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ABSTRACT

Recently, the minimum mean squared error (MMSE) has been
a benchmark of optimization criterion for deep neural net-
work (DNN) based speech enhancement. In this study, a prob-
abilistic learning framework to estimate the DNN parameter-
s for single-channel speech enhancement is proposed. First,
the statistical analysis shows that the prediction error vector at
the DNN output well follows a unimodal density for each log-
power spectral component. Accordingly, we present a max-
imum likelihood (ML) approach to DNN parameter learning
by charactering the prediction error vector as a multivariate
Gaussian density with a zero mean vector and an unknown co-
variance matrix. It is demonstrated that the proposed learning
approach can achieve a better generalization capability than
MMSE-based DNN learning for unseen noise types, which
can significantly reduce the speech distortions in low SNR
environments.

Index Terms— Prediction error modeling, multivariate
Gaussian density, maximum likelihood estimation, deep neu-
ral network, speech enhancement

1. INTRODUCTION

Speech enhancement [1] is an important front-end of speech
processing systems aiming at noise reduction. The back-
ground noise can reduce both the quality and intelligibility
of the speech signals, and cause performance degradations
for real-world applications, such as automatic speech recog-
nition (ASR), mobile communication and hearing aids. The
problem of enhancing noisy speech recorded by a single mi-
crophone has attracted a considerable amount of research
attention [2]. Considering the process of noise corruption on
speech is very complicated, the performance of speech en-
hancement in real acoustic environments is still unsatisfactory
and many issues should be explored.

Numerous speech enhancement methods were develope-
d over the past several decades. The conventional method-
s include a wide range of approaches, such as spectral sub-
traction [3], Wiener filtering [4, 5], a MMSE estimator [6], an
optimally-modified log-spectral amplitude (OM-LSA) speech

estimator [7, 8] and so on. A common problem usually en-
countered in these conventional methods is that the result-
ing enhanced speech often suffers from an annoying artifact
called musical noise [9]. In addition, they often fail to track
non-stationary noise for real-world scenarios in unexpected
acoustic conditions.

Following the successes in deep learning based speech
research, such as speech recognition, speech separation and
speech enhancement [10, 11, 12], Xu et al. proposed a re-
gression deep neural network (DNN) based speech enhance-
ment framework [13, 14] which was adopted to model the
complicated relationship between the noisy speech and clean
speech via training a deep and wide neural network architec-
ture using a large collection of heterogeneous training data
and the abundant acoustic context information. In contrast
with conventional approaches, it makes no assumptions about
the statistical properties of the signals. In addition, it can also
handle non-linear and highly non-stationary noises effective-
ly. However, one problem of this approach we should pay
attention to is that some distortions are introduced to the es-
timated clean speech signal especially in low SNR environ-
ments because the regression DNN removes the noise con-
siderably from the noisy speech. To address this issue, some
work has been done, as shown in [15, 16, 17]. More complex
neural network structure for speech enhancement has great
attractions for many researchers. Sun proposed a separable
deep auto encoder (SDAE) to estimate the spectrum of clean
speech and noise respectively by minimizing the total recon-
struction error of noisy speech spectrum [18]. In [19], Mass
et al. introduced deep recurrent neural networks (DRNNs)
as an approach for feature enhancement in robust ASR. In
[20], long short-term memory (LSTM) recurrent neural net-
work based speech enhancement was explored. In addition,
convolutional neural network (CNN) was investigated in [21].

One challenge of DNN-based speech enhancement is the
optimization of the complicated and non-convex objective
function from the view of machine learning. The MMSE
between the target features and the predicted features was
commonly used as the objective function which performed
better than many other objective functions [22], such as the
Kullback Leibler divergence [23] or the Itakura-Saito diver-
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gence [24]. In [25], a multi-objective learning framework was
proposed to optimize a joint objective function, encompass-
ing MMSE not only in the primary clean log-power spectra
(LPS) features but also in secondary targets for continuous
features and categorical information. This joint optimiza-
tion of different but related targets can potentially improve
the DNN prediction performance of the primary target. In
this paper, we explore a maximum likelihood (ML) criteri-
on within the probabilistic learning framework to optimize
DNN parameters with the assumption that the prediction error
vector of the regression DNN follows a multivariate Gaus-
sian density. Accordingly, a training procedure of ML-based
DNN (ML-DNN) is designed to update both DNN parameters
and the covariance matrix of Gaussian density alternatively.
The MMSE-based DNN (MMSE-DNN) approach could be
thought as a special case of the proposed ML-DNN approach
with an identity covariance matrix. The evaluation on the
TIMIT corpus [26] shows that the proposed ML-DNN ap-
proach achieves a significantly better improvement of speech
quality and intelligibility than the conventional MMSE-DNN
approach. Moreover, it has a better generalization capability
and achieves less speech distortions.

