered as a comparatively hot topic
in the field of affective computing. Nonetheless, it remains a
challenging problem in which there are still many uncontrolled
factors for data acquisition. The varying conditions for audio-
visual emotion data include indoor and outdoor scenarios,
environmental noises, lighting situations, motion blurs, oc-
clusions and pose changes, etc [27]. To address these issues,
the EmotiW [7] challenges have been held successfully since
2013. The winning teams [23], [28]–[30] have proposed sever-
al advanced techniques for AVER and achieved better results
every year, which further investigated on how to effectively
model different modalities for information fusion. In this study,
we comprehensively extend our previous G-FBP approach [26]
and propose an attention network for multimodal fusion for
AVER based on adaptive and multi-level FBP as shown in
Fig. 1. The new contributions can be summarized below:

• A fully convolutional network (FCN) based 1-D attention
network is designed for speech emotion recognition by
utilizing local response normalization (LRN).

• An adaptive G-FBP (AG-FBP) approach is presented to
automatically calculate the importance weights of audio
and video modalities when using G-FBP fusion.

• On top of AG-FBP, adaptive and multi-level FBP (AM-
FBP) is introduced to fully utilize the local emotion
information by additionally using intra-trunk data.

• We achieve the best accuracy of 63.09% on the test
set of EmotiW2019 sub-challenge [7] and 75.49% on
the test set of IEMOCAP corpus, and demonstrate the
effectiveness of the proposed approach by visualizing the
changes of attention weights and network embedding.

The rest of this paper is organized as follows. In Section II,
we introduce the related work. In Section III, we elaborate
on the proposed fusion strategy. In Section IV, we present
our experimental results and analyses. Finally, we draw our
conclusions in Section V.

II. RELATED WORK

A. Audio-based emotion recognition

In the process of human interaction, speech is the most
direct communication channel. People can often clearly feel
the changes in emotion through speech, such as human voice
quality, rhythm, as well as prosodic expressions in pitch and
energy contours. In order to recognize speakers’ emotional
states, distinguishing paralinguistic features, which do not
depend on the the lexical content, need to be extracted
from speech [31]. Many types of acoustic features have been
used for speech emotion recognition, including continuous,
qualitative, and spectral features [32], [33].

In general, the original raw speech signals are first seg-
mented into overlapped frames. Then various statistical func-
tions (e.g. mean, max, linear regression coefficients, etc.) are
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Fig. 2: Factorized bilinear pooling (FBP) module.

utilized to obtain frame-level features. The outputs are then
concatenated as a feature vector to represent the whole audio
recording, followed with the classifiers [12]. As deep learning
came to prominence, deep neural networks (DNNs) were
utilized on top of the traditional utterance-level features and
achieved a significant accuracy improvement comparing with
conventional classifiers. [34] investigated a number of DNN ar-
chitectures and interleaved time-delay neural network and long
short term memory (TDNN-LSTM) with time-restricted self-
attention, achieving a good performance gain. [5] presented a
new implementation of emotion recognition using spectrogram
features and classifiers based on CNNs and RNNs. In [11], a 3-
D attention-based convolution RNN (ACRNN) was proposed.
An attention pooling based representation learning method
was introduced in [14]. They all processed the whole speech
utterance into small segments and used attention mechanisms
for speech emotion recognition. In [35], a triplet loss was used
to reinforce emotional clustering based on LSTM and explore
three different strategies to handle variable-length inputs for
SER. Recently, more research efforts focused on auxiliary
information and innovative ways to assist emotion recognition.
For example, transcripts, language cues and cross-culture
information were adopted in emotion recognition [25], [36],
[37]. In [38], conditioned data augmentation using generative
adversarial networks (GANs) was explored to address the
problem of data imbalance in SER tasks. Furthermore, [39]
used multi-task learning with attention mechanism to share
useful information in SER scenarios. Also, there were no
agreements on appropriate features for SER. In [40] repre-
sentations were learnt from raw speech and in [41] phone
posteriors in raw speech waveform were employed to improve
emotion identification.

B. Video-based emotion recognition

In interpersonal interactions, people can enhance commu-
nication effectiveness by controlling their facial expressions,
an important way to spread human emotional information. It
refers to all kinds of emotions expressed through the changes
of muscle movements in face, eye and mouth. Among them,
the muscle groups near the eyes and mouth are shown to

be the most prominent [42]. In recent years, research on
visual recognition paid more attentions to feature learning via
neural networks. [43] utilized CNNs for feature extraction of
facial expression recognition (FER). The winners in the AVER
task of EmotiW Challenge used facial features extracted from
deep CNNs trained on large face datasets [29], [44]. In [15],
spatial-temporal techniques aimed to model the temporal or
motion information in videos. Deep C3D was a widely-used
spatial-temporal approach to video-based FER [45]. In [46],
geometry-based FER was proposed to boost the accuracy by
using a multi-kernel framework to combine features. Effective
emotion recognition was implemented in [47] by learning the
proposed 2D landmark information on a CNN and a LSTM-
based network. In [48] and [49] emotion expressions were
recognized by using the differences (or relations) between
neutral and expressive faces. Finally, continuous emotion
recognition in videos was implemented in [50] by fusing facial
expression, head pose and eye gaze.

