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ABSTRACT

We first examine the generalization issue with the noise samples
used in training nonlinear mapping functions between noisy and
clean speech features for deep neural network (DNN) based speech
enhancement. Then an empirical proof is established to explain why
the DNN-based approach has a good noise generalization capabil-
ity provided that a large collection of noise types are included in
generating diverse noisy speech samples for training. It is shown
that an arbitrary noise signal segment can be well represented by
a linear combination of microstructure noise bases. Accordingly,
we propose to generate these mixing noise signals by designing a
set of compact and analytic noise bases without using any realistic
noise types. The experiments demonstrate that this noise generation
scheme can yield comparable performance to that using 50 real
noise types. Furthermore, by supplementing the collected noise
types with the synthesized noise bases, we observe remarkable per-
formance improvements implying that not only a large collection
of real-world noise signals can be alleviated, but also a good noise
generalization capability can be achieved.

Index Terms— speech enhancement, deep neural network,
noise generalization, noise basis, objective performance measures

1. INTRODUCTION

Speech enhancement has been a long standing research problem
in speech communication for the past several decades (e.g., [1],
[2]). The main research efforts in early literature include spectral
enhancement [3], [4], and [5] and model-based techniques [6], [7],
and [8], all based on an explicit distortion model in the time domain
as follows:

y() =z(l) +g-n(l) (D
where ¢ is a noise gain factor, and signals, y(I), (1), and n(l), rep-
resent the I*® samples of corrupted noisy speech, clean speech, and
additive noise, respectively. Model assumptions of the three signals
involved and their relationship in a certain representation domain
(e.g., frequency or log-power spectral domain) are then made for any
subsequent inferences. They might lead to performance limitations,
such as the musical artifact of enhanced speech and a failure to deal
with non-stationary noises in real-world noisy speech situations.

To address this problem, data-driven approaches learning speech
or noise information as priors, were proposed. Nonnegative matrix
factorization (NMF) based speech enhancement [9], [10], [11], and
[12] was one widely used method by factorizing noisy speech with
the learned speech and noise dictionaries, but NMF needs a large
collection of realistic noise. Another broad class was neural network
based speech enhancement, which was also the focus of this study.
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In the 1980s and 1990s, speech enhancement using shallow neural
networks (SNNs) as nonlinear filters to predict the clean speech sig-
nal in the time or frequency domain has been investigated [13], [14],
and [15]. Nevertheless, the performance was not satisfactory due
to the limited modeling capability with small-size SNNs. Recently,
deep learning with a large training data set has shown its superiority
over the conventional approaches and become increasingly popular.
Most of them focused on the design of neural network architecture,
including DNN [16], [17], [18], and [19], denoising auto-encoder
(DAE) (e.g., [20], [21]), recurrent neural network (e.g., [22], [23]),
and generative stochastic network (GSN) [24]. One critical issue
of deep learning based speech enhancement was the model general-
ization capability to unseen speech or noise signals. Several strate-
gies have been examined, e.g., augmenting the variety of noise types
for the DNN training [16], [18], noise perturbation [25], and unseen
noise estimation [26].

The work of [18] trained regression DNNs with more than 100
noise types and demonstrated good generalization capabilities to un-
seen noise types, but a theoretical analysis on noise generalization
was not elaborated. Moreover, a passive collection of noise sig-
nals from realistic environments cannot guarantee diversity and com-
pleteness needed to have a good set of mixing noises for the DNN
training. Therefore, a key motivation here is to illustrate noise gen-
eralization in regression-based speech enhancement. First, an em-
pirical proof is introduced to show that the DNN-based approach
can achieve a good generalization capability provided that plenty of
noise types are involved in training. The main principle is that an
arbitrary noise signal segment can be well represented by a linear
combination of microstructure noise bases.

