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Machine recognition of a handwritten mathematical expression (HME) is challenging due to the ambigui- 

ties of handwritten symbols and the two-dimensional structure of mathematical expressions. Inspired by 

recent work in deep learning, we present Watch, Attend and Parse (WAP), a novel end-to-end approach 

based on neural network that learns to recognize HMEs in a two-dimensional layout and outputs them 

as one-dimensional character sequences in LaTeX format. Inherently unlike traditional methods, our pro- 

posed model avoids problems that stem from symbol segmentation, and it does not require a predefined 

expression grammar. Meanwhile, the problems of symbol recognition and structural analysis are handled, 

respectively, using a watcher and a parser. We employ a convolutional neural network encoder that takes 

HME images as input as the watcher and employ a recurrent neural network decoder equipped with an 

attention mechanism as the parser to generate LaTeX sequences. Moreover, the correspondence between 

the input expressions and the output LaTeX sequences is learned automatically by the attention mecha- 

nism. We validate the proposed approach on a benchmark published by the CROHME international com- 

petition. Using the official training dataset, WAP significantly outperformed the state-of-the-art method 

with an expression recognition accuracy of 46.55% on CROHME 2014 and 44.55% on CROHME 2016. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Mathematical notations play an essential role in scientific docu-

ments and are indispensable for describing problems and theories

in math, physics and many other fields. Recently, people have be-

gun to use handwritten mathematical notations as input due to the

rapid emergence of new technologies such as digital pens, tablets,

smartphones, etc. While this natural input method is convenient,

it also requires the development of systems that are able to recog-

nize handwritten mathematical expressions (HMEs). 

As a research problem, automatic recognition of a mathemat-

ical expression (ME) is different from the traditional OCR text-

recognition problem and exhibits several fascinating challenges [1] .

For example, the combination of the presence of two-dimensional

structures, enormous ambiguities in handwritten input and a

strong dependency on contextual information make ME recogni-
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ion difficult, but fascinate researchers [2,3] . Achieving success in

his domain could, in turn, accelerate progress in machine recogni-

ion of other two-dimensional languages. 

Handwritten mathematical expression recognition (HMER)

omprises two major problems [4,5] : symbol recognition and

tructural analysis. These two problems can be solved sequentially

r globally. Sequential solutions [6,7] first segment the input ex-

ression into math symbols and then recognize them. The analy-

is of two-dimensional structures is then carried out based on the

est symbol segmentation and symbol recognition results. In con-

rast, the goal of global solutions [8,9] is to recognize symbols and

nalyse two-dimensional structures simultaneously. Symbol recog-

ition and structural analysis are optimised using the global infor-

ation of the mathematical expression. The segmentation is then

chieved as a byproduct of the global optimization. 

In sequential solutions, when incorrect segmentation occurs or

ncorrect decisions are made during symbol recognition, errors are

ubsequently inherited by the structural analysis. Consequently,

lobal solutions seem more appropriate but they are computa-

ionally expensive because the probabilities for segmentation com-

osed of strokes (a sequence of points between a pen-down and a

en-up operation with a stylus) are exponentially expanded; there-

http://dx.doi.org/10.1016/j.patcog.2017.06.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2017.06.017&domain=pdf
mailto:xysszjs@mail.ustc.edu.cn
mailto:jundu@ustc.edu.cn
mailto:zsl2008@mail.ustc.edu.cn
mailto:danliu@iflytek.com
mailto:ylhu3@iflytek.com
mailto:jshu@iflytek.com
mailto:siwei@iflytek.com
mailto:lrdai@ustc.edu.cn
http://dx.doi.org/10.1016/j.patcog.2017.06.017


J. Zhang et al. / Pattern Recognition 71 (2017) 196–206 197 

f  

M  

a  

[  

t  

[  

g  

c  

s  

a  

i  

r  

c  

s

 

n  

b

a  

t  

w  

v  

a  

w  

i  

t  

p  

a  

o  

c  

n  

t  

e  

p  

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H  

d  

o

2

 

t

2

 

p  

h  

p

 

m  

r  

r  

o  

u  

t  

[  

(  

i

 

s  

d  

p

T  

o  

Y  

Y  

P  

s  

A  

s  

c  

u  

[  

c  

t

2

 

d  

s  

v  

t  

T  

i  

v  

a  

w  

w  

u  

p  

t  

[

 

i  

S  

o  

a  

v  

[  

R  

c  

G  

r  

r  

U  

t  

A  
ore, additional effective search strategies must be executed [10] .

eanwhile, many approaches for performing structural analysis of

n ME language have been investigated, including expression trees

11] , two-dimensional HMM [12] and many others [13–15] . Among

hese, the grammar-based methods seem to be more dependable

16,17] and have performed well in several systems [7–9] . These

rammars are constructed using extensive prior knowledge and the

orresponding parsing algorithms are also computed. Overall, both

equential and global approaches have limitations that this study

ims to address: symbol segmentation during symbol recognition

s required, which introduces many difficulties; structural analysis

equires a priori knowledge that defines an ME grammar; and the

omplexity of parsing algorithms increases exponentially with the

ize of the predefined grammar. 