C. Audio-visual based emotion recognition

Audio-visual based emotion recognition is to integrate audio
and visual modalities with different statistical properties by
using fusion strategies at feature, decision and model levels.
Feature-level fusion is also called early fusion. A substantial
number of previous works [51], [52] have demonstrated the
performances of feature-level fusion on the AVER tasks.
However, because it merged audio and visual features in
a straightforward way, feature-level fusion could not model
the complicated relationships, e.g., the differences on time
scales and metric levels, between the two modalities [24].
Decision-level fusion has also been adopted by almost all the
winning systems of the EmotiW challenges [22], [29]. Note
that, it is usually implemented by combining the individual
classification scores and therefore not able to well capture
the mutual correlation among different modalities, as these
modalities are assumed to be independent. In [53], model-
level fusion was performed by fusing audio and visual streams
of hidden Markov models (HMMs), which facilitated the
building of an optimal connection among multiple streams
according to the maximum entropy principle and the maximum
mutual information criterion. To improve emotion recognition
performances, the mouth area was further divided into several
subregions, as elaborated in [54], to extract LBP-TOP features
from each subregion and concatenate the respective features.
In [30] a multiple attention fusion network (MAFN) was pro-
posed by modeling human emotion recognition mechanisms.

III. PROPOSED ATTENTION AND FUSION STRATEGY

The proposed multimodal attention and fusion network
based on adaptive and multi-level FBP for audio-visual e-
motion recognition is shown in Fig. 1, in which all symbols
and numbers will be introduced in the following subsections.
Most of audio-visual emotion datasets are annotated at the
sentence level [55]–[57]. The proposed framework maps a
temporal feature sequence to a single label, which mainly
consists of three important parts: audio and video encoder,
attention, fusion and classifier.
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Audio and video encoder: in our study, for audio encoder,
a FCN with local response normalization (LRN) [58] is
adopted to encode the speech spectrogram into a high-level
representation. For video encoder used on AFEW database,
each detected face is encoded into a vector through a pre-
trained model [43], which has been proved to be effective,
while on IEMOCAP database, we use the same network as
audio stream by utilizing the facial marker information [59].

Attention: 1-D attention-based decoder is employed to
obtain information more related to emotion after audio encoder
and video encoder respectively.

Fusion and classifier: as for audio-visual fusion, an adap-
tive and multi-level FBP approach is presented. Based on the
fusion vector, the output posterior probabilities of emotion
classes can be generated by using a fully-connected (FC) layer
followed by a softmax layer. We will elaborate on each module
in the following section.

A. Audio stream
The audio stream directly handles the speech spectrogram

by using stacked convolutional layers followed by an attention
block. Without handcrafted feature extraction, learning based
on CNN has been widely used for SER [60], [61]. Inspired
by AlexNet [58], we used a FCN based audio encoder as
illustrated in Fig. 3. All the convolutional layers are followed
by a ReLU activation function and LRN. The dimensions of
frequency domain and time domain are f and t respectively.

The main principle of LRN is to suppress neighboring
neurons by imitating biological active neurons, aiming at

improving the accuracy of deep network training. In [58], the
LRN layer was proposed to create a competition mechanism
for the activity of local neurons, which makes the larger
response pairs enhanced, and suppresses other neurons with
smaller feedback, thus improving the generalization ability
of the model. Suppose the activity of a neuron computed by
applying kernel i at position (x, y) is denoted by bix,y . Then by
applying the ReLU [62] nonlinearity, the response-normalized
activity b̂ix,y is expressed as:

b̂ix,y = bix,y

/kL + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

(bjx,y)
2

β

(1)

where the sum runs over n adjacent kernel maps at the same
spatial position, and N is the total number of kernels in the
layer [58]. The constants kL, n, α, and β are hyperparame-
ters. We applied this normalization after applying the ReLU
nonlinearity in certain layers.

