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A B S T R A C T

We propose a unified speech enhancement framework to jointly handle both background noise and interfering
speech in a speaker-dependent scenario based on deep neural networks (DNNs). We first explore speaker-de-
pendent speech enhancement that can significantly improve system performance over speaker-independent
systems. Next, we consider interfering speech as one noise type, thus a speaker-dependent DNN system can be
adopted for both speech enhancement and separation. Experimental results demonstrate that the proposed
unified system can achieve comparable performances to specific systems where only noise or speech interference
is present. Furthermore, much better results can be obtained over individual enhancement or separation systems
in mixed background noise and interfering speech scenarios. The training data for the two specific tasks are also
found to be complementary. Finally, an ensemble learning-based framework is employed to further improve the
system performance in low signal-to-noise ratio (SNR) environments. A voice activity detection (VAD) DNN and
an ideal ratio mask (IRM) DNN are investigated to provide prior information to integrate two sub-modules at
frame level and time-frequency level, respectively. The results demonstrate the effectiveness of the ensemble
method in low SNR environments.

1. Introduction

Speech enhancement (Benesty et al., 2005) and speech separation
(Wang and Brown, 1999a) are important front-ends of speech proces-
sing systems aimed at noise reduction and segregating speech from
mixed speakers, respectively. Background noise and human voice in-
terference can reduce both the quality and intelligibility of the speech
signals and cause performance degradations in real-world applications,
including speech communication, hearing aids and speech and speaker
recognition. A key goal of speech enhancement (Loizou, 2013) is to
improve quality and intelligibility in the presence of interfering noise.
On the other hand, speech separation (Wang and Brown, 1999a;
Roweis, 2000) aims to separate the voice of a target speaker when
multiple speakers talk simultaneously.

Numerous methods were developed over the past several decades
for speech enhancement and speech separation. For enhancement, the
conventional methods include a wide range of approaches, such as
spectral subtraction (Boll, 1979), Wiener filtering (Lim and
Oppenheim, 1978) and statistical-model-based algorithms
(McAulay and Malpass, 1980). Spectral subtraction is one of the first
algorithms proposed for noise reduction. However, the resulting

enhanced speech often suffers from an annoying artifact called mu-
sical noise (Kamath and Loizou, 2002). The Wiener algorithm,
minimum mean squared error (MMSE) estimation (Ephraim and
Malah, 1984, 1985) and optimally modified log-spectral amplitude
(OM-LSA) speech estimator (Cohen and Berdugo, 2001) all exist in a
statistical estimation framework that attempts to find a linear (or
nonlinear) estimator of the parameters of interest. OM-LSA utilizes a
minima controlled recursive averaging (MCRA) noise estimation ap-
proach to avoid the musical residual noise phenomena. One limitation
of the conventional speech enhancement algorithms is that they can’t
improve speech intelligibility effectively. Supervised and un-
supervised nonnegative matrix factorization (NMF) methods were
investigated in Mohammadiha et al. (2013) and Fan et al. (2014). The
basic idea is to decompose the training data into bases and weight
matrices for speech and noise, respectively.

For separation, one broad class is the so-called computational au-
ditory scene analysis (CASA) (Wang and Brown, 2006), usually in an
unsupervised mode. CASA-based approaches (Wang and Brown, 1999b;
Wu et al., 2003; Shao and Wang, 2006; Hu and Wang, 2010, 2013), use
the psychoacoustic cues such as pitch, onset/offset, temporal con-
tinuity, harmonic structure and modulation correlation, and segregate a
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voice of interest by masking the interfering sources. For example, in
Hu and Wang (2010), pitch and amplitude modulation are adopted to
separate the voiced portions of cochannel speech. In Hu and
Wang (2013), unsupervised clustering is used to separate speech re-
gions into two speaker groups by maximizing the ratio of between-
cluster distance and within-cluster distance. In the supervised ap-
proaches, speech separation is often formulated as an estimation pro-
blem based on

= +x x xm t i (1)

where xm, xt, xi are speech signals of the mixture, target speaker, and
interfering speaker, respectively. To solve this under-determined
equation, a general strategy is to represent the speakers by two models
and use a certain criterion to reconstruct the sources given the signal
mixtures. The training data can be modeled using probabilistic models,
such as a Gaussian mixture model (GMM) (Kristjansson et al., 2004),
hidden Markov model (HMM) or factorial HMM (Roweis, 2000) and
NMF-based model (Schmidt and Olsson, 2006).

