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a b s t r a c t

This paper presents an irrelevant variability normalization (IVN) approach to jointly discriminative
training of feature transforms and multi-prototype based classifier for recognition of online handwritten
Chinese characters. A sample separation margin based minimum classification error criterion is adopted
in IVN-based training, while an Rprop algorithm is used for optimizing the objective function. For the
IVN approach based on piecewise linear transforms, the corresponding recognizer can be made both
compact and efficient by using a two-level fast-match tree whose internal nodes coincide with the labels
of feature transforms. Furthermore, the IVN system using weighted sum of linear transforms outper-
forms that based on piecewise linear transforms. The effectiveness of the proposed approach is first
confirmed using an in-house developed online Chinese handwriting corpus with a vocabulary of 9306
characters, and then further verified on a standard benchmark database for an online handwritten
character recognition task with a vocabulary of 3755 characters.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Using online handwritten Chinese character recognition as an
input mode on a portable device has been becoming increasingly
popular. Good solutions have been developed to build product
engines for online handwritten Chinese character recognition (e.g.,
[1–3]). In spite of many successful applications, however, the
problem of diversified training data and/or possible mismatch
between training and testing conditions has not been addressed
explicitly in the above solutions. Also the results of the recent
Chinese handwriting recognition competition [4,5] reveal the
challenge of both isolated character recognition and handwriting
text recognition. In this study, we adopt a so-called irrelevant
variability normalization (IVN) [6] based training strategy to tackle
the above problem. IVN is a general concept for pattern recognition
problems, which was first proposed in speech recognition area [6].
In a specific pattern recognition problem, there are many irrelevant
variabilities in the contents to be recognized, which lead to the
degradation of recognition performance in real applications. For
example, in speech recognition area, those variabilities could be
speaker variability (or accent), background noises, etc. The writing

style in online handwriting recognition, the font style, lighting
condition, background noises, perspective distortions in the image
for optical character recognition (OCR) can be also considered as
irrelevant variabilities. The main idea of IVN is to normalize all
those variabilities explicitly or implicitly either in the feature space
or model space for both training stage and recognition stage.

In [7], a so-called speaker adaptive training (SAT) approach was
proposed to normalize speaker variability in training hidden
Markov models (HMMs) for automatic speech recognition (ASR).
The concept of SAT training was generalized to deal with any
variabilities irrelevant to phonetic classification in [6], therefore a
term of IVN training was coined, where as an illustrative example,
the IVN training was used to improve learning HMM state tying
from data based on phonetic decision-tree. Since then, many
variants of IVN training methods have been tried in ASR area.
For example, IVN-based training of feature transforms and HMMs
based on maximum likelihood [8] and discriminative training [9]
has been verified to be effective for large vocabulary continuous
speech recognition (LVCSR). A region-dependent feature transform
(RDT) approach proposed in [10,11], which was a weighted sum of
linear transforms using the Gaussian posterior as the weight
coefficient, was yet another example of IVN training. Only recently,
the concept of IVN training was tried in the area of handwriting
recognition. For example, in [12], writer adaptive training (WAT)
using constrained maximum likelihood linear regression (CMLLR)
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[13] based feature transform was studied for an HMM-based
Arabic handwriting recognition task. RDT-based approach in [10]
was also applied to HMM-based off-line handwriting recognition
in [14]. More recently, a pattern field classification approach with
style normalized transformation was proposed in [15] and demon-
strated to be effective for several pattern recognition applications,
including handwritten Chinese character recognition.

In our recent work [16], we study the problem of IVN-based
training for online handwritten Chinese character recognition. One of
the state-of-the-art techniques to build a Chinese handwriting recog-
nizer is to use a so-called sample separation margin (SSM) based
minimum classification error (MCE) criterion [17,18], which is similar
to the generalized learning vector quantization (GLVQ) approach in
[35], to train a prototype-based classifier as reported in [1]. In spite of
the large vocabulary of Chinese characters, such a classifier can be
made both compact (e.g., [19]) and efficient (e.g., [20]) in the
recognition stage. In [16], we propose an approach to IVN-based joint
training of feature transforms and prototype-based classifier para-
meters by using the SSM-MCE criterion and demonstrate its effective-
ness for Chinese handwriting recognition as an illustrative example.
An Rprop algorithm ([21,22]) is used to optimize the objective
function. Furthermore, the IVN-trained recognizer can be made both
compact and efficient by using a two-level fast-match tree [20] whose
internal nodes coincide with the labels of feature transforms. In this
paper, we extend the above work in the following ways: (1) the
weighted sum of linear transforms, similar to the region dependent
linear transforms in [10], is used as the feature transforms which can
achieve further improvements of recognition accuracy over the IVN
approach based on piecewise linear transforms in [16], (2) the experi-
ments are also conducted on a standard benchmark database beyond
the in-house corpus, (3) the detailed descriptions of relevant proce-
dure for Rprop optimization are reported. Our work is also related to
the log-likelihood of hypothesis margin (LOGM) approach in [23] and
discriminative feature extraction (DFE) work in [24]. The LOGM is a
modification of the MCE criterion [25] for improving the training
convergence and generalization performance of prototype-based clas-
sifier while DFE optimizes a linear feature transform jointly with the
classifier parameters. Our experimental results show that our IVN
approach performs significantly better than the approach using LOGM
and DFE as multiple linear transforms are used.