In this paper, we introduce Watch, Attend and Parse (WAP), a

eural network model as an improved version of the attention-

ased encoder-decoder model in [18] . This model learns to “watch”

n HME image and parse it into a LaTeX sequence [19] . So WAP has

wo components: a watcher and a parser, the parser is equipped

ith the attention mechanism [18,20–22] . The watcher is a con-

olutional neural network (CNN) [23] encoder that maps ME im-

ges to high-level features. The parser is a recurrent neural net-

ork (RNN) [24] decoder that converts these high-level features

nto output sequences, word by word. For each predicted word,

he attention mechanism built into the parser scans the entire in-

ut ME image and chooses the most relevant region to describe

 segmented symbol or implicit spatial operator. Unlike previ-

us approaches, WAP optimises symbol segmentation automati-

ally through its attention mechanism, and structural analysis does

ot rely on a predefined ME grammar. Moreover, the watcher and

he parser are jointly trained. By doing this, not only the watcher

xtracts good features for the parser to decode but the parser also

rovides contextual information to tune the watcher and guide the

ttention. 

The contributions of this paper are as follows: 

1) We introduce a neural network named Watch, Attend and Parse

(WAP) to recognize HMEs. This novel model is inherently dif-

ferent from the traditional methods. It alleviates the problems

caused by symbol segmentation and the computational de-

mands of employing an ME grammar. 

2) We propose employing a deep fully convolutional neural net-

work (FCN) as the watcher, making it possible to process large-

scale input images efficiently and, therefore, allowing variable

input sizes [25,26] . We also observed a key problem while

training WAP, namely, a lack of coverage [27,28] . To address this

problem, we propose to use a coverage-based attention model

that appends a coverage vector to incorporate the attention his-

tory. 

3) We also demonstrate another advantage of including attention

in experimental analysis; through attention visualization, we

can see how WAP completes the automatic symbol segmenta-

tion process and parses the two-dimensional structure. 

Finally, we validate the capabilities of our proposed model for

MER by comparing it with state-of-the-art approach on the large

ataset published by the international Competition on Recognition

f Handwritten Mathematical Expressions (CROHME). 

. Related works 

In this section, we describe the previous research on HMER and

he recent research based on encoder-decoder frameworks. 
.1. Grammar based HMER 

This section provides the relevant previous work on HMER. The

roblem has been studied for decades [1] . A variety of approaches

ave been proposed [29] . Here, we will comment on a few ap-

roaches based on grammars. 

Given the two-dimensional structure of mathematical notation,

ost approaches are based on predefined grammars as a natu-

al way to solve the problem. In fact, the first proposals on ME

ecognition belonged to this case [1] . Subsequently, different types

f grammars have been investigated. For example, Chan and Ye-

ng [30] used definite clause grammars, the Lavirotte and Pot-

ier [17] model was based on graph grammars, Yamamoto et al.

31] presented a system using Probabilistic Context-Free Grammars

PCFG), and MacLean and Labahn [32] developed an approach us-

ng relational grammars and fuzzy sets. 

Proposals based on PCFG use a probability model to analyse the

tructure of the expression and address ambiguities in handwritten

ata. Álvaro and Sanchez [9] proposed a system that parses ex-

ressions using two-dimensional stochastic context-free grammars. 

his is a global approach that combines several stochastic sources

f information to globally determine the most likely expression.

amamoto et al. [31] presented a version of the CYK (Cocke-

ounger-Kasami) algorithm for parsing two-dimensional PCFG (2D-

CFG). They defined probability functions based on a region repre-

entation called the “hidden writing area”. The model proposed by

wal et al. [8] considers several segmentation hypotheses based on

patial information, and the symbol classifier includes a rejection

lass, namely, “junk”, to avoid incorrect segmentations and provide

seful information to structure the analyser. MacLean and Labahn

33] presented a Bayesian model for recognizing HME; this model

aptures all recognizable interpretations of the input and organises

hem in a parse forest. 

.2. Neural network 

Recently, a novel neural network model, namely encoder-

ecoder, has been exploited specifically to address sequence to

equence learning. The encoder-decoder is designed to handle

ariable-length input and output sequences [22] . Typically, both

he encoder and the decoder are recurrent neural networks (RNN).

he encoder RNN learns to encode the sequential variable-length

nput into a fixed-length vector. The decoder RNN then uses this

ector to produce the variable-length output sequence, one word

t a time. In the training stage, to generate the next predicted

ord, the model provides the ground truth labels from previous

ords as inputs to the decoder. In the inference stage, the model

tilises a beam search to obtain suitable candidates for the next

redicted word. Such a framework has been applied extensively

o many applications including machine translation [34] , parsing

35] and speech recognition [36,37] . 

Problems such as HMER that require mapping input images

nto a fixed-length vector, usually employ a CNN as the encoder.

uch an encoder has been applied to handwriting recognition [38] ,

ptical character recognition of natural scenes [39–41] and im-

ge caption generation [42–44] . All these areas show positive ad-

ances. Also, when handling the image-based sequence prediction,

45] proposes to adopt the CRNN, a combination of deep CNN and

NN, to encode images. The RNN is incorporated due to its strong

apability of capturing contextual information within a sequence.

enerally, these models first extract a high-level feature from the

aw input image. This feature can be considered as an abstract rep-

esentation that is then decoded to generate a context sequence.

sually, both the encoder and the decoder are jointly trained, so

hat the entire model will be optimised in a more coordinated way.

lthough sometimes, as in [42] , the encoder has been pre-trained



198 J. Zhang et al. / Pattern Recognition 71 (2017) 196–206 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Architectures of Watch, Attend, Parse for handwritten mathematical expres- 

sion recognition. 
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by using an enormous amount of training data, we would prefer to

improve the encoder. 