Recently, deep learning techniques became increasingly popular in
many speech research areas, e.g., speech recognition (Dahl et al., 2012;
Hinton et al., 2012), speech enhancement and speech separation. For
enhancement, some data-driven methods attempt to make a binary or
soft classification decision on time-frequency units, such as estimating
the ideal binary mask (IBM) or smoothed ideal ratio mask (IRM) for
monaural speech denoising (Wang and Wang, 2013; Wang et al., 2014).
The hard targets IBM is effective to improve speech intelligibility, but
predicting the soft targets IRM is especially beneficial for improving
objective speech quality. IRM is in the range of [0,1], which can be seen
as a suppression gain at each time-frequency unit. The final enhanced
features are obtained as the element-wise product of estimated IRM and
noisy features. The soft masking algorithms suppress noise in some
degree, so the speech distortion will be less accordingly. In addition to
the direct prediction of IRM, Huang et al. (2014, 2015) investigated
joint optimization of masking functions and DNNs with an extra
masking layer.

Apart from the prediction of time-frequency masks, deep learning
approaches are also adopted to mapping speech spectral directly.
Xu et al. (2014b, 2015a) proposed a DNN-based regression framework
via training a deep and wide neural network architecture using a large
collection of heterogeneous training data. Using the DNN-based re-
gression approach has the advantage that it makes no assumptions
about the statistical properties of the signals, and it can also handle
non-linear and highly non-stationary noises effectively. One challenge
is that some distortions are introduced to the estimated clean speech
signal because the regression DNN removes the noise considerably from
the noisy speech. To address this challenge, the regression DNN was
further post-processed with variance equalization of features to alle-
viate the distortions in the estimated clean features (Xu et al., 2014c).

One key point of deep learning approaches is the generalization
capacity to unseen noise conditions. To improve the generalization
capability, dynamic noise aware training approach was used in Xu et al.
(2014a), and DNN architecture was extended to a multi-objective fra-
mework in Xu et al. (2015b). Like the adaptation methods used in
speech recognition, Kim et, al. aimed at a fine-tuning scheme at the test
stage to improve the performance of a well-trained Denoising Auto-
Encoder (DAE) (Kim and Smaragdis, 2015). Another challenge is the
performance degradation in low SNR environments. In Gao et al.
(2015b), a joint DNN framework combining speech enhancement with
voice activity detection (VAD) was proposed to increase the speech
intelligibility in serious noise situations.

More complex neural network structure is also a research point for
speech enhancement. Weninger et al. explored long short-term memory
(LSTM) network (Weninger et al., 2015). Convolutional neural network
(CNN) was investigated in Fu et al. (2016).

For speech separation, Du et al. (2014) employed a regression DNN
to solve the separation problem in Eq. (1). Tu et al. (2014) modified the

architecture with dual outputs for learning both target source spectral
and interfering source spectral. A semi-supervised mode to separate
speech of the target speaker from an unknown interfering speaker was
discussed in Du et al. (2016), where the performance in the semi-su-
pervised mode can even surpass that of the GMM approach in the su-
pervised mode. Another related work is the generative stochastic net-
work (GSN) based method using a hybrid generative-discriminative
training objective (Zöhrer and Pernkopf, 2014, 2015).

Background noise and interfering speech are the two interferences
in real world. They usually appear together in the following scenarios:
living room, restaurant, mess hall, cocktail party, etc. When speech
products applied to such scenarios, both background noise and speech
interference need to be removed. Based on the above review of the
conventional methods for speech enhancement and separation, we find
that the two tasks are often treated separately. Roweis (2003) in-
vestigated factorial HMM and refiltering to address noise and human
interference. However, the interfering sources are needed in the testing
stage, and its computational complexity is too involved.