Fig. 1 illustrates an overall system development flow of our work
in this paper. In the first module, after feature extraction of training
samples, an LBG clustering algorithm [26] is used to construct
multiple prototypes for each character class. Then a baseline classifier
is constructed by using the SSM-MCE training. In the second module,
the clusters of feature space associated with feature transforms are
generated via the baseline classifier, which are used for the IVN-
based SSM-MCE joint training of feature transforms and prototype-
based classifier parameters. Finally, with the IVN resources from the
second module, at recognition stage (i.e., in the third module), the
corresponding transform after cluster selection is used to transform
the feature vector of the unknown sample, which is then fed to the
IVN-based SSM-MCE trained classifier for recognition.

The remainder of the paper is organized as follows. In Section 2, we
describe briefly how to construct a multi-prototype based classifier by
using the SSM-MCE training. In Section 3, we present the detailed
procedure for IVN-based SSM-MCE joint training of feature transforms
and classifier parameters. The fast-match technique is introduced in
Section 4. In Section 5, we report experimental results of our proposed
approach. Finally we conclude the paper in Section 6.

2. SSM-MCE training of a multi-prototype based classifier

Suppose our classifier can recognize M character classes
denoted as fCiji¼ 1;…;Mg. For a multi-prototype based classifier,

each class Ci is represented by Ki prototypes, λi ¼ fmikARDj
k¼ 1;…;Kig, where mik is the kth prototype of the ith class. Let's
use Λ¼ fλig to denote the set of prototypes. In the classification
stage, a feature vector yARD is first extracted. Then y is compared
with each of the M classes by evaluating a Euclidean distance
based discriminant function for each class Ci as follows

giðy;λiÞ ¼ �min
k

‖y�mik‖2: ð1Þ

The class with the maximum discriminant function score is chosen
as the recognized class rðy;ΛÞ, i.e.,
rðy;ΛÞ ¼ arg max

i
giðy;λiÞ: ð2Þ

In the training stage, given a set of training feature vectors
Y ¼ fyrARDjr¼ 1;…;Rg, first we initialize Λ by LBG clustering
[26]. Then Λ can be re-estimated by minimizing the following
SSM-MCE objective function:

lðY;ΛÞ ¼ 1
R

∑
R

r ¼ 1

1
1þexp½�αdðyr;ΛÞþβ� ð3Þ

where α, β are two control parameters, and dðyr;ΛÞ is a mis-
classification measure defined by using a so-called sample separa-
tion margin (SSM) as follows [17]:

dðyr ;ΛÞ ¼ �gpðyr;λpÞþgqðyr;λqÞ
2Jmpk̂ �mqk J

ð4Þ

where

k̂ ¼ arg min
k

‖yr�mpk‖2 ð5Þ

q¼ arg max
iAMr

giðyr ;λiÞ ð6Þ

k ¼ arg min
k

‖yr�mqk‖2 ð7Þ

and Mr is the hypothesis space for the rth sample, excluding the
true label p.

To optimize the objective function in Eq. (3), the same imple-
mentation of Rprop algorithm as described in [1] is adopted here.

3. IVN-based SSM-MCE joint training

3.1. Feature transformation

In this study, the concept of IVN is implemented by using
feature transformation. Two feature transforms are explored,
namely piecewise linear transforms (PLT) and weighted sum of
linear transforms (WSLT). For PLT based IVN training, the following
feature transformation is used:

xr ¼F 1ðyr ;ΘÞ ¼Aeryrþber ð8Þ
where yr and xr are the rth D-dimensional input and transformed
feature vectors, respectively; and er is the transform label for the
rth sample. Let's use Θ¼ fðAe;beÞje¼ 1;…; Eg to denote the set of
transform parameters of E linear transforms, where Ae is a D� D
nonsingular matrix and be is a D-dimensional bias vector. As for
WSLT based IVN training, the corresponding transform is defined
as

xr ¼F 2ðyr ;ΘÞ ¼ ∑
E

e ¼ 1
we

r ðAeyrþbeÞ ð9Þ

with the constraint

∑
E

e ¼ 1
we

r ¼ 1; ð10Þ
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where the wr
e is the weight coefficient of the eth linear transform

for the rth sample yr .
Hopefully the transformed feature vector xr in Eq. (8) or Eq. (9)

has less irrelevant information to the content to be recognized and
finally results in a compact classifier. In the next subsection, we
elaborate on how to determine the transform label er in Eq. (8) and
the weight coefficient wr

e in Eq. (9).