2. THE PROPOSED ML-DNN APPROACH

We redefine the objective function in the probabilistic frame-
work and adopt the maximum likelihood estimation for the
parameter learning aiming at further improving the general-
ization capability of the conventional MMSE optimization for
the regression DNN, as shown in Fig. 1. The input of DNN
is theD-dimensional LPS feature vector of noisy speech with
an acoustic context of (2τ + 1) neighboring frames.

In conventional MMSE-DNN, a mini-batch stochastic
gradient descent algorithm is performed in mini-batches with
multiple epochs to improve the following error function,

E =
1

N

N∑
n=1

‖(x̂n(yn+τn−τ ,W )− xn)‖22, (1)

where E is the mean squared error, x̂n(yn+τn−τ ,W ) and xn
denote the estimated and reference normalized LPS at sam-
ple index n, respectively, with N representing the mini-batch
size, yn+τn−τ being the noisy LPS feature vector where the win-
dow size of context is (2τ + 1), W denoting the parameters
to be learned. The prediction error vector en at sample index
n could be defined as:

en = xn − x̂n(y
n+τ
n−τ ,W ). (2)

We make an assumption that it follows a multivariate Gaus-
sian density with a D-dimensional zero mean vector and a
D ×D unrestricted covariance matrix Σ:

p(en) = N (en|0,Σ) =
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Fig. 1. The ML-DNN architecture for speech enhancement.

If the reference vector is also a random vector, then we can
get the equivalent expression as Eq. (3):

p(xn|yn+τn−τ ,W ,Σ) = N (xn|x̂n(yn+τn−τ ,W ),Σ), (4)

which implies that the conditional distribution of xn given
yn+τn−τ with the parameter set (W ,Σ) is unimodal. Given a
mini-batch set withN data pairs (Y ,X) = {(yn+τn−τ ,xn)|n =
1, 2, ...N} and making the assumption that these data pairs
are drawn independently from the distribution in Eq. (4), we
can define the likelihood function as:

p(X|Y ,W ,Σ) =

N∏
n=1

N (xn|x̂n(yn+τn−τ ,W ),Σ), (5)

where the parameter set (W ,Σ) is to be optimized. Accord-
ingly, the log-likelihood function can be written as:

ln p(X|Y ,W ,Σ)

=

N∑
n=1

lnN (xn|x̂n(yn+τn−τ ,W ),Σ)

=C − N

2
ln |Σ| − 1

2
N∑
n=1

(xn − x̂n(y
n+τ
n−τ ,W ))>Σ−1(xn − x̂n(y

n+τ
n−τ ,W )),

(6)
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Fig. 2. The distributions for selected dimensions of the pre-
diction error vector from well-trained DNN on the cross val-
idation set: (a)-(c) refer to MMSE-DNN while (d)-(f) corre-
spond to ML-DNN.

where C is a constant. We adopt maximum likelihood criteri-
on to alternatively optimize W and Σ. To maximize Eq. (6)
with respect to W , it is equivalent to minimizing the follow-
ing sum-of-squares error function in terms of Mahalanobis
distance:

M =

N∑
n=1

(xn−x̂n(yn+τn−τ ,W ))>Σ−1(xn−x̂n(yn+τn−τ ,W )).

(7)
Then the back-propagation procedure with a stochastic gradi-
ent descent method is used to optimize W in the mini-batch
mode of N sample frames.

Alternatively, we can also maximize Eq. (6) with respect
to Σ. Then the update formula can be derived as:

Σ =
1

N

N∑
n=1

(xn − x̂n(y
n+τ
n−τ ,W ))(xn − x̂n(y

n+τ
n−τ ,W ))>.