This implies that a good enhancement performance can be ob-
tained if the noisy test speech is generated with the combination of
noise types seen in the training stage. Accordingly, we propose a
novel approach to fundamentally solving the noise generalization
problem through generating the noise signals for the DNN train-
ing by designing a set of noise bases without using any available
real noise types. Our active construction in this manner can well
control the diversity and compactness of noise signals. The prelim-
inary experiments demonstrate that the proposed noise generation
approach can yield a comparable performances to that using 50 real
noise types. Furthermore, by supplementing the already-collected
noises with the basis-constructed noises, we observe remarkable per-
formance improvements even without adding any new noise types or
samples to the existing and yet small noise set.
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Fig. 1. An illustration of the DNN-based speech enhancement.

2. ANALYSIS OF NOISE GENERALIZATION

The DNN-based speech enhancement [18] algorithm used in this
study is illustrated in Figure 1. The DNN is adopted as a regression
model to map the log-power spectra (LPS) of noisy speech to the
clean speech LPS features. A collection of time-synchronized clean
and noisy utterance pairs based on Eq. (1) are used for the DNN
training by minimizing the mean squared error (MSE) between the
estimated DNN output and the reference clean LPS features as fol-
lows:

N D

Z D> (XR(Wb') — X1 )
n=1d=1

where F is the mean squared error, X ff(Wl, bl) and X¢ denote the

enhanced and target LPS features at sample index n and frequency

bin d, respectively, with NV representing the mini-batch size, D being

the size of the LPS feature vector, (W', b') denoting the weights

and bias parameters to be learned at the [-th layer of the DNN.

One key point to determine the speech and noise generaliza-
tion capability in enhancing real-world noisy speech is that the
DNN-based regression operation is conducted on a per-frame ba-
sis. Such frame-level learning makes a full use of speech and
noise information with high-resolution microstructures. The con-
cept “microstructure” denotes a quite small time-frequency region
(subband in the frequency axis and few frames in the time axis) of
spectrogram which often can not be distinguished by human ears.
This implies that unseen noise signals, sounding quite differently
in testing, might share similar microstructures to those noises used
in the DNN training stage. Furthermore, the acoustic context for
the input noisy speech features, namely multiple neighborhood with
M frames, not only improves the continuity of enhanced speech,
but also distinguishes the speech and noise signals with different
statistical properties. In the following subsections, we attempt to
provide a theoretical analysis on noise generalization.

2.1. Representation of unseen noise signals

Suppose the frame and shift lengths are L and .S samples in the time
domain, respectively. Then the sample size of input noisy speech

(a)m (b) n2 (c)mi +m

(e) noisy speech

(f) enhanced speech (g) noise estimation

Fig. 2. Spectrograms of an example for DNN-based speech enhance-
ment: (a) n; phone dialing noise used for training, (b) ng alarm
noise used for training, (c) ni+n2 as a linear combination of n;
and n for testing, (d) reference clean speech, (e) noisy speech with
n;+n» at 5dB SNR, (f) DNN enhanced speech, (g) noise estimation
via [28].

with a M-frame microstructure fed to DNN is Lin = L + (M —
1) - S. Accordingly, a set of K noise signals {ng|k = 1,2,..., K}
are defined, where ny is the k" microstructure segment with the
same Li, dimension as the input segment of the DNN in the time
domain. We assume these noise signals are heterogeneous and used
for synthesizing the noisy speech in the training stage.

First, we prove that in the testing stage, the arbitrary unseen
noise segment with n"* with dimension Li, in the noisy speech can
be well represented as a linear combination of the seen noise seg-
ments under certain conditions:

K
= Z gk 3)
k=1

where gy is the gain factor for the noise component ny. This prob-
lem is equivalent to that whether a solution of finding {gx|k =
1,2, ..., K} to Equation (3) in a vector form exists given {n|k =
1,2, ..., K}. The necessary and sufficient conditions for solving this
set of linear equations are [27]:

R(A) = R(B) )
where R(-) is the rank operator [27] of a matrix and here

A =
B

1, n2,... 0k, & ®)

n1,n2,..., 0k, 0% (ki1 (6)

where B is an augmented matrix [27] of A. Obviously, the condition
in Equation (4) is not difficult to be satisfied if K > L;, and all the
noise segments in {ng|k = 1,2,..., K} are heterogeneous, i.e., as
many noise types as possible [18].