3.2. Cluster construction and selection

Suppose the feature space can be divided into E clusters and
each cluster e is associated with one linear transform ðAe;beÞ,
which is assumed to normalize the irrelevant variability of the
feature vector belonging to this cluster. In this work, to construct
the clusters, we divide all the prototypes of all classes into E
groups by using k-means clustering approach. The centroid of each
cluster ce is calculated as the sample mean of the prototypes
belonging to the cluster e. Then in both IVN-based training and
recognition stage based on PLT, given the clusters and for each
feature vector yr , a transform label er is assigned to the feature
vector as the label of the cluster having the minimum Euclidean
distance between the feature vector and the cluster centroid:

er ¼ arg min
e

‖yr�ce‖2: ð11Þ

For WSLT, given the above clusters, the weight coefficient wr
e in

Eq. (9) can be calculated using the softmax function

we
r ¼

exp f�τ‖yr�ce‖2g
∑E

i ¼ 1 expf�τ‖yr�ci‖2g
; ð12Þ

and τ is estimated from the training set:

τ¼ τ0R
∑R

r ¼ 1 min
e

‖yr�ce‖2
; ð13Þ

where τ0 is a scaling factor. Another way to calculate wr
e can refer

to [10], where the Gaussian posterior probability is used as the
weight coefficient for the RDT approach. First a Gaussian mixture
model (GMM) with E mixture components can be built on top of
the E clusters by using Expectation-Maximization (EM) algorithm:

pðyÞ ¼ ∑
E

e ¼ 1
ωeN ðy;μe;ΣeÞ ð14Þ

where μe, Σe, and ωe are the mean vector, diagonal covariance
matrix and mixture weight of the eth Gaussian component. Then
wr

e is set as the Gaussian posterior probability:

we
r ¼

ωeN ðyr ;μe;ΣeÞ
∑E

i ¼ 1ωiN ðyr ;μi;ΣiÞ
: ð15Þ

Fig. 1. Overall flow of system development.
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3.3. Training procedure

The IVN-based SSM-MCE objective function is defined as
follows:

lðY;Λ;ΘÞ ¼ 1
R

∑
R

r ¼ 1

1
1þexp½�αdðyr ;Λ;ΘÞþβ� ð16Þ

where

dðyr;Λ;ΘÞ ¼ �gpðxr;λpÞþgqðxr ;λqÞ
2Jmpk̂ �mqk J

: ð17Þ

In the above equations, xr is defined in Eq. (8) or Eq. (9), where the
corresponding feature transforms can be determined as described
in Section 3.2. The following method of alternating variables can
then be used to jointly estimateΘ and Λ by minimizing the above
objective function:

Step 1 : Initialization
First, the classifier parameters Λ are initialized by using
SSM-MCE training described in Section 2. The transform
parameters Θ are initialized as be ¼ 0 and Ae ¼ I.

Step 2 : Estimating the feature transform parametersΘ by fixing the
classifier parameters Λ
Given the fixed classifier parameters Λ, the SSM-MCE
objective function lðY;Λ;ΘÞ can be optimized by using
an Rprop algorithm with NT iterations as described in
Appendix B.

Step 3 : Estimating the classifier parameters Λ by fixing the feature
transform parameters Θ
Given the updated transform parameters Θ obtained in
Step 2, we first transform each training feature vector yr by
using Eq. (8) or Eq. (9). Then an Rprop algorithm with NC

iterations is performed as described in Appendix A to re-
estimate classifier parameters Λ by minimizing the objec-
tive function lðY;Λ;ΘÞ.

Step 4 : Repeat Step 2 and Step 3 NIVN times.
In the above training procedure, the control parameters NT,
NC, and NIVN are set empirically.