(8)
Considering the number of free parameters in the distribu-
tion, the symmetric covariance matrix Σ has D×(D+1)

2 inde-
pendent parameters. For large D values, the total number of
parameters increases with D in a square form, therefore it is
very difficult to calculate the inverse of the covariance matrix
Σ. To avoid the problem, we use the diagonal covariance ma-
trix in this study. The whole training procedure is summarized
as Algorithm 1.

By comparing Eq. (1) and Eq. (7), we should note that
the conventional MMSE-DNN is a special case of ML-DNN
where the covariance matrix in Eq. (7) is always an identity
matrix, namely making a strong assumption that all the LPS
components are with the same variances. However statistical
analysis on prediction errors indicates that is not reasonable.
We present the distributions of selected dimensions (3, 50,
257) of the prediction error vector on the cross validation set
for both well-trained MMSE-DNN and ML-DNN as shown

Algorithm 1 Procedure of ML-DNN training
Step 1: Initialization

Initialize the DNN parameter set W randomly. The co-
variance matrix Σ is set to an identity matrix.
Step 2: Fix Σ then update W

By minimizing Eq. (7), the back-propagation procedure
with a stochastic gradient descent method is used to update
W in the mini-batch mode of N sample frames.
Step 3: Fix W then update Σ

Update Σ via Eq. (8).
Step 4: Go to Step 2 for the next epoch

in Fig. 2. It is observed that all selected dimensions of the
prediction error vector approximately follow a unimodal dis-
tribution with the mean closing to zero for both MMSE-DNN
and ML-DNN, which verifies the reasonability of the zero
mean hypothesis. However, the variances are quite different,
which indicates that the assumption of equivalent variances
in MMSE-DNN is unreasonable. Furthermore, it is observed
that the variance of each dimension in ML-DNN is smaller
than that in MMSE-DNN, demonstrating that ML-DNN could
better model the prediction errors.

3. EXPERIMENTS AND RESULTS

In this paper, all experiments were conducted on waveforms
with 16kHz. And 115 noise types were adopted for training
to improve the robustness to the unseen noise types. These
115 noise types included 100 noise types recorded by G. Hu
[27] and 15 home-made noise types. And the clean speech
data was derived from the TIMIT corpus. All 4620 utterances
from the training set of the TIMIT database were corrupt-
ed with the abovementioned 115 noise types at six levels of
signal-to-noise-ratios (SNRs), i.e., 20dB, 15dB, 10dB, 5dB,
0 dB and -5dB, to build 80-hour multi-condition training set,
consisting of pairs of clean and noisy speech utterance. The
192 utterances from the core test set of TIMIT database were
used to construct the test set for each combination of noise
types and SNR levels. In this experiment, three unseen noise
types, namely Destroyerops, Factory1 and Pink were adopted
for testing. All of them were collected from the NOISEX-92
corpus [28].

A short-time Fourier transform was adopted to compute
the spectra of each overlapping windowed frame. Then 257
dimensions (D=257) LPS features were used to train DNNs.
Sigmoid was used as the activation function of DNN. Mean
and variance normalization was applied to the input and tar-
get feature vectors of the DNN. All DNN configurations were
fixed at h=3 hidden layers, 2048 units at each hidden layer,
and 7-frame (τ=3) input. For the update of DNN parameters
in both MMSE-DNN and ML-DNN, the learning rate for the
supervised fine-tuning was set to 0.1 for the first 10 epochs
and declined at a rate of 90% after every epoch in the next
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Fig. 3. Comparison of spectrograms of three 16kHz TIMIT utterances corrupted by Destroyerops, Factory1, Pink noise at
SNR=0dB respectively (from left to right):noisy speech, clean speech, the enhanced speech by the MMSE-DNN system, the
enhanced speech by the ML-DNN system initialized with the well-trained MMSE-DNN

Table 1. Average performance comparison on the test
set at different SNRs across three unseen noise environ-
ments, among: MMSE-DNN initialized randomly (denoted
as MMSE), ML-DNN initialized randomly (denoted as ML1)
and ML-DNN initialized with the well-trained MMSE-DNN
(denoted as ML2).