To align audio with video in time, here we pool the size
of the frequency domain to 1. Accordingly the output of the
audio encoder is a 2-D array T × C by reshaping, where T
and C represent the number of time frames and channels,
respectively. We consider the output as a variable-length grid
of T elements. Each element is a C-dim (C=256) vector
corresponding to a region of speech spectrogram, represented
as ai. Therefore, the whole audio utterance is now denoted
as:

A = {a1, · · · ,aT } ,ai ∈ RC . (2)

Intuitively, not all time-frequency units in set A contribute
equally to the emotion state of the whole utterance. We intro-
duce self-attention to extract the elements that are important to
the emotion of the utterance, as shown in Fig. 4. By calculating
these weights in the time dimension, elements in the set A
are weighted and summed. We use the following formulae to
realize this idea:

γai = u>a tanh(Waai + ba) (3)

γ̄ai =
exp(λaγ

a
i )∑T

k=1 exp(λaγak)
(4)

eia = γ̄ai ai (5)

ega =

T∑
i=1

eia (6)

First, ai is fed to a fully connected layer with a parameter
set {Wa, ba} followed by a tanh function to obtain a new
representation. Then we measure the importance weight γai by
the inner product between the new representation of ai and
a learnable vector ua. After that, the normalized importance
weight γ̄ai is calculated using softmax with the temperature
parameter λa to control the uniformity of the importance
weights [63]. If λa = 0, the weight obtained by attention is
the same, which means all the time-frequency units have the
same importance to the utterance audio vector ega. Finally,
eia is computed with importance weights using the set A.
By summing eia over i, ega represents the audio-based global
feature vector for emotion.
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B. Video stream

As shown in Fig. 1, for the video stream, the face frames are
first detected and aligned using a face detector [64]. Then due
to the limited amount of training data in the AVER tasks, such
as the EmotiW challenge data set, a pre-trained video encoder
network on FER2013 [65] is adopted. The size of the detected
faces is 224×224, corresponding to the height and width. If a
face is not found on the frame, the entire frame is resampled
and passed to the network because the network still could
capture some contextual cues and this can also ensure the
synchronization of audio and video in time. In [43], four kinds
of deep convolutional neural networks, e.g., VGG-Face, are
adopted to extract emotion-related features from a face image
with a 3-channel input (R, G, B). Moreover, three proprietary
state-of-the-art face recognition networks, notated as FR-Net-
A, FR-Net-B, FR-Net-C, have also been investigated. In this
study, FR-Net-B network is chosen as our video encoder as it
achieved a high accuracy as demonstrated in [26], [43].

For each face frame, a 1024-dim (D1) feature vector of the
video encoder output is generated from the last fully connected
layer. Therefore the visual feature sequence of an L-frame
video can be represented as:

V = {v1, · · · ,vL},vi ∈ RD1 (7)

where vi denotes the facial feature vector of i-th frame.
Similar to the audio stream, we adopt the self-attention mech-
anism to calculate the weight for each frame, as shown in
Fig. 4. Before entering into the attention block, the dimension
reduction is conducted to decrease computational complexity
and to relieve over-fitting. Here we use a convolution layer as it
has fewer parameters than full connection layer. The formulae
are listed below:

γvi = u>v tanh(Conv(vi)) (8)

γ̄vi =
exp(λvγ

v
i )∑L

k=1 exp(λvγvk)
(9)

eiv = γ̄vi Conv(vi) (10)

egv =

L∑
i=1

eiv (11)

where Conv represents the convolution operation to yield a
new low-dimension representation of the i-th frame. Specif-
ically, we first extend the input vector vi to a matrix by
reshaping. The convolution kernel size is 4×1 and the stride is
4 respectively. Then the dimension of Conv output is reduced
to D = 256. Finally, eiv is computed with importance weights
using the set V . By summing eiv over i, egv represents the
video-based global feature vector for emotion.

C. Global factorized bilinear pooling (G-FBP)

Bilinear pooling is introduced in [66] and initially used for
feature fusion. Then the fused vectors are used for classifi-
cation. Although improving the system performance, it also
brings a huge amount of computation. Some researches focus-
ing on reducing computational cost have achieved considerable
results [67], [68]. According to [69], for the audio feature
vector, ega ∈ RC , and video feature vector, egv ∈ RD, the
bilinear pooling for the output, Ij ∈ R, is defined as follows:

Ij = ega
>Λje

g
v (12)

where Λj ∈ RC×D is the j-th projection matrix. By learning a
set of projection matrices {Λj |j = 1, ..., O}, we can obtain an
O-dimensional audio-visual fusion vector I = [I1, · · · , IO].

According to [69], [70], the projection matrix Λj in Eq.(12)
can be factorized into two low-rank matrices:

Ij = ega
>PjQj

>egv

=
K∑
d=1

ega
>pdjq

d
j
>
egv

= 1
>(Pj

>ega ◦ Qj
>egv)

(13)

where K is the latent dimension of the factorized matri-
ces in Eq.(13), Pj = [p1

j , · · · ,pKj ] ∈ RC×K and Qj =
[q1
j , · · · , qKj ] ∈ RD×K , ◦ represents the element-wise mul-

tiplication of two vectors, and 1 ∈ RK is an all-1 vector.
The advantage is that the low rank matrices Pj and Qj are
used to approximate Λj , so the operation is simplified and
parameter quantity can be reduced. When we want the output
to be a vector, it just need to expand the matrix Pj and Qj .
Specifically, to obtain the output feature vector I by Eq.(14)
below, two 3-D tensors, P = [P1, · · · ,PO] ∈ RC×K×O and
Q = [Q1, · · · ,QO] ∈ RD×K×O, need to be learned. Note
P and Q can be reformulated as 2-D matrices, P̃ ∈ RC×KO
and Q̃ ∈ RD×KO, respectively, by using a reshape operation.
Accordingly, we have:

I = SumPooling(P̃>ega ◦ Q̃>egv,KG) (14)

where P̃>ega and Q̃>egv are implemented by feeding ega and
egv to fully connected layers respectively, and the function
SumPooling(x,KG) applies sum pooling within a series of
non-overlapped windows to x. We indicate I in Eq.(14)
as global factorized bilinear pooling (G-FBP). The G-FBP
module is shown in Fig. 2.

After that, since the magnitude of the output varies dramat-
ically due to the introduced element-wise multiplication, the
L2-normalization is used after G-FBP to normalize the energy
of I to 1.
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D. Adaptive global factorized bilinear pooling (AG-FBP)

Through our analysis of the experimental results on the
EmotiW database (see Section IV for detail), we find that
the influence of audio and video streams on the emotional
state of each specific recording is different. For example,
it tends to classify audio streams into “Angry” and “Fear”
emotions while video streams are often classified as “Disgust”,
“Happy”, “Sad” or “Surprise” emotions. We therefore propose
an adaptive strategy for G-FBP (denoted as AG-FBP) audio-
visual information fusion. In this study, we adopt the encoder
vectors before audio and video fusion to dynamically calculate
the two coefficients:

µ =
‖ega‖

‖ega‖+ ‖egv‖
(15)

η =
‖egv‖

‖ega‖+ ‖egv‖
(16)

where µ and η are the adaptive factor coefficients of the audio
and video streams respectively and computed based on the
current sample. ‖·‖ represents the L2-norm operation.

Compared with Eq.(12), the new formulation is shown
below:

IA
j = (µega)>Λj(ηe

g
v) (17)

Correspondingly, the formulation of G-FBP in Eq.(14) is
modified as:

IA = SumPooling(P̃>(µega) ◦ Q̃>(ηegv),KG) (18)

In comparison to G-FBP, no additional learning parameters
are required in AG-FBP. µ and η are adaptively determined by
audio-based and video-based global feature vectors for emo-
tion, which are learned in the attention module and can well
represent the contribution and correlation of each modality to
the current emotion state.

E. Multi-Level factorized bilinear pooling (M-FBP)

Since the change of emotional state is usually continuous,
there is no good characterization of emotional state dura-
tions. Some previous studies showed that 250ms was the
suggested minimum segment length required for identifying
emotion [71], [72]. Speech segments have also been inves-
tigated for speech emotion recognition [5], [11], [24], [73].
Emotions change over time, and the audio-visual fusion based
on segment level may be more effective. Motivated by this,
we proposed a multi-level FBP (M-FBP) approach for audio-
visual emotion recognition by using intra-trunk data of one
recording. As shown in Section III-C, G-FBP only extracts a
global audio/video vector ega/e

g
v for FBP fusion. In addition to

G-FBP, M-FBP performs a high-resolution fusion at a segment
level, which can fully integrate audio and visual information.

To implement M-FBP, on one hand, the stride of the pooling
layer of the audio stream can be modified to adjust the length
of intra-trunk audio data, namely ea = [e1a, · · · , eHa ]. H is the
number of intra-trunks and determined by the time lengths of
the sample (L) and one intra-trunk (T ), and L = H×T . On the
other hand, the frame rate of the video stream is 40ms while

the frame shift of the audio stream is 10ms. To synchronize
the audio and video streams, we change the time length of the
video stream to be the same as that of the audio stream through
the reshape and sum operations, namely ev = [e1v, · · · , eHv ].
As the length of each video recording is different, we adopt
zero-padding and use masking at the end as in [12]. Finally,
we formulate intra-trunk based FBP as follows:

IM =

H∑
h=1

SumPooling
(
P̃>h eha ◦ Q̃>h e

h
v ,KM

)
(19)

where P̃h ∈ RC×KO and Q̃h ∈ RD×KO are two 3-D tensors
for the h-th intra-trunk data. Different from G-FBP, the L2-
normalization is used after M-FBP to normalize the energy of
IM to 1.

Note that we can also combine AG-FBP and M-FBP to per-
form adaptive and multi-level FBP (AM-FBP). Accordingly,
both IA of global-trunk data and IM of intra-trunk data are
concatenated as the fusion vector for the AM-FBP system.
For all these audio-visual systems, we update the network
parameters using the cross-entropy criterion.

IV. EXPERIMENTS AND RESULT ANALYSES

To verify the effectiveness of our proposed approach, we
validate audio-visual emotion recognition network on IEMO-
CAP database [56] and AFEW8.0 database [57] which was
used in the audio-visual sub-challenge of EmotiW2019.