4. Fast match technique

Our fast-match technique is based on a two-level tree [20]. To
construct the tree, G clusters are first generated as described in
Section 3.2. Each cluster has a bucket consisting of character
classes with their prototypes belonging to the cluster. Each
training feature vector will then be classified into the cluster with
the minimum Euclidean distance between the feature vector and
the cluster centroid. The character class of the training sample will
be added into the bucket if it is not in the bucket yet. In this way,
we obtain a two-level tree with G buckets, each containing a
number of character classes. In this work, to make the recognizer
both compact and efficient, we share the clusters in PLT based IVN
training and fast-match tree, i.e., we set E¼G. In recognition stage,
given the feature vector extracted from an unknown sample, we
can find “Top N” candidates efficiently by using the following fast-
match procedure:

� Compare the input feature vector with each cluster centroid and
sort the result in ascending order of the Euclidean distances,
which can be considered as the first-level recognition;

� If PLT based IVN training is performed, the feature transform
associated with the first cluster is applied to the input feature
vector; Otherwise, skip this step;

� Merge all character classes in the top NB buckets and use them
to perform the second-level recognition as usual.

In the above procedure, a technique known as the partial
distance based elimination has been used to speed up the process
of identifying the “Top N” candidates.

5. Experiments and results

5.1. Experimental setup

The experiments are first conducted on an in-house corpus for
the task of recognizing isolated online handwritten characters
with a vocabulary of 9306 character classes including 9143
Chinese characters, 62 alphanumeric characters, 101 punctuation
marks and symbols. As shown in Table 1, this vocabulary mainly
consists of 3755 GB2312-L1 characters, 3008 GB2312-L2 charac-
ters, 2380 CJK characters, and other 163 characters, which is used
in the product engine for Chinese handwriting recognition of
Microsoft. For training, we used about 1000 samples averaged
per character class. Also from Table 1, the regular-style training
samples are collected for all characters while the cursive-style
training samples are only covered for GB2312-L1 and GB2312-L2.
Because there are much more regular-style samples than cursive
ones, even for GB2312-L1 and GB2312-L2, the re-sampling of
training samples is performed as in [19]. We enlarge the propor-
tion of cursive-style samples by using one more duplicate for the
most commonly used GB2312-L1 characters, which is listed in
Table 1. Three testing sets are used for evaluation: (1) Regular-1:
97,221 samples from 6903 character classes which are written in
regular style; (2) Regular-2: 84,549 samples from 2355 uncom-
mon character classes in regular style; (3) Cursive: 383,064
samples from 3755 frequently used character classes written in
cursive style. For feature extraction, a 512-dimensional raw feature
vector is extracted as described in [27], which is followed by LDA
(linear discriminant analysis) transformation to obtain a lower
dimensional feature vector. As for the number of prototypes for
each character, we use A prototypes for 3755 most frequently used
Chinese characters and B prototypes for the rest of character
classes. For Rprop-based SSM-MCE training and IVN-based SSM-
MCE joint training, the control parameters are set as described in
[1] and [28,29]. Other control parameters are set as: D¼80,
E¼ G¼ 128, NT¼10, NC¼10, NIVN ¼ 5, τ0 ¼ 20.

To evaluate on a standard benchmark, we also verify our approach
on the public database released by the Institute of Automation of
Chinese Academy of Sciences (CASIA) [30]. The feature datasets for
evaluating isolated online handwritten Chinese character recognition
are used which can be downloaded via [31]. The detailed information
of the datasets can be found in Table 2. By combining OLHWDB1.0 and
OLHWDB1.1 datasets, there are totally 2,154,582 samples in the
training set and 538,601 samples in the testing set. The raw feature
of the online handwritten character sample is a 512-dimensional
vector using the 8-direction histogram of original trajectory direction
combined with pseudo 2D bi-moment normalization [32,30]. Then
each feature vector is transformed by Box-Cox transformation [33],
followed by LDA transformation to obtain a 160-dimensional feature
vector. To perform Rprop-based SSM-MCE training and IVN-based
SSM-MCE joint training, only the parameter α should be set to 1 due

Table 1
The information of the training data for in-house corpus.

Vocabulary GB2312-L1 GB2312-L2 CJK Others

Writing style Regular Cursive Regular Cursive Regular Regular
# of characters 3755 3755 3008 3008 2380 163
# of duplicates 0 1 0 0 0 0
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to the dynamic range of the new feature . All the other parameters are
the same as those in the experiments on in-house corpus.

To handle large-scale training data, the tools for LBG clustering,
SSM-MCE training, and IVN-based SSM-MCE joint training with
the Rprop algorithm have been implemented based upon MSR
Asia's MPI-based machine learning platform [34]. This platform
was developed on top of Microsoft Windows HPC Server, and
optimized for various machine learning algorithms. With this
high-performance parallel computing platform, experiments can
be run very efficiently for large-scale tasks.

