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a b s t r a c t

This paper presents a new discriminative linear regression approach to adaptation of a discriminatively

trained prototype-based classifier for Chinese OCR. A so-called sample separation margin based

minimum classification error criterion is used in both classifier training and adaptation, while an

Rprop algorithm is used for optimizing the objective function. Formulations for both model-space and

feature-space adaptation are presented. The effectiveness of the proposed approach is confirmed by a

series of experiments for adaptation of font styles and low-quality text, respectively.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

With the fast development of mobile internet, OCR-based
applications are becoming increasingly more popular (e.g.,
[1–4]). However, the most off-the-shelf OCR engines were trained
on scanned documents, and they may not work well for new
application scenarios where the properties of the captured char-
acter images are significantly different from the ones in the
training data set (e.g., [5]). One of the solutions to address this
problem is to adapt a pre-trained classifier to deal with the new
scenario by using the document to be recognized itself via an
unsupervised adaptation strategy, or by using a small amount of
adaptation data collected in the target scenario via a supervised

adaptation strategy.
Using adaptation to improve the OCR accuracy has been a

research topic for several decades. Some ingenious ideas specific
to OCR have been tried. For example, Nagy et al. [6,7] demon-
strated that a character classifier trained on many typefaces can be
adapted effectively to text in a single unknown typeface by using a
self-adaptation strategy. Hong [8] showed how to use an adapta-
tion strategy that alternates between applying ‘‘visual constraints’’
and ‘‘linguistic constraints’’ to reduce errors for recognizing books
printed in a single typeface. Authors in [9–13] investigated a
ll rights reserved.
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family of style-conscious algorithms to improve the recognition
accuracy on documents which contain only a few typefaces and
limited variations in image qualities and other variabilities. More
recently, Xiu and Baird [14] demonstrated how to use a self-
adaptation technique to improve the whole-book recognition,
where a so-called iconic model and a linguistic model are
mutually leveraged and adapted.

In the past several decades, many effective adaptation techni-
ques have also been invented for speaker adaptation in the area of
speech recognition (see an overview paper [15] and the refer-
ences therein) and for writer adaptation in the area of hand-
writing recognition (see a recent work in [16,17] and the
references therein). Some of them have been applied to OCR
adaptation. For example, in [18], a continuous density hidden
Markov model (CDHMM) based English character recognizer was
adapted to deal with unseen fonts with two popular adaptation
algorithms, namely maximum-likelihood linear regression (MLLR)
[19,20] and maximum a posteriori (MAP) estimation [21], which
were developed originally in speech recognition area for speaker
adaptation. Apparently, the style transfer mapping (STM) techni-
que proposed in [16,17] for writer adaptation can also be used for
OCR adaptation.

In this paper, we study the adaptation techniques for Chinese
OCR. One of the state-of-the-art techniques to build a Chinese
OCR engine is to use a discriminatively trained prototype-based
classifier as reported in [22]. In spite of the large vocabulary of
Chinese characters, such a classifier can be made both compact
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Fig. 1. Overall flow of system development.
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(e.g., [22,23]) and efficient in the recognition stage (e.g., [24]).
A high recognition accuracy can be achieved by using Gabor
features, LDA (linear discriminant analysis) or MCE (minimum
classification error) based discriminative feature extraction, and
MCE-based classifier parameter training [22]. Recently, a so-called
sample separation margin (SSM) based MCE training approach was
proposed in [25] for training prototype-based classifiers, which
performs better than the MCE training approach in [22]. In [23], the
SSM-MCE training approach has been used to construct a state-of-
the-art compact prototype-based handwritten Chinese character
recognizer where a batch-mode Quickprop algorithm [26] is used
for optimizing the SSM-MCE objective function. In [27], the SSM-
MCE formulation has been extended to training pattern classifiers
with quadratic discriminant functions (QDF), including the
‘‘modified quadratic discriminant function (MQDF)’’ [28] popular
in the areas of OCR and handwriting recognition for East Asian
languages. In this study, we have built our baseline classifier for
Chinese OCR by using the techniques described in [22,25,23] with a
minor difference: we used an Rprop algorithm (e.g., [29,30]) to
optimize the SSM-MCE objective function because the setting of
control parameters is much easier than the Quickprop algorithm
used in [23].