Meanwhile, attention has been found to be one of the most dis-

tinct aspects of the human visual system [46,47] . After applying an

attention mechanism to an encoder-decoder model, salient regions

in the static representation can dynamically rise to the forefront.

This attention vector can be viewed as a set of alterable connec-

tions that allow the forward information and the backward gradi-

ents to flow more effectively. 

The generality of this attention framework suggests that HMER

may also be one proper application. Recently, we find a parallel

work similar to this study submitted as the arXiv preprint [48] ,

named WYGIWYS (What You Get Is What You See), which de-

compiles a machine-printed mathematical expression into presen-

tational markup. Although both the approach presented in [48] and

the proposed one in this study utilize the attention based encoder-

decoder framework to translate mathematical expressions into La-

TeX notations, there are two significant differences. The first differ-

ence lies in the encoder architecture adopted. In [48] , a CNN+Bi-

RNN architecture is adopted to encode the machine-printed math-

ematical expressions. In this paper, a deep FCN architecture is

adopted as the encoder to deal with the much larger variation in

the size of the math symbols in handwritten expressions than in

the machine-printed ones with much smaller model footprint. It

is observed from the experimental results (see Section 7 ) that the

deep FCN architecture performs much better for HMER task. The

second difference is the attention mechanism used in the decoder.

WYGIWYS uses a classic attention model ( Eq. (8) ) which can be pa-

rameterized as a multi-layer perceptron (MLP). But for HMER, the

classic attention model reveals a problem, namely, lack of coverage.

We visualize this problem in Section 5 . To attack this problem, we

propose to use the coverage based attention model and demon-

strate that significant improvement in the performance for HMER

can be achieved compared to the classic one. 

3. Network architecture of WAP 

In this paper, rather than recognizing mathematical expres-

sion as a tree structure, we convert the expressions from two-

dimensional structures to one-dimensional character sequences.

The output character sequences are formatted using the common

LaTeX markup system; therefore, they can be directly displayed us-

ing existing tools. Furthermore, both the input images and output

LaTex sequences may have variable lengths. 

Fortunately, our model is an improved version of an encoder-

decoder network, while encoder-decoder networks are designed to

address variable length input and output sequences [20] . The over-

all WAP architecture is shown in Fig. 1 . The watcher is a fully con-

volutional network (FCN) encoder that transforms the input image

into an intermediate representation. The parser is a Gated Recur-

rent Units (GRU) decoder [49] that uses the intermediate repre-

sentation to generate a corresponding LaTeX sequence. The atten-

tion mechanism impels the decoder to focus its attention on spe-

cific parts of the input image. The encoder, decoder and attention

mechanism are trained in a joint manner. 

We started our model from [42] . In that model, the convolu-

tional encoder was pre-trained and fixed; they optimised only an

LSTM [50] decoder with attention using training data. This proce-

dure is designed for two reasons. First, the Oxford VGGnet they

used as an encoder was pre-trained very well to produce high

quality features from input images. Second, the input images for

image caption generation and those for training VGGnet were a

perfect match. Both the image size and the number of image

classes were identical. However, here, we did not have sufficient

isolated mathematical symbols data to pre-train the convolutional

encoder. Additionally, the sizes of mathematical expressions varies.
oreover, mathematical expressions include some invisible char-

cteristics such as superscript “∧ ” or subscript “_” that must be

ranslated to symbols. 

Consequently, our encoder and decoder should be optimised

imultaneously through joint training. By jointly optimizing the

odel, the GRU decoder and the attention mechanism can help

djust the FCN encoder parameters. In turn, the FCN encoder will

roduce a better representation of the input image, thus improving

he performance of the decoder with attention mechanisms. 

.1. Watcher: fully convolutional network 

Usually, offline handwritten mathematical expressions are

tored as greyscale images and the pixel value is normalized be-

ween 0 and 1. When handling online handwritten expressions,

uch as CROHME task, the data format is a sequence of xy-

oordinates points. To fully utilize the online trajectory informa-

ion, the input of the watcher incorporates the image transformed

rom xy-coordinates points and the 8-directional pattern images

hich are the intermediate products of the 8-directional raw fea-

ures [51,52] . 

CNN has been widely used for pattern recognition in recent

ears, especially in the field of image recognition, and has been

hown to be highly invariant to translation, scaling, tilt or other

ypes of image modifications. Moreover, CNN does not require

raditional handcrafted feature extraction and data reconstruction

rocesses before recognizing an image. The basic components of

NN are the convolution, pooling and activation layers. Convolu-

ion layers are determined by the number of input channels, the

umber of output feature maps and the kernel size and stride.

ach kernel can be considered as a filter whose size is usually

uch smaller than the input. Hence, a kernel operates on a lo-

al region of input rather than the whole image. The locations that

onnect to higher layers are called receptive fields. On a given fea-

ure map, the kernel weights are shared, making the CNN more

imilar to biological neural networks, reducing the complexity of

he network model. The pooling layers are usually an average pool-

ng function or a max pooling function; they are used to reduce
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odel complexity and enlarge the receptive field. The activation

ayers are operated by element-wise nonlinear functions. If a CNN

s used to complete image classification work, fully connected lay-

rs and a softmax layer are also required. 