The IEMOCAP corpus comprises five sessions, each of
which includes labeled emotional speech utterances from
recordings of dialogs between two actors. There is no actor
overlapping between these sessions. We utilize the database
in the same way with [12]. Four emotional categories are
adopted, namely happy, sad, angry and neutral. By only using
improvised data instead of acting, we implement a 5-fold
cross-validation. The spectrogram extraction process is con-
sistent with [12]. First, a sequence of overlapping Hamming
windows are applied to the speech waveform, with 10 msec
window shift, and 40 msec window size. Then, we calculate a
discrete Fourier transform (DFT) of length 800 for each frame.
Finally, the 200-dimensional low-frequency part of the spectro-
gram is used as the input. In addition, the IEMOCAP database
contains detailed facial marker information from speakers. The
Mocap data (facial expression) contains a column of tuples.
The sample rate of the marker capture system is 120 frames
per second. For details, please refer to [56]. The marker point
coordinates are used as features for the training of the video-
based network. Since we use the facial marker information as
the input, 1D-ABFCN which is consistent with audio encoder
is also employed as the video encoder. The input channel is 3
and the pool size of the two is different.

The AFEW database is collected from films and TV series to
simulate the real world, including seven emotional categories:
angry, disgust, fear, happy, neutral, sad, surprise. There are
773 videos and corresponding audios in the training set, 383
in the validation set, and 653 in the test set. We carried out
experiments by using the FR-Net-B feature, which has been
proved effective in [26]. For the audio feature, we also used
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Fig. 5: 2D-ABFCN and 1D-ABFCN learning curves, where
1D-ABFCN (No LRN) means that only the LRN layer is re-
moved compared with 1D-ABFCN.

200-dimensional spectrogram in the same way as IEMOCAP
database.

For the audio system and the video system, the proposed
architectures are all implemented using TensorFlow 1.2.1 and
are trained on two GeForce GTX 1080 GPUs for 100 epochs.
The batch size is 32. We use Adam optimizer with λa = 0.3,
λv = 0.5 for the IEMOCAP database, λa = 0.3 and λv = 1 for
the AFEW database. For the audio system, the learning rate is
0.0001. For the video system, the learning rate is 0.0002 for
IEMOCAP database and 0.0001 for AFEW database.

For the audio-visual fusion system, the proposed methods
are implemented using TensorFlow 1.2.1 and are trained on
two GeForce GTX 1080 GPUs for 200 epochs. The batch size
is 64. We use Adam optimizer with a learning rate of 0.0001.
λa = 0.3 and λv = 1. We train the whole network with KG = 4
and KM = 2. The value of O is 128 in G-FBP system and 192
in M-FBP system. H = 6 for the AFEW database and H = 19
for the IEMOCAP database. The dropout parameter is set to
0.3 for alleviating the over-fitting problem. The parameters of
LRN can refer to [58].

For the selection of λa and λv , we carry out experiments
with λa and λv from 0 to 1 with a step of 0.1, and determine
the value corresponding to the optimal result on the validation
set. And for the selection of KG and KM , we take 2 as the
basic step to train the proposed networks. Finally, KG and
KM corresponding to the best result on the validation set are
determined.

A. Audio and video based emotion recognition

TABLE I: Classification accuracy comparison of different
audio network architectures and parameter initializations on

IEMOCAP test set.

Systems Initialization Accuracy

Att.+BLSTM+FCN [74] Random 68.10%
CNN+LSTM [5] Random 68.80%

Fusion TACN [75] Random 69.75%
2D-ABFCN [12] Pre-trained 70.40%

1D-ABFCN (No LRN) Random 70.79%
1D-ABFCN Random 71.40%

In order to verify the effectiveness of the proposed audio
stream in emotion recognition, we designed our experiments
using a 5-fold cross-validation on the IEMOCAP corpus. 1D-
ABFCN (No LRN) means that only the LRN layer is removed
compared with 1D-ABFCN. The results are listed in Table I.
By using the random initialization, our approach yielded an
absolute accuracy gain of 2.60% over the CNN+LSTM based
approach. Even in an unfair comparison to 2D-ABFCN with
a pre-trained network using ImageNet dataset, the proposed
1D-ABFCN achieved an improvement of 1% accuracy on
the test set. Please note that 1D-ABFCN employed the same
configuration and hyperparameter setting as 2D-ABFCN. The
effectiveness of this initialization method based on ImageNet
dataset on speech emotion recognition has been investigated
in [12], and that really gets a higher accuracy than random
initialization. Compared with the Fusion TACN [75], the per-
formance of our proposed method is also improved by 1.65%.
After using LRN layer, the system accuracy is increased by
0.61%. Furthermore, we make a comparison of the learning
curves between 2D-ABFCN, 1D-ABFCN (No LRN) and 1D-
ABFCN on the validation set in Fig. 5. After 50 epochs, the
learning rate was halved. By using LRN in 1D-ABFCN, the
generalization ability of the model can be enhanced, and the
convergence can be accelerated. Accordingly, our approach
can achieve a smaller loss which leads to a higher accuracy.