The main contribution of this paper is to propose a new SSM-MCE
linear regression (LR) approach to adaptation of an SSM-MCE trained
prototype-based classifier and demonstrate its effectiveness for
Chinese OCR as an illustrative example. Formulations for both
model-space and feature-space adaptation are presented. In terms
of general concept, our work is related to the MCE-LR approach
reported in [31] for speaker adaptation of CDHMM-based speech
recognizer, where a traditional MCE objective function is used. Our
work is also relevant to the STM work on writer adaptation for
handwritten Chinese character recognition reported in [16,17], where
a similar MCE training approach as in [22] is used to train a
prototype-based classifier, but a least regularized weighted squared
error approach is used to estimate a global feature transform (a.k.a.
style transfer mapping (STM)) for writer adaptation. The adaptation
capability of the STM approach is similar to our feature-space
adaptation approach, but is inferior to our model-space adaptation
approach because multiple transforms can be used for model
adaptation. Even for feature-space approach, our experimental results
show that our approach performs significantly better than the
original STM approach in [16] for both supervised and unsupervised
adaptation of font styles and low-quality text, respectively, which
confirms that SSM-MCE is a better objective function to learn the
feature transform.

Fig. 1 illustrates an overall system development flow of our
work in this paper. In training stage, after feature extraction of
training samples, an LBG clustering algorithm [32] is used to
construct multiple prototypes for each character class. Then a
baseline classifier is constructed by using the SSM-MCE training.
For model-space adaptation, an adapted classifier is constructed
by using the linear regression transform(s) estimated from the
adaptation data and the baseline classifier, which will be used to
recognize unknown characters in the target scenario. For feature-
space adaptation, a global feature transform is estimated from the
adaptation data, which will be used to transform the feature
vector of the unknown character back into the feature space of
the training data so that the baseline classifier can be used in
recognition stage.

It is noted that the preliminary results of this study have
been published in [33]. The current paper is an extended
version of the above report by including more detailed
descriptions of relevant procedures, reporting additional
experimental results and findings, and adding new figures
and references to make the presentation more readable and
accessible.
The remainder of the paper is organized as follows. In Section
2, we describe briefly how to construct a multi-prototype based
classifier by using the SSM-MCE training. In Section 3, we present
formulations of SSM-MCE LR for both model-space and feature-
space adaptation. Several important implementation issues are
discussed in Section 4. In Section 5, we report experimental
results for adaptation of font styles and low-quality text, respec-
tively. Finally we conclude the paper in Section 6.
2. SSM-MCE training of a multi-prototype based classifier

Suppose our classifier can recognize M character classes
denoted as fCi9i¼ 1, . . . ,Mg. For a multi-prototype based classifier,
each class Ci is represented by Ki prototypes, ki ¼ fmikARD9
k¼ 1, . . . ,Kig, where mik is the kth prototype of the ith class. Let
us use K¼ fkig to denote the set of prototypes. In the classification
stage, a feature vector xARD is first extracted. Then x is compared
with each of the M classes by evaluating a Euclidean distance
based discriminant function for each class Ci as follows:

giðx; kiÞ ¼�min
k

Jx�mikJ
2: ð1Þ

The class with the maximum discriminant function score is
chosen as the recognized class rðx;KÞ, i.e.,

rðx;KÞ ¼ arg max
i

giðx; kiÞ: ð2Þ

In the training stage, given a set of training data X ¼ fxr ARD9
r¼ 1, . . . ,R1g, first we initialize K by LBG clustering [32]. Then K
can be re-estimated by minimizing the following MCE objective
function:

lðX;KÞ ¼
1

R1

XR1

r ¼ 1

1

1þexp½�adðxr;KÞþb�
, ð3Þ

where a, b are two control parameters, and dðxr ;KÞ is a mis-
classification measure defined by using a so-called sample
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separation margin (SSM) as follows [25]:

dðxr;KÞ ¼
�gpðxr ; kpÞþgqðxr; kqÞ

2Jm
pk̂
�m

qk
J

, ð4Þ

where

k̂ ¼ arg min
k

Jxr�mpkJ
2, ð5Þ

q¼ arg max
iAMr

giðxr ;kiÞ, ð6Þ

k ¼ arg min
k

Jxr�mqkJ
2, ð7Þ

and Mr is the hypothesis space for the rth sample, excluding the
true label p.

To optimize the objective function, in [23], a modified Quick-
prop procedure is used. In this work, an Rprop algorithm
described in [30] is adopted. The detailed formulation is given
in Appendix A.
Fig. 2. A binary regression tree.
3. SSM-MCE linear regression

To adapt an OCR engine, we can adapt the classifier to the new
scenario (i.e., model-space method) or adapt the observed fea-
tures in the new scenario back to the original feature space (i.e.,
feature-space method).