Rather than extracting features from a fully connected layer

53] , we employ a fully convolutional network (FCN) containing

nly convolution, pooling and activation layers. The FCN has the

roperty that it can naturally accept input of arbitrary size, which

s important for HMER because the sizes of HME images are not

xed based on the lengths of the mathematical expressions. Con-

equently, we do not need to compress or enlarge the input to a

xed size in FCN. Additionally, FCN as the watcher can help to ob-

ain the level of correspondence between the feature maps and the

ocal regions of the input HME image. This approach makes sense

ecause it allows the parser to selectively pay attention to certain

arts of an image by choosing specific portions from among all the

eature vectors. 

As shown in Fig. 1 , our model takes a single raw expression

mage and generates a corresponding LaTeX sequence. For exam-

le, the output sequence y was encoded as a sequence of one-shot

ncoded words. 

 = { y 1 , . . . , y C } , y i ∈ R 

K (1) 

here K is the number of total words in the vocabulary and C is

he length of a LaTeX sequence. 

Assuming that the output of FCN encoder is a three-

imensional array of size H × W × D , consider the output as a

ariable-length grid of L elements, L = H × W . Each of these ele-

ents is a D -dimensional annotation that corresponds to a local

egion of the image. 

 = { a 1 , . . . , a L } , a i ∈ R 

D (2) 

.2. Parser: gated recurrent units 

To address the learning of variable-size input images and asso-

iate them with variable-length output sequences, we attempt to

ompute an intermediate fixed-size vector. Here, after the watcher

xtracts the high-level visual features from different image loca-

ions, we compute a context vector c t using the weighted sum of

hese annotation vectors a i , which will be described in more de-

ails later. We then employ the recurrent neural network to pro-

uce the LaTeX sequences word by word. The probability of each

redicted word is computed by the context vector c t , the current

NN hidden state h t and the previous target word y t−1 using the

ollowing equation: 

p( y t | y 1 , . . . , y t−1 , x ) = f ( y t−1 , h t , c t ) (3)

here the function f denotes a multi layered perceptron (MLP) ex-

anded in Eq. (11) , x denotes the input ME image. 

We utilize the Gated Recurrent Units [49] , an improved version

f simple RNN. GRU alleviates the vanishing and exploding gradi-

nt problem in simple RNN. The GRU hidden state h t is computed

s follows: 

 t = σ ( W yz E y t−1 + U hz h t−1 + C cz c t ) (4) 

 t = σ ( W yr E y t−1 + U hr h t−1 + C cr c t ) (5) 

˜ 
 t = tanh ( W yh E y t−1 + U rh ( r t � h t−1 ) + C cz c t ) (6) 

 t = (1 − z t ) � h t−1 + z t � ˜ h t (7) 

here σ is the sigmoid function, � is an element-wise multiplica-

ion, and z t , r t and 

˜ h t are, respectively, the update gate, reset gate
nd candidate activation. m and n denote the embedding and GRU

imensionality, respectively. The embedding matrix is E ∈ R 

m ×K . 

Intuitively, for each predicted word from the parser, the entire

nput image is not necessary provide the useful information. For

xample, in Fig. 1 , the first word “e” in the output sequence cor-

esponds only to the leftmost part of the input image: the other

arts of the input expression do not need to be watched and

hould not participate in the computation of the context vector, c t .

herefore, the parser needs an attention model to know which por-

ion is the correct place to attend to generate the next predicted

ord and then assign a higher weight to the corresponding local

nnotation vector a i . The attention model computes weight αi of

ach annotation vector a i conditioned on the previous GRU hidden

tate, h t−1 . This can be more simply understood that the part of

nput image the parser should attend to depends on the words in

he output sequence that have already been produced. Here, we

arameterize the attention model as an MLP that is jointly trained

ith all the other components of the WAP neural network: 

 ti = νT 
a tanh ( W a h t−1 + U a a i ) (8) 

ti = 

exp ( e ti ) ∑ L 
k =1 exp ( e tk ) 

(9) 

et n 
′ 

denote the attention dimension; then, νa ∈ R 

n 
′ 
, W a ∈ R 

n 
′ ×n 

nd U a ∈ R 

n 
′ ×D . After the weights αti (which sum to one) have

een computed, the context vector, c t , is calculated as follows: 

 t = 

L ∑ 

i 

αti a i (10) 

e can understand this summation of all the annotations us-

ng weight coefficients as computing an expected annotation. This

eighted-sum annotation has the same length as the output se-

uence and can then contribute to the decoding phase. 

The probability αti denotes the alignment between the target

ord y t and a local region i in source image. By providing the

arser with an attention mechanism, it can now determine which

art of the source image to pay attention to. With this approach,

t is not necessary for the watcher to encode all the information in

he source image. It can also be considered as a regularization pa-

ameter for the FCN encoder because the attention helps to dimin-

sh the gradient back-propagated from the parser. The third part of

he architecture in Fig. 1 shows some examples of visualized atten-

ion; other visualized attention results will be explained in detail

n Section 7.3 . 

Finally, the output word probability can be computed as fol-

ows: 

p( y t | x , y t−1 ) = g ( W o (E y t−1 + W h h t + W c c t ) ) (11)

here g denotes a softmax activation function over all the words

n the vocabulary, W o ∈ R 

K×m , W h ∈ R 

m ×n , W c ∈ R 

m ×D , and E are

earned parameters initialized randomly. 