5.2. Experimental results on in-house Corpus

Table 3 summarizes a performance (recognition accuracies in
%) comparison of baseline systems and IVN-trained systems using
piecewise linear transforms on three testing sets under different
settings of the number of prototypes and the number of buckets
searched in fast-match tree. The footprint (in MB) and runtime
latency (normalized by Baseline(2,1) without fast-match) of
the corresponding recognizers are also compared. Here footprint
is the size of the resources for the recognition engine including the
classifier and the corresponding transformations while the run-
time latency refers to the run time of the recognizer averaged on
each character sample, which is a normalized version by the
system denoted as Baseline(2,1) without fast-match. “Baseline”
refers to an SSM-MCE trained system without IVN training while
“IVN” refers to a system using our proposed IVN-based joint
training. The second column of Table 3 indicates the top NB

buckets selected for second-level recognition in fast-match tree,
where “N/A” means no fast-match is used. Three prototype
configurations, namely (2,1), (4,2), and (8,4) are listed for

comparison, because over-training would be observed if the
number of prototypes was increased beyond (8,4) in current
experiments. The runtime latency in the last column only includes
the recognition time after feature extraction.

Based on those results, several observations can be made. First,
IVN systems can achieve consistently significant improvements in
recognition accuracy compared with the corresponding Baseline
systems on all testing sets. Second, under the same prototype
setting, the increased runtime latency from Baseline to IVN
systems can be almost ignored, especially in cases with fast-
match because the first-level recognition of fast-match tree and
the cluster selection for each testing feature vector are shared
completely. Third, IVN systems can still outperform Baseline
systems with smaller footprints and less runtime latency, e.g.,
IVN(2,1) vs. Baseline(4,2) and IVN(4,2) vs. Baseline(8,4). Finally,
with fast-match technique, the runtime latency of IVN systems can
be reduced significantly while the footprint is only increased
slightly. The tradeoff between recognition accuracy and efficiency
can be made by setting different NB. Compared with systems
without using fast-match technique, NB¼5 keeps the same recog-
nition accuracy with reduced runtime latency while NB¼3
degrades slightly recognition accuracy with a much more signifi-
cant reduction of runtime latency.

Table 4 compares the “Top-N” recognition accuracies of Base-
line systems and IVN-trained systems using piecewise linear
transforms on three testing sets under different settings of the
number of prototypes and a single setting of NB¼5 for fast match.
From the Top-5 and Top-10 results, IVN systems can achieve very
high recognition accuracies already.

5.3. Experimental results on CASIA database

Table 5 shows a performance (recognition accuracies in %)
comparison of two prototype-based systems under different set-
tings of the number of prototypes on the training and testing sets.
“LBG” denotes a system trained using LBG clustering while “SSM-
MCE” refers to a system trained by the SSM-MCE criterion. SSM-
MCE systems consistently and significantly outperform LBG sys-
tems on both training and testing sets with different number of
prototypes. By the nature of SSM-MCE training, the improvements

Table 2
The information of the isolated online handwritten Chinese character database.

Dataset #Class Dimension #Writer
(Train)

#Writer
(Test)

#Sample
(Train)

#Sample
(Test)

OLHWDB1.0 3740 512 336 84 1,256,009 314,042
OLHWDB1.1 3755 512 240 60 898,573 224,559

Table 3
Performance (recognition accuracies in %) comparison of baseline systems and IVN-
trained systems using piecewise linear transforms on three testing sets under
different settings of the number of prototypes and the number of buckets searched
in fast-match tree. The footprint (in MB) and runtime latency (normalized by
Baseline(2,1) without fast-match) of the corresponding recognizers are also
compared.

Method(A,B) NB Regular-1 Regular-2 Cursive Footprint Latency

Baseline(2,1) N/A 96.53 94.84 91.53 4.10 1
Baseline(4,2) N/A 96.88 94.93 92.28 8.08 1.92
Baseline(8,4) N/A 97.09 94.66 92.74 16.00 3.66
IVN(2,1) N/A 96.89 95.32 92.18 7.30 1.06
IVN(4,2) N/A 97.19 95.54 92.88 11.28 1.99
IVN(8,4) N/A 97.38 95.32 93.23 19.2 3.75

Baseline(2,1) 5 96.52 94.84 91.53 4.44 0.52
Baseline(4,2) 5 96.88 94.92 92.28 8.41 0.89
Baseline(8,4) 5 97.09 94.65 92.74 16.33 1.58
IVN(2,1) 5 96.89 95.32 92.19 7.60 0.53
IVN(4,2) 5 97.19 95.53 92.88 11.57 0.90
IVN(8,4) 5 97.39 95.31 93.23 19.49 1.59

Baseline(2,1) 3 96.52 94.80 91.52 4.44 0.37
Baseline(4,2) 3 96.88 94.89 92.28 8.41 0.65
Baseline(8,4) 3 97.09 94.62 92.74 16.33 1.17
IVN(2,1) 3 96.89 95.29 92.18 7.60 0.38
IVN(4,2) 3 97.19 95.48 92.87 11.57 0.66
IVN(8,4) 3 97.39 95.27 93.22 19.49 1.18

Table 4
Performance (“Top-N” recognition accuracies in %) comparison of baseline systems
and IVN-trained systems using piecewise linear transforms on three testing sets
under different settings of the number of prototypes and a single setting of NB¼5
for fast match.