From the perspective of model learning, we can see speech en-
hancement and separation as a task of dissociation aimed at removing
different interference. Generally, it is hard to use one model to handle
both noise reduction and speech separation because the existence of
speech interference will influence the learning of the target speech
signal. However, if the target speech signal to be separated is from a
specific speaker, the speech interference is not as serious a problem.
The speaker-dependent system is meaningful because personalized
services are needed and feasible today. We also find speaker-dependent
systems can significantly improve the system performances when
compared with speaker-independent systems, especially in low signal-
to-noise ratio (SNR) environments.

In this paper, we train a speaker-dependent DNN system to unify
speech enhancement and speech separation. The signals of speech in-
terference are considered as one noise type. The target clean speech is
only interfered by a single speaker in the experiment. Experimental
results demonstrate that the unified DNN can achieve comparable
performance to each specific system when only noise or speech inter-
ference is present. Furthermore, we show that much better results can
obtained in mixing noise and interfering speech scenarios than from
individual enhancement and separation systems. The training data for
the two specific tasks are also found to be complementary. The data
corrupted by background noise become helpful for speech separation as
the SNR increases, while the speech interference is useful to reduce
speech-like noise.

One challenge of speech enhancement is the performance de-
gradation in low SNR environments. Fig. 1 shows an utterance mixed
with babble noise at 0 dB along with a corresponding clean speech and
frame-level SNR sequence. Speech presence segments corrupted by
high-energy noise, such as within the two red dashed rectangular boxes
in Fig. 1(b), remain difficult to handle. Even when noise is reduced from
those segments by DNN approaches, the speech quality is still severely
degraded as it is not easy for a DNN to distinguish in those segments
between speech and noise. They are very similar to pure noise segments
in terms of frame-level SNR. In this study, we use two specific DNNs to
address speech presence segments and speech absence segments sepa-
rately. The DNN for speech is trained with only the speech presence
segments of the training data, and it can preserve the speech quality for
low frame-level SNR segments. Another DNN can remove pure noise
segments. Finally, a joint DNN framework is employed to integrate the
two DNNs. This method can be seen as an implementation of ensemble
learning, which integrates multiple weak learners to create a stronger
one. Zhang and Wang (2016b), proposed a deep ensemble network for
monaural speech separation. They employ multi-context networks to
integrate temporal information at different resolutions. Multiple mod-
ules are stacked to construct an ensemble, each performing multi-con-
text masking or mapping. Differing from the multi-context networks, in
this work, we focus on the composition of the training data. A voice
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activity detection (VAD) DNN and an IRM DNN are investigated to
integrate two speech enhancement DNNs to construct an ensemble. The
experimental results demonstrate the effectiveness of the ensemble
method in low SNR environments.

When compared with our earlier conference paper (Gao et al.,
2015a), the contributions of this paper are as follows: (1) The ad-
vantages of a speaker-dependent system is compared with speaker-in-
dependent systems when dealing with isolated noises. (2) A compre-
hensive set of experimental results showing noise reduction in general
noise and speech-like noise scenarios, speech separation with only
speech interference, and noise mixed with speech interference is pre-
sented. We discussed the complementarity between background noise
and speech interference, which is helpful in reducing mixed noise. (3) A
joint DNN framework proposed in Gao et al. (2015b) is employed to
further improve the performance in serious noise environments. DNN-
based IRM is first introduced into the framework at time-frequency unit
level.

The remainder of the paper is organized as follows. In Section 2, we
first give an overview of our proposed framework. In Section 3, DNN
training for spectral mapping DNN, VAD DNN and IRM DNN are de-
scribed in detail. In Section 4, the enhancement stage and DNN in-
tegration are presented. In Section 5, we report experimental results
and analysis. Finally, we summarize our findings in Section 6.

2. Framework overview

The overall flowchart of the proposed speaker-dependent speech
enhancement framework is illustrated in Fig. 2. In the training stage, we
first use clean speech, noise data and speech interference to generate a
large amount of noisy speech data. Then log-power spectral (LPS) fea-
tures (Du and Huo, 2008) of both clean speech and synthesized noisy
speech are extracted. First, a short-time Fourier analysis was applied to
the input signal by computing the discrete Fourier transform (DFT) of
each overlapping windowed frame:

∑= = … −
=

−
−y d y l w l e l L( ) ( ) ( ) 0, 1, , 1f

l

L
t jπdl L

0

1
2 /

(2)

where d is the frequency bin index, yt(l) is the input signal at time
domain, w(l) denotes the window function (Hamming window here).
Then LPS features are defined as