. Very deep convnets architecture 

Because convolutional neural networks have become a popular

ool in the computer vision field, a number of works have been

tudied to improve the original architecture describe in [23] to

chieve better performance. The HMEs in CROHME dataset are of-

en complex and long while the input images are relatively large,

ith a maximum size of 311 × 1224 pixels. To address these large-

cale input images, in this paper, we focus on the depth of im-

roved CNNs as an important aspect of convolutional network ar-

hitecture design, as in [25] . In our experiments, we fixed the other

arameters of the watcher and then gradually increased the depth
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Fig. 2. FCN configurations. The convolutional layer parameters are denoted as 

“conv(receptive field size)-[number of channels]”. For brevity, the batch normaliza- 

tion layer and ReLU activation function is not shown. 
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of the watcher network by adding more convolutional layers. The

size of the convolution filters we used is small, only (3 × 3). As

a result, the watcher parameters are acceptable. Finally, we deter-

mined the FCN configurations for this study, which are shown in

Fig. 2 . 

The watcher input consists of greyscale images and 8-

directional pattern images, described as a three-dimensional array

of size h × w × d , where h and w are the spatial dimensions (the

height and width of the image, respective) and d is the channel

dimension ( d = 9 in this study). The image is then passed through

a stack of convolutional layers. Every four convolutional layers are

stacked as a block. Within each block, the number of feature maps

is fixed. Spatial pooling is carried out by four max-pooling layers

followed by each block. All the hidden layers in this architecture

are equipped with a batch normalization layer [54] and a non-

linear activation layer. Here we use the ReLU [23] activation func-

tion and the batch normalization layer is performed before the ac-

tivation layer. Each convolutional layer utilizes a square convolu-

tion kernel with a size of (3 × 3). The convolution stride size is
xed to (1 × 1). The four max-pooling layers are carried out on a

2 × 2) kernel, with a stride fixed to (2 × 2). 

Intuitively, to process large scale images, we should use large

onvolution kernels in the convolution layers to extend the recep-

ive fields. For example, [23] used an (11 × 11) kernel as the con-

olutional filter, with a stride of (4 × 4). Similarly, [55] adopted

 (7 × 7) kernel with a stride of (2 × 2) . However, in our work,

e chose a (3 × 3) convolution kernel, which possesses the small-

st receptive field able to capture left/right, up/down, and centre

ocations simultaneously. The reason to utilize a small kernel is

 stack of layers with small convolution kernels has a receptive

eld equivalent to a single layer with a large convolution kernel.

n addition, the stack of convolutional layers imposes a regulariza-

ion on the large filters of a single convolutional layer. For exam-

le, four convolutional layers (with a kernel size of (3 × 3) and a

tride of (1 × 1)) stacked have a (9 × 9) effective receptive field.

ssuming that both the input and the output of a four-layer (3 ×
) convolution stack have C channels, the stack is parameterized

y 4( 4 2 × C 2 ) = 64 C 2 weights. In contrast, a single (9 × 9) convo-

utional layer would require 9 2 × C 2 = 81 C 2 parameters, i.e, the lay-

red architecture decreases the number of parameters required by

bout 20%. Such regularization is quite important in this study be-

ause our training dataset is insufficient. Moreover, this approach

llows us to incorporate four non-linear ReLU layers rather than

ust one, which makes the decision function more discriminative. 

. Coverage-model 

Although the attention-based encoder-decoder model is capable

f jointly completing the process of watching, attending and pars-

ng a handwritten mathematical expression, there is still a serious

roblem, namely, lack of coverage [27] . Coverage means the over-

ll alignment information that indicates whether a local region of

he source HME images has been translated. The past alignment

nformation is especially important when recognizing HME; mis-

lignment may result in over- or under-parsing. Over-parsing de-

otes that some parts of an HME image are unnecessarily parsed

ultiple times, while under-parsing means that some parts remain

nparsed. To address the problem of lacking coverage, we chose to

ppend a coverage vector to the attention model ( Eq. (8) ). Similar

o [36] , the coverage vector aims keeping track of past alignment

nformation. We compute the coverage vector based on the sum

f all past attention probabilities rather than on previous step at-

ention probabilities. We believe that the sum of the past atten-

ion probabilities can better describe the alignment history. Fig. 3

hows a schematic representation of the coverage vector based at-

ention model. We rewrote the attention model based on the cov-

rage vector as follows: 

t = 

t−1 ∑ 

l 

αl (12)

 = Q ∗ βt (13)

 ti = νT 
a tanh ( W a h t−1 + U a a i + U f f i ) (14)

ere βt is the sum of past attention probabilities, f i is the cover-

ge vector of annotation a i , which is initialized as a zero vector.

t each time step t in the decoding phase, the previous attention

robabilities (those before time step t ) serve as additional input

o the attention model, which provide complementary past align-

ent information about whether a local region of source images

as been attended to. The coverage vector is produced through a

onvolutional layer because we think the coverage vector of an-

otation a i should also be associated with its adjacent attention

robabilities. 
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Fig. 3. Schematic representation of the coverage vector based attention model. At 

each time step t , an MLP combines the hidden state h t−1 and all the annotation 

vectors a i with past alignment information βt to compute the attention weights 

αti . 