TABLE II: Classification accuracy comparison of different
systems on AFEW validation set.

Systems Accuracy

EmotiW2019 baseline [7] 38.81%
Audio system 34.99%
Video system 52.07%

G-FBP 61.10%

B. Audio-visual emotion recognition with G-FBP

On top of the 1D-ABFCN based audio stream, we next
evaluate audio-visual fusion using G-FBP. We show in Table II
accuracies obtained with different systems on the AFEW val-
idation set. Compared with the EmotiW2019 baseline audio-
visual system [7], our proposed G-FBP approach significantly
improved the accuracy from 38.81% to 61.10%. As an ablation
study of different modalities, our audio system in Section III-A
and video system in Section III-A yield the emotion recog-
nition accuracy of 34.99% and 52.07%, respectively. Clearly,
G-FBP fusion is quite effective with an accuracy gain of about
9% over the single video modality.

To better demonstrate the effect of G-FBP fusion via the
attention mechanism, we plot the attention weights of each
frame for two randomly picked examples from the validation
set in Fig. 6. For each curve, the values represent the video
attention importance of each frame, the higher the better, in
the video-only and audio-visual G-FBP systems.

For the example in Fig. 6(a), we show that the video
attention can well align with the audio and video frames.
After 14 frames, no face was detected in the video, where
the video frame could be completely regarded as noise for
emotion recognition. Accordingly, the corresponding attention
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Fig. 6: Attention analysis of two randomly selected examples. For each, the curves show the video attention weights along
frames in the video and the audio-visual G-FBP systems, with corresponding audio spectrograms and partial video frames.

weights in the video system were all zeros. However, in the
audio-visual fusion system, considering that the first few audio
frames contained women’s voice of fear and the last few
audio frames contained machine noise, the weight of the video
stream changed accordingly. Specifically, the weight of the
first seven frames increases due to the enhanced emotion with
the audio modality while the weight after 14 frames slightly
fluctuated due to the machine noise, which demonstrated the
good coupling between audio and video modalities. The video
system classified this example as “Surprise” by inputting facial
features, and it was correctly classified as “Fear” after audio-
visual fusion.

For the example in Fig. 6(b), we illustrate the complemen-
tarity between audio and video modalities using the video
attention weight. In the first few frames, the woman was facing
sideways, and gradually turned to the front. The corresponding
attention weight was also increasing in the video system.
After about 56 frames, the woman smiled bitterly, leading
to much larger weights. The video system classified this
example as “Disgust” while the ground truth is “Sad”. This

TABLE III: The accuracy on the AFEW validation set for
single-modality emotion classification.

Modality Angry Disgust Fear Happy Sad Surprise Neutral
Audio 81.25% 0.00% 34.78% 14.29% 21.31% 0.00% 66.67%
Video 59.38% 25.00% 10.87% 80.95% 55.74% 39.13% 60.32%

classification error might be generated due to the wry smile
of the woman. Moreover, this example was also misclassified
as “Neutral” by the audio system. This could be explained by
the spectrogram that only starting and ending periods included
the weak emotion information of a little sob. However, by
the influence of the audio stream, the attention weight of the
video stream in the G-FBP fusion system slowly paid attention
to the 14-62 frames with a slightly sad face. At the same
time, it also reduced the weights during the period of a wry
smile. Although both audio system and video system generated
wrong emotion classes by partial or weak emotion information,
correct classification could be still achieved through the G-FBP
system by deep fusion of both audio and video information.
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Fig. 7: Adaption factors of the audio modality in AG-FBP.

TABLE IV: Classification accuracy and p-value of our
improved FBP approaches on the AFEW validation set.

Systems Accuracy p-value

G-FBP 61.10% -
AG-FBP 62.40% 0.004
M-FBP 63.18% 0.002

AM-FBP 64.17% 0.001

C. Audio-visual emotion recognition with AG-FBP

As listed in Table III, we analyze the single-modality
classification results of audio and video systems on the AFEW
validation set. The numbers in the table represent the accuracy
for each emotion. We observed that the impact of audio and
video on each emotional category was quite different. Specifi-
cally, although the overall accuracy of audio-only system is
much lower than that of video-only system (see Table II),
the accuracy of “Angry” and “Fear” for the audio modality
is significantly higher than that of video system, which shows
that for these two emotions, audio modality usually played
a more important role. While in terms of “Happy”, “Sad”,
“Disgust” and “Surprise”, video modality information seemed
more discriminative, especially for the “Happy” category. This
is the main motivation to propose AG-FBP by adaptively
determining the importance of each modality for one specific
sample or recording.