3.1. Model-space method

Suppose we are given a set of labeled adaptation data Y ¼
fyr ARD9r¼ 1, . . . ,R2g collected in the target application scenario.
For model-space method, we transform the parameters of the
original classifier as follows:

m̂ ik ¼F ðmik;HÞ ¼Aei
mikþbei

, ð8Þ

where i and k are indices of class and prototype, respectively; and
ei is the transform index for the ith class. Let us use H¼
fðAe,beÞ9e¼ 1, . . . ,Eg to denote the set of transform parameters,
where Ae is a D� D nonsingular matrix and be is a D-dimensional
bias vector. The SSM-MCE objective function is defined as follows:

lðY ;K,HÞ ¼
1

R2

XR2

r ¼ 1

1

1þexp½�adðyr;K,HÞþb�
, ð9Þ

where

dðyr;K,HÞ ¼
�gpðyr; k̂pÞþgqðyr ; k̂qÞ

2Jm̂
pk̂
�m̂

qk
J

, ð10Þ

k̂p and k̂q represent the prototype set after model-space trans-
formation using Eq. (8) for the pth and qth class, respectively.

We use again an Rprop algorithm to optimize H with a
procedure detailed in Appendix B.

3.2. Feature-space method

For feature-space method, the following global feature trans-
formation function is used:

xr ¼F ðyr ;HÞ ¼Ayrþb, ð11Þ

where A is a D� D nonsingular matrix, b is a D-dimensional bias
vector, yr and xr are the rth D-dimensional input and transformed
feature vectors, respectively.

The SSM-MCE objective function is defined as follows:

lðY ;K,HÞ ¼
1

R2

XR2

r ¼ 1

1

1þexp½�adðyr;K,HÞþb�
, ð12Þ
where

dðyr;K,HÞ ¼
�gpðxr; kpÞþgqðxr ; kqÞ

2Jm
pk̂
�m

qk
J

: ð13Þ

The optimization procedure for H is almost the same as Appendix B
except the derivatives of the objective function, which are listed in
Appendix C. In recognition stage, the estimated transform fA,bg is
used to transform the feature vector of each unknown character
first, which is then fed to baseline classifier for recognition.

3.3. Defining regression classes

In the previous formulation of model-space method, the LR
transforms are tied across character classes, where each trans-
form is associated with a set of character classes. To design a fully
automatic adaptation procedure for any given amount of labeled
adaptation data, we use a regression class tree to group the
character classes, just like what has been done in MLLR [20]. As
shown in Fig. 2, a binary regression tree is constructed to cluster
similar character classes. Each leaf node holds a bucket of
character classes, while each internal node holds the set of
character classes from its descendants. Starting from the root
node which holds all the character classes, the regression tree is
constructed as follows until the specified number of leaf nodes is
reached:
�
 Step 1: Select a leaf node to split. All the prototypes of
character classes in this leaf node are pooled together as
samples.

�
 Step 2: Use LBG algorithm [32] to cluster the above samples

into two clusters with a centroid calculated for each cluster.

�
 Step 3: For each character class in the parent node, it is

classified to one of the above two clusters which gives the
smaller total Euclidean distance between the prototypes of
this character and the centroid of the corresponding cluster.

�
 Step 4: Go to Step 1 if the specified number of leaf nodes is not

reached; Stop, otherwise.

In the adaptation stage, given a fixed amount of adaptation
data, a maximum rooted subtree is obtained from the above
regression class tree such that each leaf node in the subtree has at
least NT adaptation samples. For each leaf node of the subtree, a
regression class will be assigned and an LR transform
will be trained. In this way, the number of regression classes E

can be determined automatically. NT is a control parameter set
empirically.

3.4. Discussion

For notational convenience, we refer to hereinafter our
SSM-MCE based feature-space and model-space LR approaches
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as F-DLR (feature-space discriminative linear regression) and M-
DLR (model-space discriminative linear regression), respectively.

Because only a single global transform is used in feature-space
method, this adaptation scheme is good for adaptation scenario
with a very limited amount of adaptation data. Compared with
the STM approach in [16], our feature transformation function is
more general than STM by having an additional bias term. The
main advantage of the STM approach is to have a closed-form
solution for estimating the feature transform, which can be used,
as discussed in the next section, for initialization of the Rprop
optimization of our DLR objective function. As for the objective
function, SSM-MCE is more directly related to the objective of
minimizing the recognition error than the weighted mean
squared error objective function used in STM approach.

When more adaptation data are available, the M-DLR approach
is preferred because more LR transforms can be used to achieve a
better adaptation effect. When large amount of adaptation data
are available, for the extreme case of using a bias transform for
each prototype, SSM-MCE-LR adaptation becomes equivalent to
SSM-MCE re-training of the prototype-based classifier using the
adaptation data. It is hoped that the M-DLR adaptation will
approach the upper bound of re-training when enough flexible
LR transforms are used in practice.
4. Implementation issues

4.1. STM-based initialization

In our F-DLR approach, we initialize the bias vector as b¼ 0,
and use the STM approach in [16] to initialize the A matrix as
follows:
�
 Define the source point set as the set of feature vectors of
adaptation samples, and the target point set as the set of the
corresponding prototypes with the smallest Euclidean dis-
tances to those feature vectors.