Fig. 4. Examples of attention with and without the coverage vector. The recognized 

LaTeX sequences of the right side of the equation are printed below each image (the 

white areas in the images indicate the attended regions, and the underlined text in 

the LaTeX sequences indicates the corresponding words). 
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The coverage vector is fed to the attention model to help ad-

ust future attention. We expect the coverage vector to guide the

ttention model to assign higher attention probabilities to the un-

ranslated regions of images. More specifically, the pixels of input

mages that have significantly contributed to the generation of tar-

et words in the past should be assigned lower attention proba-

ilities, causing pixels with less contribution to possess higher at-

ention probabilities in future decoding phases. Consequently, the

overage vector can guide the encoder-decoder and alleviate the

roblems of over- or under-parsing. 

The comparison between attention with coverage vector and

ithout coverage vector is shown in Fig. 4 . In the examples with-

ut the coverage vector, the basic symbol “e” is over-parsed while

he operator symbol “∧ ” is mistakenly unparsed. When parsing the

asic symbol “i”, the model focuses too much attention on the

revious “i”. However, the coverage model ameliorates these prob-

ems, and the alignment remains correct. 
. The training and decoding procedure 

.1. Training 

The Watch, Attend and Parse model is trained jointly for end-

o-end handwritten mathematical expression recognition. The im-

ge to sequence methods condition the prediction on the previous

ords and current input image, and the predicted word probability

an be computed as shown in Eq. (11) . The training objective is to

aximize the predicted word probability and we use cross-entropy

CE) as the objective function. 

The architecture of the watcher is shown in Fig. 2 , the GRU state

imension of the parser is 256, and the embedding dimension is

56. We trained our model with batch normalization [54] to re-

uce the internal covariate shift. The adadelta algorithm [56] with

radient clipping was used for optimization. We employed dropout

57] to prevent overfitting: the dropout was performed only on

he last 4 convolution filters and the drop ratio was set to 20%.

he weight noise [58] was also implemented as a regularization

easure. We annealed the best model in terms of word error rate

WER) [59] by restarting the training with weight noise. 

.2. Decoding 

In the recognition stage, we aim to find the most likely LaTeX

equence given the input image: 

ˆ  = arg max 
y 

log P ( y | x ) (15) 

ifferent from training procedure, we do not have the ground truth

f predicted word of the LaTeX sequence. Consequently, a sim-

le left-to-right beam search algorithm [60] is employed to im-

lement the decoding procedure. We maintain a set of 10 partial

ypotheses, begining with the start-of-sentence < s > token. At

ach timestep, each partial hypothesis in the beam is expanded

ith every possible word and only the 10 most likely beams are

ept. When the < s > token is encountered, it is removed from the

eam and added to the set of complete hypotheses. This procedure

s repeated until the output word becomes a symbol corresponding

o the end-of-sentence < / s > . 

We also adopt the ensemble method [61] to improve the per-

ormance. First we train 5 neural network models on the same

raining set but with different initialized parameters. Then we av-

rage their prediction probabilities on the predicted word during

he beam search process. 

. Experiments 

We validated our proposal using the large public dataset avail-

ble from CROHME [29] . We would also analyse how WAP fin-

shed the symbol segmentation automatically and parsed the two-

imensional structure in its own way through attention visualiza-

ion. 

.1. Dataset 

The train set of CROHME task consists of several datasets re-

eived from the participants, which is currently the largest public

ataset of handwritten mathematical expressions. The complexity

nd size of both the train and test sets have increased over the

ears. The CROHME 2014 dataset had a train set of 8836 math ex-

ressions (86K symbols) and a test set of 986 math expressions (6K

ymbols). There were 101 math symbol classes. None of the hand-

ritten expressions or LaTeX notations in the test set appeared in

he train set. Following other participants in CROHME 2014, we

sed the CROHME 2013 test set as a validation set for estimating
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Fig. 5. The model learning procedure of determining five spatial relationships (hor- 

izontal, vertical, subscript, superscript and inside) through attention visualization. 

Fig. 6. Attention visualization of a tested mathematical expression image whose 

LaTeX sequence is “ (sin (x)) ∧ { 2 } + (cos (x)) ∧ { 2 } ”. 
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the models during the training. Consequently, our reported results

on the competition test set are fairly comparable with others. As

for the CROHME 2016 task, the train set was the same as CROHME

2014. But the test set was newly collected and labeled by the orga-

nizers at the University of Nantes. There were totally 1147 expres-

sions and the math symbol classes remained unchanged. 

Each sample of expressions is stored as an InkML file, which

contains two important pieces of information: (i) the ink: a set of

traces made of points and (ii) the expression level ground truth,

which can be either a MathML structure or a LaTeX expression se-

quence. (The samples also include some information about the ex-

pression writers such as identification, handedness (left/right), age

and gender; however, we did not use this additional information

in this paper.) 

7.2. Evaluation 

The participating systems in all of the CROHME competitions

were ranked by expression recognition rates, e.g. the percentage of

predicted LaTeX formula sequences matching ground truth, which

is simple to understand and provides a useful global performance

metric. The CROHME competition compared the competing sys-

tems not only by expression recognition rates (ExpRate) but also

those with at most one to three word-level errors. In our experi-

ments, we computed these metrics by using the official tool pro-

vided by the organizer of CROHME. 