From the results on the AFEW validation set in Table IV,we
achieved an absolute accuracy increase of 1.30% from G-FBP
to AG-FBP. It is worth noting that AG-FBP does not yield
additional overhead in terms of storage and computation over
G-FBP as only an adaption factor in Eq.(15) needs to be
calculated for a specific recording. By visualizing the mean
of adaption factors for each emotion category in Fig. 7, we
observed that the adaptive weighting factors and the relative
strength of the modality for each category in Table III were
well consistent. For example, the adaption factors of “Fear”
and “Angry” in the audio modality are higher than those of
the other categories, while for “Happy”, it is the lowest. These
demonstrate that, for recordings of different emotions, the
representation ability of the audio and video modalities can
be quite different.

1

Fig. 8: Learning curves of different FBP systems on the
validation set.

D. Audio-visual emotion recognition with M-FBP/AM-FBP

Next, the effects of multi-level FBP and its combination
with AG-FBP are discussed. As shown in Table IV, we see the
M-FBP approach achieves the accuracy of 63.18%, yielding a
gain of 0.78% over the AG-FBP system by using the multi-
level information of both global-trunk and intra-trunk data. By
fully utilizing the complementarity between AG-FBP and M-
FBP, the proposed AM-FBP system attains the best accuracy of
64.17% among all the improved FBP approaches. We perform
the significance test which is a one-tailed test with the null
hypothesis that there is no performance difference between
the two systems. Here we refer to the “Matched Pair Test”
method mentioned in [76] to calculate the p-values, which are
the main indicator of significance tests, and reflect the degree
of support for the null hypothesis. The smaller p-value is, the
bigger significant differences between two systems are. The
p-values between the G-FBP and our improved FBP systems
on the AFEW validation set are listed in Table IV, which
imply that there is a high probability that our improved FBP
approaches are able to achieve a better performance compared
to the G-FBP approach.

As illustrated in Fig. 8, we compare the learning curves of
four audio-visual fusion strategies using cross entropy on the
validation set. First of all, the proposed AG-FBP framework
shows a lower learning loss and attains a better accuracy
than the G-FBP system. As expected the adaptive M-FBP
framework also learns well and achieve more stable and
better convergence behaviors than the M-FBP system when
comparing the bottom curve with the M-FBP curve above it
in Fig. 8, which is also consistent with the recognition results
in Table IV.

In Fig. 9, we visualize the embedding in the fully-connected
layer of different network architectures for emotion recog-
nition on the validation set using t-SNE [77]. Clearly, for
single-modality audio or video system, the overall embedding
seemed scattered in general for different emotion categories.
On the other hand, “Angry” was more clustered in the audio
system while “Happy” was easier to distinguish in the video
system. However, in the multi-modal systems of G-FBP and
AM-FBP, the embedding was much more distinctive than
that of single-modality systems. For example, the G-FBP
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Fig. 9: Embedding visualization of different network architectures for emotion recognition.

TABLE V: The overall performance comparison and p-value
of different systems on the AFEW test set.

Systems Single model Accuracy p-value

EmotiW2019 baseline [7] X 41.07% -
MAFN [30] × 58.65% -

4CNNs+LMED+DL-A+LSTM [29] × 61.87% -
4CNNs+BLSTM+Audio [22] × 62.78% -

G-FBP X 60.64% -
4G-FBP × 62.48% -
AG-FBP X 61.26% 0.008
M-FBP X 61.87% 0.001

AM-FBP X 62.17% <0.001
2AM-FBP × 62.79% <0.001

2AM-FBP+4G-FBP × 63.09% <0.001

system could well distinguish both the “Angry” and “Happy”
categories. When compared with G-FBP, AM-FBP yielded
the best embedding results with clearer boundaries among
different colors (categories), demonstrating its effectiveness in
deeper interactions between audio and video modalities. All
those results are well aligned with the classification accuracies.

E. Overall comparison

To perform an overall comparison among our proposed
techniques on the EmotiW2019 challenge data, we add the
validation data to the training set similar to other partici-
pating teams in EmotiW [21], [28]. In the upper block of
Table V, we show the performance of different systems on
the AFEW test set. MAFN [30] is a multi-modal adap-
tion method with intra/inter-modality attention mechanism-
s. “4CNNs+LMED+DL-A+LST” [29] combined five visual

1

Fig. 10: Confusion matrix on AFEW test set.

and two audio models and obtained the best accuracy in
EmotiW2018. While “4CNNs+BLSTM+Audio” [22] fused
four visual and three audio models to rank as the champion
system for the EmotiW2019 challenges. It also obtained the
best accuracy of 62.78% as shown in Table V. In the bottom
block, using the same test set to evaluate our four proposed
FBP systems, our proposed AM-FBP system with a single
model setting can yield a competitive accuracy of 62.17%,
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indicating the effectiveness of AM-FBP fusion. Moreover, the
results of G-FBP and M-FBP on the test set also followed a
similar accuracy trend to those on the validation set. In order
to ensure the generalization ability of the whole network, we
randomly selected at least two groups of models trained with
different random seeds for proposed framework to test, e.g.,
“4G-FBP” and “2AM-FBP” shown in Table V. And it can
be observed that the results after fusion are also improved.
Finally, we integrated two AM-FBP and four G-FBP models
to achieve the best result of 63.09% among all systems as
shown in the bottom row in Table V. We further perform the
significance analysis. The p-values between the G-FBP and
our improved FBP systems on the AFEW test set are listed
in Table V, which imply that there is a high probability that
our improved FBP approaches are able to achieve a better
performance compared to the G-FBP approach.