= = … −y d y d d D( ) ln( ( ) ) 0, 1, , 1f 2 (3)

where = −D L/2 1. After feature extraction, four DNNs are trained
including USE DNN, C-USE DNN, VAD DNN and IRM DNN explained as

follows: (i) USE is a unified speaker-dependent DNN for speech en-
hancement and separation. (ii) C-USE is a conservative USE DNN
trained with speech separation training data and the speech presence
segments of speech enhancement training data to preserve the weak-
energy speech presence segments in low SNR environments and con-
servatively remove the pure noise segments. (iii) VAD DNN is a binary
classification DNN to detect speech presence at frame level. (iv) IRM
DNN is used to predict ideal ratio mask at time-frequency unit level. In
the enhancement stage, after feature extraction of the noisy utterances,
the features are presented to the IRM or VAD DNN, USE DNN and C-
USE DNN simultaneously. DNN integration is performed with speech
presence probability estimated by IRM DNN or VAD DNN to obtain the
final enhanced features as shown in Fig. 2. The additional phase in-
formation is calculated from the original noisy speech. Finally, an
overlap-add method is used to reconstruct the waveform of enhanced
speech. A detailed description of waveform reconstruction module can
be found in Du and Huo (2008).

3. DNN training

3.1. Training for spectral mapping DNN

In Xu et al. (2014b), a DNN was adopted as a regression model to
predict clean LPS features given the input noisy LPS features with
acoustic context for speech enhancement. In Tu et al. (2014), the ar-
chitecture was modified with dual outputs for learning both the target
source and interfering source spectral for speech separation. In this
paper, we improve the speech enhancement DNN to predict clean LPS
and interference LPS features simultaneously in the output layer as
shown in Fig. 3. The estimation of interference LPS can be considered as
a regularization term, which leads to a better generalization capacity
for estimating target speech. For DNN training, back-propagation with
an MMSE-based object function of the differences between the LPS
features of the estimated and reference LPS features is adopted to train
the DNN. Another two techniques, namely dropout training and noise-
aware training (NAT) (Xu et al., 2015a) are implemented to improve
generalization capability. Dropout randomly omits a certain percentage
(dropout rate is 0.1 in this work) of the neurons in the input and each
hidden layer, which can be treated as model averaging to avoid the
over-fitting problem. NAT is adopted to improve the generalization
capability of the DNN to unseen noise conditions. The input of DNN is
augmented with an estimate of noise. The noise estimate is obtained by
averaging first T ( =T 6) frames LPS feature of an utterance. In this
paper, restricted Boltzmann machine (RBM) (Hinton et al., 2006)-based
pre-training is not used for regression DNN training because the gains
are small (Xu et al., 2015a).

A stochastic gradient descent algorithm is performed in a mini-batch
mode with multiple epochs to improve learning convergence as follows:
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where Xn
t and Xn

t are the nth D-dimensional vectors of estimated and
reference clean features of the target speaker, respectively. In the same
way, Xn

i
and Xn

i are vectors of the estimated and reference interference
features. For unified system, the interference contains both background
noise and speech interference. β is used to tune the contribution from
the target part and the interference part. Another benefit of the dual
output DNN is that estimation of interference can be used by a post-
processing module to be discussed in Section 4.3.

3.2. Training for voice activity detection (VAD) DNN

DNN for VAD is designed as a classification model where the output
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Fig. 1. Illustration of an utterance example in a babble noise environment at 0 dB along
with corresponding clean speech and a frame-level SNR sequence.
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refers to the probabilities of speech presence and absence classes
(Zhang and Wu, 2013; Wang et al., 2015) as shown in Fig. 4. The inputs
to DNN are the noisy LPS features from the current and neighboring
frames. The learning targets are obtained as follows. We first apply a
classical energy-based VAD algorithm provided by kaldi toolkit
(Povey et al., 2011) on clean speech to detect speech presence seg-
ments. Then, the label information of clean speech are processed as the
learning targets of corresponding noisy LPS features. Refer to the
training procedure in Zhang and Wu (2013), training of this classifi-
cation DNN consists of unsupervised pre-training and supervised fine-
tuning. The former treats each consecutive pair of layers as a RBM
while the parameters of the RBM are trained layer-by-layer with the
approximate contrastive divergence algorithm (Hinton, 2002). After
pre-training to initialize the weights of the first several layers, su-
pervised fine-tuning of the parameters in the whole network is per-
formed using a frame-level cross-entropy criterion:

∑= −
=

C q pln
j

Q

j j
1 (5)

where C denotes cross-entropy cost function, pj is the output of the
softmax, qj is the corresponding target, Q is the number of classes. In
this paper, =Q 2.