Second, we experimentally verify that the linear combination of
the seen noise segments as defined in Equation (3) could be well
eliminated by the DNN when present in the noisy speech, provided
that sufficient training data pairs, by mixing each noise base n; with



Table 1. Four types of noise bases.
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[ Type | Randomness | Frequency Response
NB; Deterministic signal Single-frequency, subband
NB»> White Gaussian noise Subband
NB3 Color Gaussian noise Subband
NB4 | White Non-Gaussian noise Subband

a full coverage of the clean speech signals, could be provided for
learning. In Figure 2, an example is shown to demonstrate that a
linear combination of two seen noise signals is almost perfectly re-
moved from the noisy speech even such a noise signal is not di-
rectly used in the DNN training, which implies that clean speech can
be well estimated from noisy speech by the DNN if the noise sig-
nal is a linear combination of seen noise types in the training stage.
Figure 2(g) also gives the corresponding noise estimation based on
a post-processing of the DNN output in [28], which demonstrates
that DNN can also accurately estimate the newly constructed unseen
noises.

2.2. Practical issues

Based on the above analysis in Sections 2.1, the DNN model can
achieve a quite good generalization capability to unseen noise sig-
nals. However, in real implementations, several issues might lead to
performance limitations. First, clean speech signals, may not be ex-
haustively searched due to the variabilities of speakers, languages,
etc. Second, the amount of the training data pairs is determined
by the product space of the clean speech data, noise data, and the
mixing factors. This “oracle” size is usually not realizable in an ex-
perimental design. Finally, even with a large-scale data collection,
containing diversified training data with a variety of noise samples,
the issue with local optima in the DNN learning is still inevitable.

3. IMPROVING GENERALIZATION BY NOISE BASES

For conventional deep learning based speech enhancement [16]-[26],
the noise signals, passively collected from real environments, are
usually required for model training. However, the diversity and com-
pactness of those noise signals cannot be guaranteed. In this study,
with the conclusion drawn from Section 2, we aim at constructing a
set of noise bases, {nx|k = 1,2, ..., K}, without incorporating any
realistic noise types. The design of noise bases should fundamen-
tally solve the problems of both diversity and compactness. Mean-
while, the noise signals generally have two key features, namely the
randomness and frequency response. Therefore four types of noise
bases are adopted, as described in Table 1.

First, deterministic signals, denoted as NB1, are used to simulate
the acoustic environmental sounds with special spectral structures,
e.g., alarm and phone dialing noises in Figure 2. Two broad classes
of frequency responses, namely the single-frequency and frequency
subband, are carefully designed. For the single-frequency signal, as
shown in Figure 3(a), the basic sinusoidal waveform is adopted:

1l

i) = sin (an ) 1>0, mi=0,1,..., L 0]
where [ is the sample index and m; is the single frequency index. L1
represents the number of frequency points uniformly drawing from
the speech signal bandwidth (one half of the sampling frequency

(a)NBt1: single- frequency

(b)NB1: subband

Fig. 3. The waveforms and spectrograms of two examples in NB;:
(a) deterministic single-frequency signal, frequency is 4000 Hz, (b)
deterministic subband signal, center frequency is 4000 Hz and band-
width is 2000Hz.

Ly). Meanwhile, as shown in Figure 3(b), the frequency subband
signals are expressed as:

sub 1 . mmol . msl
”mz,mg(l):75m< T sin 1 1.) >0

m2:1,2,...,{2J —1,
ms

ms = \‘%J,mzo,l,...,LlogQng ®)

where ms and mg are the indices of the center frequency and band-
width for njy ... (1), respectively. Lz and L3 are the maximum
numbers of center frequencies and frequency subbands uniformly
drawing from the speech signal bandwidth.