It is inappropriate to evaluate an expression recognition system

only at the expression level. Here, we also evaluate our system at

the word level. WER [59] is a common metric for the performance

of machine translation systems. Because the output of our system

consists of word sequences, errors such as substitutions, deletions

and insertions can always occur. The intuition behind deletions and

insertions involves the path from the target to the output. For ex-

ample, if the target is “1+1 = 2” and the output is “1+ = 2”, we call

the error a deletion; if the output is “1+1 == 2”, we call the error

an insertion; and if the output is “1+2 = 2”, we call the error a sub-

stitution. 

Word error rate can then be computed as: 

 ER = 

N 

W 

sub 
+ N 

W 

del 
+ N 

W 

ins 

N 

W 

= 

N 

W 

sub 
+ N 

W 

del 
+ N 

W 

ins 

N 

W 

sub 
+ N 

W 

del 
+ N 

W 

cor 

(16)

where 

• N 

W 

sub 
is the number of substitutions 

• N 

W 

del 
is the number of deletions 

• N 

W 

ins 
is the number of insertions 

• N 

W 

cor is the number of corrects 

• N 

W is the number of words in the target 

7.3. Attention visualization 

In this section, we show through attention visualization how

the model is able to analyse the two-dimensional structure of ME

language. The approach WAP to perform symbol segmentation au-

tomatically is also explained. 

To analyse the two-dimensional structure of ME, it is essential

to identify the spatial relationships between mathematical sym-

bols, which are statistically determined and might be horizontal,

vertical, subscript, superscript or inside. As shown in Fig. 5 , the

horizontal and vertical relationships are easy to learn by focusing

on the middle symbol. When dealing with subscripts and super-

scripts, the parser must precisely attend to the bottom-right and

upper-right directions. For inside relationships, the parser must at-

tend to the bounding symbols. More precisely, in Fig. 6 , consider

the handwritten mathematical expression ( sin (x )) 2 + ( cos (x )) 2 as
n example. We show how our system learned to translate this

ME into the LaTeX sequence “ (sin (x)) ∧ { 2 } + (cos (x)) ∧ { 2 } ”

n a step-by-step fashion through attention visualization. When en-

ountering basic symbols such as “(”, “)”, “sin”, “x”, “cos” and “2”,

he model learns alignments that strongly correspond with human

ntuition. These correct alignments let our model automatically

egment symbols by their nature. When encountering a superscript

elationship, the implicit operator “∧ ” is parsed. More interestingly,
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Fig. 7. Examples of ME where the LaTeX sequences are correctly generated. The 

green text denotes that the generated output sequence correctly matches the 

ground truth. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 8. Examples of ME where some errors are present in the generated LaTeX nota- 

tion. The green text denotes the correct output, while red denotes the incorrect out- 

put. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

Table 1 

Correct expression recognition rate (in %) on CROHME 2014, 

we erase system III because it used extra training data. 

System Correct(%) ≤ 1(%) ≤ 2(%) ≤ 3(%) 

I 37.22 44.22 47.26 50.20 

II 15.01 22.31 26.57 27.69 

IV 18.97 28.19 32.35 33.37 

V 18.97 26.37 30.83 32.96 

VI 25.66 33.16 35.90 37.32 

VII 26.06 33.87 38.54 39.96 

WAP 46.55 61.16 65.21 66.13 
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Table 2 

Correct expression recognition rate (in %) on CROHME 2016, 

we erase team MyScript because it used extra training data. 

Correct(%) ≤ 1(%) ≤ 2(%) ≤ 3(%) 

Wiris 49.61 60.42 64.69 –

Tokyo 43.94 50.91 53.70 –

S ̃  a o Paolo 33.39 43.50 49.17 –

Nantes 13.34 21.02 28.33 –

WAP 44.55 57.10 61.55 62.34 

Table 3 

The recognition performance (in %) comparison on CROHME 2014 when 

appending deep FCN, coverage based attention model and trajectory in- 

formation to the WYGIWYS system proposed in [48] . 

System ExpRate WER Sub Del Ins 

WYGIWYS 28.70 32.35 11.65 13.38 7.32 

+ deep FCN 35.09 28.41 9.37 13.63 5.41 

+ coverage 44.42 19.40 7.11 8.76 3.52 

+ trajectory 46.55 17.73 6.63 7.94 3.16 
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e find the parser successfully generates a pair of braces “{}” right

fter the superscript relation being detected, which are used to

ompose the exponent grammar of an ME in LaTeX. 

.4. Correct and wrong examples 

Fig. 7 shows two typical examples of ME, a fraction and a sum

xpression. The output in green denotes that our model has suc-

essfully grasped these two grammars. Fig. 8 shows several exam-

les of common errors. Typically, most of the expression structure

s preserved, but with one or two symbol recognition errors. Some-

imes, errors occur when the ME is long. Many errors occur due to

he ambiguities of handwritten mathematical symbols. Some sym-

ols are difficult to distinguish when they are not written clearly,

uch as “times” and “X”, “z” and “2”. Similarities between capital

etter and small letter also introduce many difficulties. However,

rrors such as translating “4 times 4 + 4 +4” into “4 X 4 + 4 +4”

ndicate the disadvantage of throwing away a predefined ME gram-

ar. Such errors could be corrected if an extra rule was added as

 postprocessing of WAP approach. 