SNR (dB) -5 0 5 10 15 20 Ave

PESQMMSE 1.58 2.05 2.48 2.84 3.15 3.43 2.59
ML1 1.71 2.17 2.59 2.95 3.25 3.53 2.70
ML2 1.85 2.24 2.61 2.95 3.26 3.54 2.74

STOI MMSE 0.54 0.68 0.79 0.87 0.92 0.95 0.79
ML1 0.60 0.73 0.83 0.90 0.94 0.97 0.83
ML2 0.62 0.74 0.83 0.90 0.94 0.97 0.83

SSNRMMSE -1.18 0.20 2.03 4.12 6.23 8.13 3.25
ML1 -1.44 0.33 2.56 5.05 7.60 10.01 4.02
ML2 -1.75 0.23 2.63 5.17 7.72 10.08 4.02

LSD MMSE 6.26 4.60 3.59 2.84 2.32 2.02 3.61
ML1 5.22 4.14 3.23 2.51 1.93 1.54 3.09
ML2 5.42 4.18 3.22 2.48 1.92 1.51 3.12

40 epochs with the mini-batch size of 128 (N=128). For the
waveform reconstruction, the original phase of noisy speech
was adopted with the enhanced log-power spectra.

MMSE-DNN was initialized with random weights, while
ML-DNN was initialized with random weights and the
weights of the well-trained MMSE-DNN respectively. Seg-
mental SNR (SSNR in dB) for measuring noise reduction,

Table 2. Average performance comparison on the test
set of three unseen noise environments across different S-
NRs, among: MMSE-DNN initialized randomly (denoted as
MMSE), ML-DNN initialized randomly (denoted as ML1)
and ML-DNN initialized with the well-trained MMSE-DNN
(denoted as ML2).

PESQ STOI SSNR LSD

Destoryerops MMSE 2.58 0.79 3.16 3.80
ML1 2.73 0.82 3.52 3.15
ML2 2.74 0.83 3.66 3.11

Factory1 MMSE 2.55 0.79 3.30 3.57
ML1 2.62 0.82 4.30 3.08
ML2 2.70 0.83 4.31 3.05

Pink MMSE 2.63 0.81 3.31 3.45
ML1 2.75 0.84 4.23 3.06
ML2 2.79 0.84 4.10 3.20

log-spectral distortion (LSD in dB) for measuring speech dis-
tortion [29], perceptual evaluation of speech quality (PESQ)
for measuring speech quality [30], and short-time objective
intelligibility (STOI) for measuring speech intelligibility [31]
are compared in Table 1 and Table 2. Clearly, experimental
results demonstrate that the proposed ML-DNN approach
yield consistent and significant improvements over the con-
ventional MMSE-DNN approach across the three unseen
noise. Finally, the average PESQ, STOI, SSNR and LSD of
the ML-DNN system initialized with the well-trained MMSE-



DNN were improved by 0.15, 0.04, 0.8 dB and 0.5 dB respec-
tively in contrast with MMSE-DNN. The improvements of
the ML-DNN initialized randomly are smaller than those of
the ML-DNN initialized with the well-trained MMSE-DNN.
Fig. 3 presented spectrograms of three utterances corrupted
by Destroyerops noise, Factory1 noise and Pink noise respec-
tively. It was shown that the ML-DNN approach could yield
less speech distortions significantly. Furthermore, please note
that larger PESQ and STOI improvements are obtained at
low SNRs than those at high SNRs, e.g., ML-DNN system
initialized with well-trained MMSE-DNN improved PESQ
and STOI by 0.27 and 0.08 respectively over the well-trained
MMSE-DNN system at SNR=-5dB, while PESQ and STOI
were improved by 0.11 and 0.02 respectively at SNR=20dB.
Considering that the MMSE-DNN approach causes speech
distortions more or less, especially in low SNR environ-
ments, the proposed ML-DNN approach can achieve less
speech distortions which is much more significant in low
SNR environments.

4. CONCLUSION

In this paper, a novel maximum likelihood approach is pro-
posed to improve DNN training for speech enhancement. The
assumption that the prediction error vector of DNN follows
the Gaussian distribution was shown to be reasonable. In the
ML solution, both the DNN parameters and the covariance
matrix of the prediction error vector are jointly and alterna-
tively optimized. Compared with the conventional MMSE
optimization, the ML approach could achieve a better gener-
alization capability and less speech distortions.
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