�
 Find a style transfer matrix A to solve the following optimiza-

tion problem:

min
A

X
r

f rJAsr�trJ
2
2þb1JA�IJ2

2, ð14Þ

where the rth source point sr is transformed to the target point
tr with the confidence fr, which is set as 1 for supervised
adaptation, and a value between 0 and 1 for unsupervised
adaptation as described in the next subsection. The hyper-
parameter b1 is set as

b1 ¼
~b1

2D
tr
X

r

f rðsrþtrÞs
>
r

 !
, ð15Þ

where trð�Þ is the trace of a matrix and ~b1 takes a value
between 0 and 3. The closed-form solution of the above
problem is as follows:

A¼
X

r

f rtrs
>
r þb1I

" # X
r

f rsrs>r þb1I

" #�1

: ð16Þ

In our M-DLR approach, we initialize the bias vector as bei
¼ 0,

and initialize the Aei
matrix separately for each regression class ei

in a similar way as described above by using the adaptation
samples of the corresponding regression class, and exchanging
the role of sr and tr in Eqs. (14)–(16), respectively.
4.2. Data selection for unsupervised adaptation

In unsupervised adaptation, the class labels of adaptation data
are obtained by recognition results using the baseline classifier.
To mitigate the negative effect of the possible wrong labels, in
STM-based unsupervised adaptation, the following confidence
measure is used as suggested in [16]:

f r ¼
expf�tgpðxr; kpÞgPM
i ¼ 1 expf�tgiðxr ; kiÞg

, t¼ R1PR1

r ¼ 1 giðxr; kiÞ
, ð17Þ

where p is the label assigned to adaptation sample xr by the
recognizer and t is estimated from the training set. This trick works
only when the recognition accuracy of the baseline classifier is
relatively high. To play safe, in this study, we propose to only use
those samples which achieve high enough confidence for adapta-
tion as follows:

Ysub ¼ fyr9f r 4b2f train, yr AYg, ð18Þ

where f train is the averaged confidence calculated using Eq. (17) on
the training set and b2A ½0,1� is a weighting coefficient. The new
STM approach using this data selection trick is referred to as ‘‘STM-
Sub’’ approach hereinafter. Experimental results show that the
STM-Sub outperforms the original STM, especially for those cases
with very low recognition accuracy.

For DLR-based unsupervised adaptation, the above data selec-
tion strategy is also used in each iteration of Rprop optimization.
The label ‘‘p’’ and the most competing label ‘‘q’’ in Eqs. (10) and
(13) are replaced by the best and the second best recognition
results, respectively.

4.3. A hybrid adaptation approach

To achieve the best possible adaptation effect for different
amount of adaptation data, we propose to use the following
hybrid adaptation approach:
�
 If the amount of adaptation data is very small, i.e., R2rNT , use
adaptive STM approach with bnew

1 ¼ b1ðNT Þ=R2.

�
 If more adaptation data are available but not enough to

estimate multiple transforms in M-DLR, i.e., NT oR2rNM ,
use single-transform based F-DLR or M-DLR approach.

�
 If enough adaptation data are available, i.e., R24NM , use

multi-transform based M-DLR approach.

Two control parameters NT and NM are set empirically to D2=16
and 2D2, respectively. Hereinafter, we use M-Hybrid and F-Hybrid
to refer to the above hybrid adaptation approach for model-space
and feature-space, respectively.

In the following experiments, we will show that the adaptive
STM can outperform significantly the original STM for the case of
very limited adaptation data because the control parameter b1 is
adjusted dynamically according to the amount of available
adaptation data.
5. Experiments and results

5.1. Experimental setup

The experiments are conducted on a task of recognizing
isolated printed Chinese characters. The vocabulary of our base-
line classifier consists of 9252 Chinese characters. For SSM-MCE
training of the baseline classifier, we use about 150 gray-scale
image samples per character. These image samples are mostly
from the scanned documents with several commonly used fonts,



Fig. 5. Samples of low-quality Chinese characters.