For a further analysis in Fig. 10, we illustrate the confusion
matrix of our best AM-FBP system on the test set. We can
observe that “Angry”, “Happy” and “Neutral” were more
easily classified. As for “Surprise” and “Disgust”, the worse
performance might be due to a potential mixing of different
emotions, making these emotion categories not easy to be
correctly classified. We also observe that the proportion of
these two emotions is the lowest in the training set, and similar
results are also found in [22], [29], [30], [78].

TABLE VI: Classification accuracy comparison and p-value
of different systems on IEMOCAP test set.

Systems Accuracy p-value

Audio system [79] 63.00% -
Decision fusion [79] 65.40% -
Audio system [59] 50.97% -
Video system [59] 49.39% -

Encoder concat [59] 67.58% -
Audio system 71.40% -
Video system 53.42% -

Decision fusion 72.54% -
Encoder concat 73.11% -

G-FBP 73.98% 0.001
AM-FBP 75.49% <0.001

Finally, the proposed methods are further evaluated on the
IEMOCAP database. We implemented video-based emotion
recognition by using the 1D-ABFCN network and the results
are shown in Table VI. In the upper block of Table VI, we
show the performance of different systems on the IEMO-
CAP test set. Different machine learning and deep learning
based models are designed to investigate multimodal emotion
recognition in [59]. In [79], feature extraction scheme and
matching model structure are investigated for multimodal
emotion recognition respectively. Although it does not show
the performance of the video-based system in [79], the audio-
visual system improves by 2.40% compared with the audio-
based system through decision fusion. In the bottom block,
inspired by [59] and [79], the two common fusion methods,
namely “Encoder concat” and “Decision fusion”, are selected
to compare with the proposed AM-FBP approach. According
to Table VI, the accuracy of encoder concat is 0.57% higher
than that of decision fusion and we further take the encoder
concat as the audio-visual fusion baseline. From Table VI, we

can observe that the proposed AM-FBP achieves the highest
accuracy of 75.49% with the absolute accuracy gain of 2.38%
compared with encoder concat.

It is worth noting that for the single modality systems,
the accuracy of the video-based system is higher on the
AFEW database than that of audio-based system, while the
observation is opposite on the IEMOCAP database. According
to the results of the audio-visual system, the two modalities
are more complementary on the AFEW database. This result
may originate from the differences of the two databases. First,
these two databases were collected in different ways. The
AFEW database was collected from films and TV series with
very complex scenarios and environments, which is a great
challenge to the audio-based system. While the IEMOCAP
database was recorded from only ten actors in the lab with
defined scenes, and we believe it is easier for the audio-based
system. Second, the facial features in the two databases vary
in the level of detail. For the AFEW database, the detected
faces are sent to the trained neural network to extract high-
level embedded features. While for the IEMOCAP database,
the publisher provides detailed information about the actor’s
facial expression by placing the markers on the actor’s face,
head, and hands, which is also widely utilized, e.g., in [59]
and [79]. Due to the sparse markers, the emotional cues of
video are also limited. From the above two perspectives, it is
more difficult to correctly recognize emotions in the AFEW
database than in the IEMOCAP database, for example, one
obvious observation is that the audio-based system can achieve
better performance on the IEMOCAP database (71.40%) than
the AFEW database (34.99%). Despite these differences, the
performances of audio-visual fusion by using the proposed
AM-FBP are improved on both two databases, which demon-
strates a good generalization ability of the proposed method.
The p-values between our FBP systems and the encoder concat
on the test set are also shown in Table VI, which imply that
the superiority of the proposed FBP is statistically significant.

V. CONCLUSION

In this paper, we introduce a novel audio-visual emotion
recognition attention network using adaptive and multi-level
FBP fusion. Specifically, the deep features from the audio
encoder and the video encoder are first selected through
the embedding attention mechanism to obtain the emotion-
related regions for FBP fusion. Then, the adaptive adjustment
of audio and video weights is presented for a deep fusion.
Furthermore, the multi-level information by using global-trunk
data and intra-trunk data is adopted to design a new network
architecture. The proposed approach is verified on the test
set of the EmotiW2019 challenge and IEMOCAP database,
outperforming other state-of-the-art approaches in literature.
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