Second, artificially generated random noises with different prob-
ability distributions are explored. NB» represents the most com-
monly used white Gaussian noise, which follows a Gaussian distri-
bution in the time domain and has a uniform power spectrum density
across all frequency bands. In comparison to NBo, NB3 employs
the “color” Gaussian noises with non-flat spectral profiles, includ-
ing pink and brown noises. The main difference of NB4 from NB»
is non-Gaussian distributions, e.g., the uniform distribution and ¢-
distribution, are complemented. For all the three types of noise
bases, not only the original noises with full frequency bands are
used, but also D subband noise signals with bandpass filters corre-
sponding to D frequency bins of the LPS feature vector are adopted
for each type of noise bases. Finally, the number of noise bases, K,
is determined by L1, Lo, L3 and D.

In terms of the noise basis concept, our proposed idea is similar
to the NMF approach. The noise bases in NMF are learned from the
realistic noise training data, which are only one type of compact rep-
resentations. Nonetheless, the noise bases in this study are originally
designed for improving the noise generalization of the DNN model
and real noise samples are not necessarily needed for the construc-
tion.

4. EXPERIMENTS AND RESULT ANALYSIS

As in [18], the experiments were conducted on the TIMIT corpus
[29] and OSU-100 environmental noise database [30]. The noisy
utterances were synthesized by adding a noise signal with a specified
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Fig. 4. The spectrograms of real noise types.

Table 2. PESQ comparison for unseen noises and seen targets.

System Narrowband Noises | Wideband Noises
Description 0dB [ 5dB 0dB | 5dB
Noisy 1.70 2.08 1.85 2.25
RN 3.68 3.86 3.58 3.82
NB; 3.47 3.78 3.04 3.53
NB;+NB> 3.55 3.81 3.32 3.68
NB:+NB2+NBj3 3.59 3.82 3.32 3.70
NB;+NB2+NB3+NB4 3.61 3.86 3.35 3.69

SNR level to a clean speech waveform. The sampling frequency
was 16KHz (i.e., Ly=16000). The frame length L was set to 512
while the frame shift S was set to 256. The parameters for noise
bases were set as L1=4096, L>=160, L3=80, and D=257. The DNN
architecture was 2056-2048-2048-2048-257, where the input layer
consisted of 7-frame (M=7) noisy LPS features plus 1-frame noise
LPS features for noise-aware training [18], 3 hidden layers were used
with 2048 nodes for each layer, and the output layer was 1-frame
estimated clean LPS features. The mini-batch size N is 128. More
detailed configurations for training and testing can be found in [18].

For the DNN system using real noise samples, 50 noise types
were selected for training, as shown in Figure 4(a). The input SNR
of training noisy speech ranged from 0dB-10dB uniformly, which
was applied for the training of both DNNs with real noises or/and
synthesized noises. The generalization to noise levels could be well
handled according to [17], which was not the focus of this study.
For the test set, 10 narrowband and 10 wideband noises were cho-
sen from the remaining 50 noise types. The narrowband/wideband
noises means distribution in spectrum band of noises is narrow/wide,
as shown in Figure 4(b). By default, all DNN systems were built with
100 hours of training utterance pairs.

4.1. Experiments on unseen noises and seen targets

First, a series of proof-of-concept experiments, as shown in Table 2,
was designed to focus on the noise generalization issue, where only
one target clean utterance was adopted for both training and testing.
For each test subset (e.g., 10 narrowband noises under 0dB SNR),
500 noisy speech utterances were generated. As target clean speech
was seen, all the DNN systems using real noises (RN) and noise
bases (NB) yielded very significant PESQ [31] gains over the un-
processed baseline system (Noisy) across all testing cases. By only
using the deterministic signals in NB1, the PESQ scores could be
quite close to those of the RN system using 50 real noises for train-

ing, especially for the narrowband noises. This confirmed with the
assertion we made in Section 2 that a large number of microstruc-
ture noise bases led to a good generalization to unseen noises and
also justified the motivation for the design of NB; in Section 3. The
other three types of noise bases (NB2 to NB4) using random dis-
tributions were good supplements to NB1, especially for wideband
noises. The final NB system (NB;+NB2+NB3+NB,) achieved com-
parable PESQ performances with the RN system, demonstrating the
effectiveness of the designed noise bases. Please note that the opera-
tor “+” here denoted that multiple types of noise bases were adopted
and separately mixed with the clean speech, not indicating that all
the noise bases were summed up in the time domain.