Method(A,B) Top-N Regular-1 Regular-2 Cursive

Top-1 96.52 94.84 91.53
Baseline(2,1) Top-5 99.49 99.45 97.89

Top-10 99.67 99.73 98.72

Top-1 96.88 94.92 92.28
Baseline(4,2) Top-5 99.65 99.52 98.18

Top-10 99.83 99.75 98.92

Top-1 97.09 94.65 92.74
Baseline(8,4) Top-5 99.71 99.53 98.39

Top-10 99.86 99.80 99.05

Top-1 96.89 95.32 92.19
IVN(2,1) Top-5 99.65 99.65 98.20

Top-10 99.83 99.82 98.94

Top-1 97.19 95.53 92.88
IVN(4,2) Top-5 99.73 99.70 98.45

Top-10 99.87 99.85 99.11

Top-1 97.39 95.31 93.23
IVN(8,4) Top-5 99.77 99.73 98.60

Top-10 99.89 99.87 99.20
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of recognition accuracy over the LBG systems on the training set is
more obvious than that on the testing set. To verify that our
prototype-based classifier is state-of-the-art, we compare our
results with those reported in [30]. The readers can refer to
Table 8 in [30]. As our testing set is a combination of OLHWDB1.0
and OLHWDB1.1, the performance of the testing set in Table 5 is
the average of “DB1.0” and “DB1.1” datasets in Table 8. With the
same feature extraction, first our results of LBG system are
comparable to those of the “Cluster” column in Table 8 (e.g., for
one prototype case, 88.74% between 89.00% and 87.99%). As for the
discriminatively trained classifier, the performance of our SSM-
MCE classifier with one prototype, 92.48% is between the “DB1.0”
92.73% and the “DB1.1” 92.15% in the “LOGMþDFE” column of
Table 8. But for two and four prototypes, SSM-MCE classifiers
achieve higher accuracies than “LOGMþDFE” classifiers. Because
DFE is not used in our classifiers, the SSM-MCE criterion with
Rprop optimization is obviously superior to LOGM.

Table 6 lists a performance (recognition accuracies in %)
comparison of IVN-trained systems using piecewise linear trans-
forms on the training and testing sets under different settings of
the number of transforms. For E¼1, it is similar to the
“LOGMþDFE” in [30] where the classifier is discriminatively
trained followed by discriminative feature extraction using a
global linear transform. With the increased number of transforms,
the recognition accuracies on the training set increase monotoni-
cally while the number of transforms achieving the best perfor-
mance on the testing set for different number of prototypes is 128,
which is set as default for the following experiments. Further
increasing the number of transforms beyond 128 leads to over-
training problem.

Table 7 summarizes a performance (“Top-N” recognition
accuracies in %) comparison of baseline systems and different
IVN-trained systems on the testing set under different settings of
the number of prototypes. “Baseline” refers to the SSM-MCE
trained system without IVN training. “IVN-PLT” denotes the
system using the proposed IVN-based joint training via piecewise
linear transforms. “IVN-WSLT-1” and “IVN-WSLT-2” are the IVN-
trained systems using weighted sum of linear transforms where
the weight is calculated in Eqs. (12) and (15), respectively. First, all
the IVN-trained systems can yield significant performance
improvements over the corresponding baseline systems on the
testing set for different prototype setting. Second, compared with
the performance on the in-house corpus in Table 3, IVN-PLT
systems achieve similarly relative improvements of recognition
accuracy on CASIA database with different feature type and
dimension. Third, both IVN-WSLT-1 and IVN-WSLT-2 systems
consistently outperform IVN-PLT systems which indicates the
“soft” selection of linear transforms in WSLT is more powerful
than the “hard” selection of linear transforms in PLT. And IVN-
WSLT-1 systems achieve the best performance among all the IVN
approaches. Finally, IVN-WSLT-2 systems are inferior to IVN-WSLT-
1 systems which may be due to the different distance measures
where Euclidean distance is used for our classifier design and
weight calculation in IVN-WSLT-1 system while Mahalanobis
distance is adopted for weight (Gaussian posterior) calculation in
IVN-WSLT-2 system.