.5. Validation on CROHME 

The expression recognition rates of submitted systems from

ROHME 2014 are listed in Table 1 . Details of these systems can
e seen in [29] . To make a fair comparison between results by dif-

erent systems, here, we only show the results using the CROHME

rain set. Our model achieved an ExpRate of 46.55%, while its WER

as only 17.73%. More training data could further improve the per-

ormance because our method requires a large amount of training

ata to ensure the coverage to well train a neural network. Sys-

em I named “seehat” was awarded first place on CROHME 2014

ompetition using only the CROHME training data; its ExpRate

as 37.22%. There was a large gap between the first place and

he second place results, indicating a huge improvement based on

he different methods. Although another system named “MyScript”

chieved a higher result, that system used a large private dataset

e were unable to access; consequently, we did not compare our

ystem with theirs. Additionally, a gap existed between the correct

nd error percentages ( ≤ 1%), showing that the corresponding sys-

ems have a large room for further improvements. In contrast, the

mall differences between error ( ≤ 2%) and error ( ≤ 3%) show

hat as additional errors are introduced, it is difficult to improve

he accuracy by incorporating a single correction. 

We also tested the generalization capability of WAP on

ROHME 2016 test set in Table 2 . The WAP model presented in

able 2 was the same one as that was shown in Table 1 and it

chieved an ExpRate of 44.55% which was quite a competitive re-

ult compared with other participating systems. The team Wiris

as awarded the first place on CROHME 2016 competition using

nly the CROHME training data with an ExpRate of 49.61%. Please

ote that Wiris used a Wikipedia formula corpus, consisting of

ver 592,0 0 0 formulae, to train a strong language model. In our

AP approach, the language model was not used, which might be

nvestigated as the future work. The details of other systems can

e found in [62] . 

In Table 3 , we showed the improvements via deep FCN, cover-

ge vector and trajectory information by appending each of them

o their previous system step by step. Meanwhile, the initial sys-

em WYGIWYS is proposed in [48] . 

First, the system “+ deep FCN” replaced the encoder of WY-

IWYS with deep FCN architecture. The handwritten expressions

ith arbitrary lengths required a large receptive field in the

atcher when encoding HME images. The deep FCN had larger re-

eptive fields but fewer parameters than the CNN in WYGIWYS en-

oder. The CNN parameter size of WYGIWYS encoder was about 5.5

imes of the deep FCN parameter size of our WAP encoder while

eep FCN watcher increased the ExpRate from 28.70% to 35.09%. 

Then, the ExpRate was improved from 35.09% to 44.42% after

he coverage vector was appended into the classic attention mech-
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Table 4 

Sequence length vs. ExpRate and WER (in %) on 

CROHME 2014. 

Length ExpRate WER 

1–5 66.18 21.78 

6–10 56.70 15.06 

11–15 43.71 14.19 

16–20 41.67 14.93 

21–25 43.85 12.44 

26–30 22.95 16.64 

31–35 27.03 20.50 

36 + 11.43 26.11 

Fig. 9. Percentages of substitution, deletion and insertion errors by WER (in %) on 

CROHME 2014. 
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anism. Meanwhile, the deletion error rate decreased an absolute

of 4.87%, which implied that our recognition system with the cov-

erage model was more capable to handle longer expressions. The

past alignment information helped the parser to focus on untrans-

lated pixels. It is important to ensure that the decoding process

ends when the whole input image has been translated, especially

when the LaTeX sequences are quite long. 

Finally, the trajectory information embedded in 8-directional

pattern images could also improve the ExpRate from 44.42% to

46.55%, which played an important role in distinguishing ambigu-

ous math symbols. For example, ‘ a ’ and ‘ α’ are visually similar

in printed expressions. However the online trajectories of writing

these two symbols are quite different for the recognizer to make

the correct decision accordingly. 

7.6. Effects of sequence length 

Another interesting analysis concerns the distribution of errors

with respect to the length of ME LaTeX sequences. Intuitively, the

longer the expression, the larger the size of the images. We ex-

pected the model to perform poorly on longer sequences due to

the limited number of long training sequences in our training

dataset. Additionally, a large image generates a corresponding large

representation, which increases the difficulty for the parser. Table 4

illustrates this behaviour. However, it was surprising that the WER

was lowest when the length of the LaTeX sequences ranged from

21 to 25. On short sequences (those whose length was smaller

than 5) the WER scores were quite poor due to many ambiguities;

additional context information is useful in helping the watcher

identify symbols correctly. Fig. 9 (a) shows the percentages of sub-

stitution, deletion and insertion errors that occurred in the overall

WER. Substitution and deletion errors dominate the WER (37.39%

and 44.80% respectively). Moreover, the percentages of substitu-

tion, deletion, and insertion errors varied as the length of the La-

TeX sequence increased. As illustrated in Fig. 9 (b), many deletion

errors occurred in long sequences, indicating an inability to model

long term dependencies. In contrast, for short sequences, substitu-

tions and insertions were the main sources of errors. Substitution
ere primarily from ambiguities, while insertions suggested that

he model may split words apart. 

. Conclusions 

In this paper we introduce a novel system named Watch, Attend

nd Parse to recognize handwritten mathematical expression. It

ives state-of-the-art performance on CROHME 2014 competition.

e show from experiment results that WAP is capable of learn-

ng an ME grammar and dealing with symbol segmentation auto-

atically, and demonstrate that the learned alignments correspond

uite well to human intuition through attention visualization. 

In future work, we plan to improve the system by making good

se of online ink trajectory information and the implementation of

 language model will be considered. We will also explore to apply

he WAP framework to other two-dimensional languages. 
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