4.2. Experiments on unseen noises and unseen targets

Second, more realistic experiments for both unseen target speech and
unseen noises [18] were designed. In Table 3, all the 4620 utterances
in the TIMIT training set were adopted for the DNN training while
500 utterances selected from the TIMIT test set were used as unseen
targets for testing. Compared with the results in Table 2, the im-
provements of all DNN systems over the unprocessed system were
less significant due to the more challenging cases when both noise
and speech generalization problems should be considered. More-
over, for the unseen targets, only the use of NB; could not bring
comparable PESQ gains, especially for wideband noises. And the
NB:> to NB4 played more important roles in improving the noise
generalization capability of the NB system for all testing cases. By
measuring the PESQ gains over the unprocessed system, the NB sys-
tem was still comparable to the RN system. More results and demos
can be found at this website'.

Based on the above experiments, it is clear that our proposed
noise bases produced reasonable results without leveraging upon any
realistic noises and showed a great potential to fundamentally miti-
gate the noise generalization problem. As a further demonstration,
the experimental results by mixing real noises and noise bases were
given in Table 4. The overall PESQ, segmental SNR (SegSNR, in
dB) [32], and SDR/SIR/SAR (in dB) [33] results were calculated
across all noise types (narrowband and wideband noises) and at two
input SNR levels (0dB and 5dB). For the 100-hour (100h) train-
ing data case, the mixed RN+NB system using 100-hour original
speech data with 50-hour real-noise based data and 50-hour noise-
basis based data improved PESQ by 0.07, SegSNR by 0.42dB, and
SDR/SIR/SAR by 0.1dB/1.5dB/0.34dB over the RN system. By
increasing the amount of training data to 200 hours (200h) using
200-hour original speech data with 100-hour real-noise based data
and 100-hour noise-basis based data, similar gains could also be ob-
served. More interestingly, the RN+NB system using 100-hour train-
ing data even outperformed the RN system using 200-hour training
data. All those results indicate that using noise bases in mixing noise
generation consistently improves the generalization capability of the
RN system.

5. CONCLUSION

In this work we have conducted a comprehensive study on noise
generalization issues in DNN-based speech enhancement. The use
of artificially generated noise bases alone gives comparable perfor-
mances with systems using 50 types of realistic noise signals in the
DNN training. By supplementing the real noises with synthetic noise

http://home.ustc.edu.cn/~shixue/demo/SE_NB_
MLSP.html
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Table 3. PESQ comparison for unseen noises and targets.

System Narrowband Noises | Wideband Noises
Description 0dB [ 5dB 0dB | 5dB
Noisy 2.01 227 2.07 2.39
RN 2.79 3.03 2.60 2.94
NB; 2.39 2.60 2.18 2.49
NB;+NB, 2.67 291 2.38 2.70
NB:+NB2+NBj3 2.66 2.89 2.41 2.74
NB;+NB2+NB3+NB4 2.69 2.93 2.44 2.76

Table 4. Overall comparison for unseen noises and targets.
Objective RN NB RN+NB
Measure | 100h [ 200h | 100h | 100h [ 200h

PESQ 2.84 2.89 271 291 2.94
SegSNR 3.54 3.77 3.31 3.96 4.26
SDR 8.20 8.28 8.21 8.30 8.43
SIR 16.09 | 16.10 | 15.32 | 17.59 | 17.69
SAR 9.80 9.88 9.73 | 10.14 | 10.18

bases, better performances could be achieved, indicating the im-
provement of the noise generalization capability. In future studies,
we intend to explore more mechanisms to form noise bases. Further-
more, the speech generalization issue will also be investigated in a
similar manner.
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