Fig. 6. Performance (character recognition error rate in % on each testing set)

comparison of the baseline classifier and different approaches for supervised

adaptation to each of25 new font styles.
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and normalized to a fixed size of 64�64. Fig. 3 shows samples
with multiple fonts in the training set. For feature extraction, a
512-dimensional raw Gabor feature vector is extracted first from
each gray-scale character image as described in [22], where the
spatial sampling points are 8�8, the number of orientations is 8,
and the wavelength is 8. A new 512-dimensional feature vector is
then calculated by dividing each raw Gabor feature by the
maximum element value in the raw Gabor feature vector for
intensity normalization. A 513-dimensional feature vector is
formed by extending the above 512-dimensional feature vector
with an aspect-ratio feature, which is followed by LDA transfor-
mation to obtain a 128-dimensional feature vector (i.e., D¼128)
[22]. As for the number of prototypes for each character, we use
four prototypes for 3755 most frequently used Chinese characters
and two prototypes for the rest of character classes. For Rprop-
based SSM-MCE training and SSM-MCE-LR adaptation, the control
parameters are set as follows: a¼ 7; b¼ 0; T1 ¼ 100; T2 ¼ 50;
D0 ¼ 0:0125; Dmax ¼ 50; Dmin ¼ 0; Zþ ¼ 1:2; Z� ¼ 0:5. It is noted
that all the control parameters related to Rprop are set empiri-
cally as suggested in [30] without tuning. For STM based adapta-
tion, ~b1 is set to 0.1. For unsupervised adaptation, b2 is set to 0.02.

5.2. Supervised adaptation to font style

The first set of experiments is designed to examine the
effectiveness of the proposed approach for supervised adaptation
to font style. We use sets of new font library for experiments.
Fig. 4 shows how a Chinese character looks like in different fonts.
For each font library, there are 6823 character classes and one
sample per character class. We divide 6823 samples per font into
two equal subsets as adaptation set and testing set. In this case,
our hybrid adaptation approach in Section 4.3 has used the DLR
approach.

Fig. 6 summarizes a performance (character recognition error
rate in %) comparison of the baseline classifier and different
approaches for supervised adaptation to each font style on testing
Fig. 3. Samples with multiple fonts in the training set.

Fig. 4. A Chinese character in different new fonts.
sets of 25 new font styles. Several observations can be made. First,
all methods for supervised adaptation outperform the baseline
classifier without adaptation, which demonstrates that a linear
transformation is reasonable as a mapping function for font
adaptation. Second, both F-DLR and M-DLR achieve consistently
significant improvements in recognition accuracy compared to
STM, which indicates that the SSM-MCE objective function of DLR
is indeed better than the least weighted squared error criterion
used in STM. Third, M-DLR performs much better than F-DLR.

Fig. 7 gives a similar performance comparison as in Fig. 6 for
mixed-font adaptation scenario, where the adaptation data of all
25 font styles are pooled together. One interesting observation is
that the performance of STM in Fig. 7 is much worse than that in
Fig. 6, which means single transformation cannot deal with mixed
font styles by STM approach. But for DLR, by using a discrimina-
tive criterion, significant improvements can also be achieved
compared to the baseline classifier.

As the above adaptation experiments are performed on data
sets with high error rates achieved by the baseline classifier,
Table 1 gives another comparison on data sets with different
ranges of baseline error rates. As the baseline performance
becomes better and better, all the adaptation methods can still
achieve significant improvements, yet the gap between F-DLR and
STM is narrowed. M-DLR always achieves the best performance
among all the adaptation methods. The experiment labeled as
F-DLR-NB in Table 1 used a new version of F-DLR without the bias
term in Eq. (11). This experiment is designed for a fair comparison
between STM and F-DLR as now the type of transformation is
exactly the same. We can see that there are only slight differences
in performance between F-DLR-NB and F-DLR compared with
STM, which means that the matrix plays a much more important
role than the bias term for the transformation in F-DLR.
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Fig. 8 shows the learning curves of Rprop algorithms for our
adaptation methods. We select three representative font styles
with diverse baseline performance, namely A, E, and J in Table 1
for F-DLR and M-DLR adaptation. From those curves, several
observations can be made. First, for F-DLR adaptation, the main
performance gain is achieved in the first several iterations.
Second, for M-DLR adaptation, even only one iteration can get
the most performance gain. Third, for both F-DLR and M-DLR
adaptation to each font style, the best performance is achieved
after 50 iterations, which is used for all the other experiments.

Another concern of our proposed adaptation methods is their
computational complexity. Although F-DLR and M-DLR adapta-
tion can be done offline, we still want to give readers an idea of
how the User CPU Time looks like. To handle large-scale data
processing, our algorithms are implemented based upon Micro-
soft Research Asia’s MPI-based machine learning platform [34].
This platform is developed on top of Microsoft Windows HPC
Server, and optimized for various machine learning algorithms.
With this high-performance parallel computing platform, experi-
ments can be run very efficiently for large-scale task. In our font
style adaptation experiments, we use 200 CPU cores with a clock
rate of 2.5 GHz to run 25 sets of font style adaptation experiments
with 3411 adaptation samples for each set. The number of Rprop
iterations for F-DLR and M-DLR is 50. The total User CPU Time for
F-DLR and M-DLR adaptation are 108 and 267 s, respectively.