6. Conclusion

In this paper, we have proposed an approach to IVN-based
SSM-MCE joint training of feature transforms and a prototype-
based classifier and demonstrated its effectiveness for online
handwritten Chinese character recognition on two large vocabu-
lary tasks as an illustrative example. The IVN-trained recognizer
using piecewise linear transforms can be made both compact and
efficient by using a two-level fast-match tree whose internal nodes
coincide with the labels of feature transforms. Given the consistent
improvement of recognition accuracy compared with the corre-
sponding SSM-MCE trained systems without using IVN training,
even in the case of smaller footprint and runtime latency, the
proposed IVN approach in this study offers a good product
solution to construct a handwritten character recognizer to be
deployed on mobile devices with limited memory for East Asian
languages such as Chinese, Japanese, and Korean.

Conflict of Interest

None declared.

Table 5
Performance (recognition accuracies in %) comparison of LBG and SSM-MCE
systems under different settings of the number of prototypes on the training and
testing sets.

#prototype LBG SSM-MCE

Train Test Train Test

1 89.81 88.74 95.67 92.48
2 91.26 89.90 97.07 92.89
4 92.64 90.74 98.15 93.03

Table 6
Performance (recognition accuracies in %) comparison of IVN-trained systems using
piecewise linear transforms on the training and testing sets under different settings
of the number of transforms and the number of prototypes.

#transform 1 Prototype 2 Prototypes 4 Prototypes

Train Test Train Test Train Test

E¼1 95.75 92.66 97.23 93.16 98.27 93.33
E¼2 96.03 92.70 97.29 93.18 98.31 93.37
E¼4 96.06 92.76 97.39 93.23 98.32 93.40
E¼8 96.27 92.79 97.41 93.24 98.34 93.40
E¼16 96.35 92.86 97.50 93.27 98.38 93.41
E¼32 96.57 92.86 97.73 93.27 98.44 93.44
E¼64 96.83 92.88 97.81 93.28 98.51 93.44
E¼128 97.10 92.90 97.93 93.30 98.59 93.47
E¼256 97.39 92.87 98.10 93.27 98.68 93.43
E¼512 97.68 92.82 98.28 93.20 98.78 93.39

Table 7
Performance (“Top-N” recognition accuracies in %) comparison of baseline systems
and different IVN-trained systems on the testing set under different settings of the
number of prototypes.

Method Top-N 1 Prototype 2 Prototypes 4 Prototypes

Top-1 92.48 92.89 93.03
Baseline Top-5 97.82 98.04 98.16

Top-10 98.58 98.72 98.81

Top-1 92.90 93.30 93.47
IVN-PLT Top-5 98.06 98.22 98.33

Top-10 98.75 98.86 98.93

Top-1 93.18 93.45 93.59
IVN-WSLT-1 Top-5 98.19 98.31 98.38

Top-10 98.85 98.92 98.98

Top-1 93.00 93.34 93.49
IVN-WSLT-2 Top-5 98.11 98.27 98.35

Top-10 98.78 98.88 98.94
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Appendix A. Rprop optimization procedure for classifier
parameters

Step 1 : Let t¼0. ηþ and η� (0oη� o1oηþ ) are the increase
factor and decrease factor, respectively. Δ0 is the initial
step-size. Δmax and Δmin are the upper limit and lower limit
of step-size, respectively. Calculate the derivative of
lðY;Λ;ΘÞ w.r.t. each mikd and update the prototype para-
meters as follows:

mðtþ1Þ
ikd ¼mðtÞ

ikdþΔmðtÞ
ikd ð18Þ

ΔmðtÞ
ikd9�sign

∂lðY;ΛðtÞ
;ΘÞ

∂mikd

 !
ΔðtÞ

ikd ð19Þ

where mikd is the dth element of mik, m
ðtÞ
ikd ¼mikd, Δ

ðtÞ
ikd ¼Δ0,

and

∂lðY;ΛðtÞ
;ΘÞ

∂mikd
9

∂lðY;Λ;ΘÞ
∂mikd

Λ ¼ ΛðtÞ :
��� ð20Þ

Step 2 : Let t ¼ tþ1. Define

S¼ ∂lðY;Λðt�1Þ
;ΘÞ

∂mikd
� ∂lðY;Λ

ðtÞ
;ΘÞ

∂mikd
: ð21Þ

Then, the updating formulas are

ΔðtÞ
ikd ¼

minðηþΔðt�1Þ
ikd ;ΔmaxÞ if S40

maxðη�Δðt�1Þ
ikd ;ΔminÞ if So0

Δðt�1Þ
ikd else

8>>><
>>>:

ð22Þ

If So0;
∂lðY;ΛðtÞ

;ΘÞ
∂mikd

¼ 0: ð23Þ

mðtþ1Þ
ikd ¼mðtÞ

ikdþΔmðtÞ
ikd: ð24Þ

Step 3 : Repeat Step 2 ðNC�1Þ times.