3.3. Training for ideal ratio mask (IRM) DNN

The ideal ratio mask (IRM) (Wang et al., 2014) used as DNN
learning target is defined as follow,

=
+

IRM d
X d

X d X d
( )

exp( ( ))
exp( ( )) exp( ( ))n

l n
t

n
t

n
i

(6)

where X d( )n
t and X d( )n

i denote LPS features of target and interference,
respectively. The exp ( · ) operation restores the feature to denote en-
ergy. The notation l is used to make difference with calculated IRM in
Section 4.3. DNN for IRM is designed as a regression model where the
output can be considered as the probabilities of speech presence at each

Fig. 2. Overall development flow and architecture.

Fig. 3. DNN-based spectral mapping with dual output.

Fig. 4. DNN-based VAD.
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time-frequency unit as shown in Fig. 5. The inputs to DNN are the noisy
LPS features from the current and neighboring frames. Dropout and
NAT are also implemented for the IRM DNN, and the configurations are
the same with spectral mapping DNN. The learning targets are IRM
defined in Eq. (6). Then, supervised fine-tuning of the parameters in the
whole network is performed using MMSE criterion,

∑= −
=

Er
N

IRM IRM1
irm

n

N

n
l

n
l

1
2

2

(7)

whereIRMn
l
and IRMn

l are the nth D-dimensional vectors of estimated
and reference IRM, respectively.

3.4. DNN configuration

As described in Section 2, there are four DNNs (USE, C-USE, VAD
DNN and IRM DNN) needed. At first, USE is trained from a collection of
stereo data, consisting of pairs of clean speech and noisy speech re-
presented by their corresponding LPS features. The DNN architecture is
2056-2048-2048-2048-514, which denotes that the size is 2056
(257*7+257, including 3 left and 3 right context frames, and 1 frame
for noise aware training (Xu et al., 2015a)) at the input layer, 2048
units for each of the three hidden layers, and 514 for the output layer
(dual outputs). As the noise LPS variances are large and not stable, we
mainly focus on the speech part. The regularization weighting coeffi-
cient β in Eq. (4) is set to 0.8. For fine-tuning, the learning rate is set at
0.1 for the first 10 epochs, and then decreased by 10% after every
epoch. The total number of epochs is 30. The mini-batch size is set to

=N 128. All DNN input features are normalized to zero mean and unit
variance; the sigmoid activation functions are used in all hidden layers
and the linear activation function is used in the output layer.

USE is a spectral mapping DNN which can remove noise con-
siderably from the noisy speech. In low SNR environments, when the
speech presence segments with weak-energy are corrupted by noises,
the USE method tends to aggressively remove the noises resulting in a
great possibility of triggering speech distortion. So a C-USE DNN is
employed to preserve weak-energy speech presence segments and
conservatively remove pure noise segments. The training data for USE
contains two subsets. One subset is used to train specific speech en-
hancement system (SE). The other one is used for speech separation
(SS). We use the speech presence segments of the training data for SE

and the entire training data for SS to train C-USE. The entire SS training
data are used for C-USE training because noises are more difficult to
process than speech interference and has greater destructive power,
especially in low SNR environments. The speech presence segments of
SE training data are extracted as follows. We first apply classical en-
ergy-based VAD algorithm on clean speech to detect speech presence
segments. Because the noisy speech and clean speech in the training
data are one to one correspondence, the speech presence segments can
be cut from the noisy speech by using the VAD information of clean
speech. The other training configurations are the same with USE.

The architecture of the IRM DNN is 2056-2048-2048-2048-257,
which denotes that the size is 2056 (257*7+257, including 3 left and 3
right context frames, and 1 frame for NAT) at the input layer, 2048
units for each of the three hidden layers, and 257 for the output layer.
The sigmoid activation functions are used in the hidden layers and in
the output layer.