5.3. Supervised adaptation to low-quality text

The second set of experiments is designed to examine the
effectiveness of the proposed approach for supervised adaptation
to low-quality text. We use a database of low-quality character
images captured by a camera with a resolution of 640�480
pixels. Fig. 5 shows some samples of low-quality Chinese char-
acters. There are 7915 character classes with dozens of samples
per character class. First, 15 samples per character are randomly
selected from the database to form the testing set. The remaining
samples are used for adaptation with different amount of data.
The character recognition error rate of the baseline classifier on
Table 1
Performance (character recognition error rate in % on each testing set) comparison of th

new font styles with different ranges of baseline error rates.

Font style ID A B C D

Baseline 78.66 66.96 57.78 45.62

STM 31.19 30.05 31.19 20.61

F-DLR-NB 22.46 19.48 21.52 14.61

F-DLR 22.52 19.37 20.99 14.81

M-DLR 13.66 12.23 15.19 8.59

Fig. 7. Performance (character recognition error rate in % on each testing set)

comparison of the baseline classifier and different approaches for supervised

adaptation to a merged set of 25 new font styles.
testing set is 46.98%. Fig. 9 compares the performance of STM and
hybrid adaptation approach in Section 4.3 on testing set. If
adaptation data are very limited (R2o256), the performance of
STM is even worse than that of the baseline classifier. The
performance improvement for STM saturates beyond a certain
point (R241024). As expected, our hybrid adaptation approach
can reduce error rates consistently for different amount of
adaptation data, and outperforms significantly the STM approach
across the board, especially when more data are used for adapta-
tion. It is observed again that M-Hybrid approach performs better
than F-Hybrid approach. For the reader’s interest, Table 2 lists the
number of transformations (regression classes) for each M-Hybrid
adaptation in Fig. 9. The dramatic increase of the number of
transformations from the case of ‘‘32,768’’ to ‘‘65,536’’ is due to
the specific thresholds we used in the hybrid adaptation proce-
dure, which by no means of being optimal for other possible
adaptation tasks and scenarios.
e baseline classifier and different approaches for supervised adaptation to each of

E F G H I J

35.68 28.76 17.65 12.58 8.85 2.14

15.60 11.02 13.49 7.15 5.19 1.50

10.75 9.09 10.63 6.13 4.82 1.61

10.73 8.71 10.24 6.16 4.85 1.63

6.10 4.34 5.39 3.69 2.90 1.35

Fig. 9. Performance (character recognition error rate in % on testing set) compar-

ison of different approaches for supervised adaptation with different number of

adaptation samples of low-quality text (baseline recognition error rate is 46.98%).



Table 2
The number of transformations (regression classes) used for M-Hybrid in Fig. 9.

No. of samples 64 128 256 512 1024 2048 4096 8192 16,384 32,768 65,536 131,072 262,144

No. of transforms 1 1 1 1 1 1 1 1 1 1 39 80 137

Table 3
Performance (character recognition error rate in % on testing set) comparison of

SSM-MCE based M-DLR adaptation and SSM-MCE based re-training by using

different number of adaptation samples of low-quality text (baseline recognition

error rate is 46.98%).

No. of adaptation samples 32,768 65,536 131,072 262,144

Re-training 31.57 19.61 12.22 9.34

Adaptation 12.87 11.41 8.54 7.18

Fig. 10. Performance (character recognition error rate in % on each adaptation set)

comparison of the baseline classifier and different approaches for unsupervised

adaptation to each of 25 new font styles.

Fig. 11. Performance (character recognition error rate in % on each testing set)

comparison of the baseline classifier and different approaches for unsupervised

adaptation to each of 25 new font styles.

Fig. 12. Performance (character recognition error rate in % on adaptation set)

comparison of the baseline classifier and different approaches for unsupervised

adaptation to low-quality text on adaptation sets with different number of

samples.

Fig. 13. Performance (character recognition error rate in % on testing set)

comparison of different approaches for unsupervised adaptation with different

number of adaptation samples of low-quality text (baseline recognition error rate

is 46.98%).
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In order to understand the effectiveness of using adaptation
versus re-training by using adaptation data, Table 3 compares the
performance (character recognition error rate in % on testing set) of
SSM-MCE based M-DLR adaptation and SSM-MCE based re-training
by using different number of adaptation samples of low-quality text.
For all the cases we experimented with SSM-MCE based M-DLR
adaptation performs much better than re-training. The power of the
M-DLR adaptation approach is demonstrated clearly.

5.4. Effects of unsupervised adaptation

To verify the effectiveness of the proposed adaptation approaches
for unsupervised adaptation, we repeat the above two sets of
adaptation experiments by running the relevant adaptation proce-
dures in unsupervised adaptation mode.