In the above procedure, the relevant derivative can be calcu-
lated as follows:

∂lr
∂mikd

¼ αlrð1� lrÞ
δði; pÞδðk; k̂Þðmpk̂d�xrdÞ�δði; qÞδðk; kÞðmqkd�xrdÞ

Jmpk̂ �mqk J

2
4

�dðyr;Λ;ΘÞ
ðδði; pÞδðk; k̂Þ�δði; qÞδðk; kÞÞðmpk̂d�mqkdÞ

‖mpk̂ �mqk‖
2

3
5

ð25Þ

where

lr ¼
1

1þexp½�αdðyr;Λ;ΘÞþβ�
; ð26Þ

and δ is Kronecker delta function.

Appendix B. Rprop optimization procedure for transform
parameters

Step 1 : Let t¼0. Calculate the derivative of lðY;Λ;ΘÞ w.r.t. each
Aedj and bed, where Aedj is the ðd; jÞth element of the matrix
Ae and bed is the dth element of the bias vector be. Then
update the transform parameters as follows:

Aðtþ1Þ
edj ¼ AðtÞ

edjþΔAðtÞ
edj ð27Þ

ΔAðtÞ
edj9�sign

∂lðY;Λ;ΘðtÞÞ
∂Aedj

 !
ΔðtÞ

edj ð28Þ

bðtþ1Þ
ed ¼ bðtÞedþΔbðtÞed ð29Þ

ΔbðtÞed9�sign
∂lðY;Λ;ΘðtÞÞ

∂bed

 !
ΔðtÞ

ed ð30Þ

where bðtÞed ¼ 0, ΔðtÞ
edj ¼ΔðtÞ

ed ¼Δ0, and

∂lðY;Λ;ΘðtÞÞ
∂Aedj

9
∂lðY;Λ;ΘÞ

Aedj
Θ ¼ ΘðtÞ

��� ð31Þ

∂lðY;Λ;ΘðtÞÞ
∂bed

9
∂lðY;Λ;ΘÞ

∂bed Θ ¼ ΘðtÞ :
��� ð32Þ

Step 2 : Let t ¼ tþ1. Define

SA ¼
∂lðY;Λ;Θðt�1ÞÞ

∂Aedj
� ∂lðY;Λ;ΘðtÞÞ

∂Aedj
ð33Þ

Sb ¼
∂lðY;Λ;Θðt�1ÞÞ

∂bed
� ∂lðY;Λ;ΘðtÞÞ

∂bed
ð34Þ

Then, the updating formulas are

ΔðtÞ
edj ¼

minðηþΔðt�1Þ
edj ;ΔmaxÞ if SA40

maxðη�Δðt�1Þ
edj ;ΔminÞ if SAo0

Δðt�1Þ
edj else

8>>><
>>>:

ð35Þ

ΔðtÞ
ed ¼

minðηþΔðt�1Þ
ed ;ΔmaxÞ if Sb40

maxðη�Δðt�1Þ
ed ;ΔminÞ if Sbo0

Δðt�1Þ
ed else

8>>><
>>>:

ð36Þ

If SAo0;
∂lðY;Λ;ΘðtÞÞ

∂Aedj
¼ 0 ð37Þ

If Sbo0;
∂lðY;Λ;ΘðtÞÞ

∂bed
¼ 0 ð38Þ

Aðtþ1Þ
edj ¼ AðtÞ

edjþΔAðtÞ
edj ð39Þ

bðtþ1Þ
ed ¼ bðtÞedþΔbðtÞed : ð40Þ

Step 3 : Repeat Step 2 ðNT �1Þ times.

In the above procedure, the relevant derivatives can be calcu-
lated. For the case of piecewise linear transforms, the formulations
are

∂lr
∂Aedj

¼
αlrð1� lrÞðmqkd�mpk̂dÞδðe; erÞyrj

Jmpk̂ �mqk J
ð41Þ
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∂lr
∂bed

¼
αlrð1� lrÞðmqkd�mpk̂dÞδðe; erÞ

Jmpk̂ �mqk J
ð42Þ

while for the case of weighted sum of linear transforms, the
corresponding derivatives are

∂lr
∂Aedj

¼
αlrð1� lrÞðmqkd�mpk̂dÞwe

ryrj
Jmpk̂ �mqk J

ð43Þ

∂lr
∂bed

¼
αlrð1� lrÞðmqkd�mpk̂dÞwe

r

Jmpk̂ �mqk J
ð44Þ

where

lr ¼
1

1þexp½�αdðyr;Λ;ΘÞþβ�
: ð45Þ
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