Figs. 10 and 11 give a performance comparison of the baseline
classifier and different approaches for unsupervised adaptation to
each of 25 new font styles by measuring the character recognition
error rate in % on each adaptation set and testing set, respectively.
It is observed that for most font styles with very low baseline
performance (over 60% character recognition error rate), the
performance of STM is worse than that of the baseline classifier.
However, our proposed adaptation approaches can achieve sig-
nificant improvement of recognition accuracy over both the STM
and the baseline classifier. M-DLR still achieves the best perfor-
mance in all cases, and the performance gap between M-DLR and
F-DLR in unsupervised adaptation is larger than that in supervised
adaptation. For those cases with better baseline performance, the
performance gap between supervised and unsupervised M-DLR
based adaptation is much smaller than other more difficult cases
with a worse baseline performance.
Similar experiments are conducted for unsupervised adapta-
tion to low-quality text. Performance comparisons of different
approaches for unsupervised adaptation with different amount of
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adaptation data to low-quality text on both adaptation set and
testing set are shown in Figs. 12 and 13, respectively. Compared
with unsupervised adaptation to font style, several new observa-
tions can be made. First, with adequate adaptation data, the
performance of F-DLR is comparable to that of the M-DLR. Second,
the performance improvement of all the unsupervised adaptation
approaches saturates quickly with increasingly more adaptation
data. The best performance achieved by unsupervised adaptation
is far away from that of the supervised adaptation.
6. Conclusion

In this paper, we have proposed a new SSM-MCE linear regression
approach to adaptation of an SSM-MCE trained prototype-based
classifier and demonstrated its application for Chinese OCR. In real-
world application, the feature-space adaptation method can be used
for fast adaptation with a small amount of adaptation data, while the
model-space adaptation method can be used to upgrade the perfor-
mance of the classifier by using increasingly more adaptation data.
The proposed hybrid adaptation approach offers a good practical
solution for cases with different amount of adaptation data. In this
study, we have confirmed the effectiveness of the proposed approach
for supervised adaptation of font styles and low-quality text, respec-
tively. As future work, we will:
�
 study more adaptation scenarios with mismatched training
and recognition conditions;

�
 study how to further improve the effectiveness of unsuper-

vised adaptation for those difficult recognition tasks; and

�
 apply the proposed approach to writer adaptation for hand-

writing recognition.

Results will be reported elsewhere once they become available.
Conflict of interest statement

None declared.
Acknowledgments

The authors would like to thank their colleagues, Ivan Stojilj-
kovic, Magdalena Vukosavljevic and David Nister for their help in
accessing Microsoft’s OCR resources, Professor Lianwen Jin for his
sharing with us Chinese character image corpora, and Kai Chen
for his help on some experiments.
Appendix A. Rprop optimization procedure for SSM-MCE
training
Step 1:
 Let t¼0. Zþ and Z� (0oZ�o1oZþ ) are the increase
factor and decrease factor, respectively. D0 is the initial
step-size. Dmax and Dmin are the upper limit and lower
limit of step-size, respectively. Calculate the derivative of
lðX;KÞ w.r.t. each mikd and update the prototype para-
meters as follows:

mðtþ1Þ
ikd ¼mðtÞikdþDmðtÞikd, ð19Þ

DmðtÞikd9�sign
@lðX;KðtÞÞ
@mikd

 !
DðtÞikd, ð20Þ
where mikd is the dth element of mik, mðtÞikd ¼mikd,
DðtÞikd ¼D0, and

@lðX;KðtÞÞ
@mikd

9
@lðX;KÞ
@mikd

����
K ¼ KðtÞ

: ð21Þ
Step 2:
 Let t¼ tþ1. Define

S¼
@lðX;Kðt�1Þ

Þ

@mikd
�
@lðX;KðtÞÞ
@mikd

: ð22Þ

Then, the updating formulas are

DðtÞikd ¼

minðZþDðt�1Þ
ikd ,DmaxÞ if S40,

maxðZ�Dðt�1Þ
ikd ,DminÞ if So0,

Dðt�1Þ
ikd else:

8>>><
>>>:

ð23Þ

If So0,
@lðX;KðtÞÞ
@mikd

¼ 0, ð24Þ

mðtþ1Þ
ikd ¼mðtÞikdþDmðtÞikd: ð25Þ
Step 3:
 Repeat Step 2 ðT1�1Þ times.
In the above procedure, the relevant derivative can be calcu-
lated as follows:

@lr
@mikd

¼ alrð1�lrÞ

dði,pÞdðk,k̂Þðm
pk̂d
�xrdÞ�dði,qÞdðk,kÞðm̂

qkd
�xrdÞ

Jm
pk̂
�m

qk
J

2
4

�dðxr ;KÞ
ðdði,pÞdðk,k̂Þ�dði,qÞdðk,kÞÞðm

pk̂d
�m

qkd
Þ

Jm
pk̂
�m

qk
J2

3
5,

where

lr ¼
1

1þexp½�adðxr;KÞþb�
, ð26Þ

and d is the Kronecker delta function.

Appendix B. Rprop optimization procedure for model-space
adaptation
Step 1:
 Let t¼0. Calculate the derivative of lðY ;K,HÞ w.r.t. each
Aedj and bed, where Aedj is the ðd,jÞth element of the matrix
Ae and bed is the dth element of the bias vector be. Then
update the transform parameters as follows:

Aðtþ1Þ
edj ¼ AðtÞedjþDAðtÞedj, ð27Þ

DAðtÞedj9�sign
@lðY ;K,HðtÞÞ

@Aedj

 !
DðtÞedj, ð28Þ

bðtþ1Þ
ed ¼ bðtÞedþDbðtÞed , ð29Þ

DbðtÞed9�sign
@lðY ;K,HðtÞÞ

@bed

 !
DðtÞed , ð30Þ

where bðtÞed ¼ 0, DðtÞedj ¼DðtÞed ¼D0, and

@lðY ;K,HðtÞÞ
@Aedj

9
@lðY ;K,HÞ

Aedj

����
H ¼ HðtÞ

, ð31Þ
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@lðY ;K,HðtÞÞ
@bed

9
@lðY ;K,HÞ

@bed

����
H ¼ HðtÞ

: ð32Þ
Step 2:
 Let t¼ tþ1. Define

SA ¼
@lðY ;K,Hðt�1Þ

Þ

@Aedj
�
@lðY ;K,HðtÞÞ

@Aedj
, ð33Þ

Sb ¼
@lðY ;K,Hðt�1Þ

Þ

@bed
�
@lðY ;K,HðtÞÞ

@bed
: ð34Þ

Then, the updating formulas are

DðtÞedj ¼

minðZþDðt�1Þ
edj ,DmaxÞ if SA40,

maxðZ�Dðt�1Þ
edj ,DminÞ if SAo0,

Dðt�1Þ
edj else;

8>>><
>>>:

ð35Þ

DðtÞed ¼

minðZþDðt�1Þ
ed ,DmaxÞ if Sb40,

maxðZ�Dðt�1Þ
ed ,DminÞ if Sbo0,

Dðt�1Þ
ed else:

8>>><
>>>:

ð36Þ

If SAo0,
@lðY ;K,HðtÞÞ

@Aedj
¼ 0, ð37Þ

If Sbo0,
@lðY ;K,HðtÞÞ

@bed
¼ 0, ð38Þ

Aðtþ1Þ
edj ¼ AðtÞedjþDAðtÞedj, ð39Þ

bðtþ1Þ
ed ¼ bðtÞedþDbðtÞed: ð40Þ
Step 3:
 Repeat Step 2 ðT2�1Þ times.
In the above procedure, the relevant derivatives can be calculated
as follows:

@lr
@Aedj

¼ alrð1�lrÞ

dðe,epÞmpk̂j
ðm̂

pk̂d
�yrdÞ�dðe,eqÞmqkj

ðm̂
qkd
�yrdÞ

Jm̂
pk̂
�m̂

qk
J

"

�dðyr;K,HÞ
ðdðe,epÞmpk̂j

�dðe,eqÞmqkj
Þðm̂

pk̂d
�m̂

qkd
Þ

Jm̂
pk̂
�m̂

qk
J2

3
5,

@lr
@bed
¼ alrð1�lrÞ

dðe,epÞðm̂pk̂d
�yrdÞ�dðe,eqÞðm̂qkd

�yrdÞ

Jm̂
pk̂
�m̂

qk
J

"

�dðyr;K,HÞ
ðdðe,epÞ�dðe,eqÞÞðm̂pk̂d

�m̂
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Þ

Jm̂
pk̂
�m̂

qk
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3
5,

where

lr ¼
1

1þexp½�adðyr ;K,HÞþb�
: ð41Þ
Appendix C. Derivatives of objective function for feature-
space adaptation

The relevant derivatives can be calculated as follows:

@lr
@Adj
¼
alrð1�lrÞðmqkd

�m
pk̂d
Þyrj

Jm
pk̂
�m

qk
J

, ð42Þ
@lr
@bd
¼
alrð1�lrÞðmqkd

�m
pk̂d
Þ

Jm
pk̂
�m

qk
J

, ð43Þ

where Adj is the ðd,jÞth element of the matrix A, bd is the dth
element of the bias vector b, and

lr ¼
1

1þexp½�adðyr;K,HÞþb�
: ð44Þ
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