The architecture of the VAD DNN is 1799-2048-2048-2048-2, which
denotes that the size is 1799 (257*7, including 3 left and 3 right context
frames) at the input layer, 2048 units for each of the three hidden
layers, and 2 for the output layer. The sigmoid activation functions are
used in the hidden layers and the softmax activation function is used in
the output layer.

4. DNN-based speech enhancement

4.1. Masking DNN (SE-mask)

In the enhancement stage of IRM DNN, the enhanced DFT coeffi-
cients are obtained by multiplying the noisy speech DFT coefficients
with the maskIRMn

l
. Specific to this paper, the enhanced LPS features

are obtained as follow,

 



⎜ ⎟= ⎛
⎝

⎞
⎠
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X IRM Y

IRM Y
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2 ln( )

n n
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n

n
l

n

2

(8)

where, Xn and Yn are enhanced and noisy LPS features, respectively.
The masking-based speech enhancement system is denoted as SE-mask.

4.2. Mapping DNN (SE-mapp)

In the enhancement stage of spectral mapping DNN, the direct DNN
output corresponding to the clean speech is chosen as the enhanced
feature as follow,

 =X Xn n
t

(9)

The direct mapping-based speech enhancement system is denoted as
SE-mapp.

4.3. Post-processing for SE-mapp (SE)

One challenge of spectral mapping DNN is that some distortions are
introduced to the estimated clean speech signal because the mapping
DNN removes the noise components considerably from the noisy
speech. When compared with masking methods, mapping DNN can
yield better PESQ scores but the performance of STOI is not so stable. So
in the decoding stage of spectral mapping DNN, the estimation of target
and interference are fully utilized by an IRM-based post-processing to
improve speech intelligibility. Different from Section 3.3 where IRM is
directly predicted by a well-trained IRM DNN, the IRM here is calcu-
lated by the DNN outputs for each dimension as follows,




 
=

+
IRM d
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X d X d
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Fig. 5. DNN architecture for IRM prediction.
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where X d( )n
i

is the estimation of interference (background noise or
speech interference), IRM d( )n

c
is the calculated IRM. d is feature di-

mension index. Then, the calculated IRM is used in the post-processing
as follows,
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n (11)

where X d( )n and Yn(d) are the features of enhanced speech and noisy
speech, respectively. γ and λ are the thresholds to improve the overall
performance. γ and λ in this work are set to 0.75 and 0.1, respectively.
The resulting speech enhancement system is denoted as SE. Using the
same procedure, different training data derive out SS, USE and C-USE.

4.4. Wiener filtering with mapping DNN (SE-Wiener)

Using the estimation of target and interference from mapping DNN,
speech enhancement can also be conducted in Wiener filtering fashion
as follow,
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The results of using Wiener filtering withIRMn
c
is denoted as SE-

Wiener.

4.5. DNN integration using VAD DNN (JDNN-SE-VAD)

After the enhancement of USE and C-USE, we use VAD DNN to in-
tegrate the enhanced features at frame level. The integration is per-
formed with the VAD classification probabilities as follows,

  = + −α αX X X(1 )n n n
1 2

(13)

where α is the probability of the speech presence, and − α(1 ) is speech
absence probability. α is taken directly from the VAD DNN. X,X1 and X2

are the vectors of the final enhanced features, and features enhanced by
C-USE and USE, respectively. The integration can utilize C-USE’s good
quality in speech presence segments and USE’s pure noise reduction in
the speech absence segments. The resulting joint DNN based speech
enhancement system is denoted as JDNN-SE-VAD.

4.6. DNN integration using IRM

Compared with VAD DNN, IRM DNN can predict speech presence
probability for each time-frequency unit. With the high-resolution
prediction, the integration of USE and C-USE can be performed as fol-
lows,

   = + −X IRM X IRM X· (1 )·n n
l

n n
l

n
1 2

(14)

whereIRMn
l
is the output of IRM DNN. X,X1 and X2 are the vectors of

the final enhanced features, and features enhanced by C-USE and USE,
respectively. The operation · denotes element-wise multiplication. The
resulting joint DNN system is denoted as JDNN-SE-IRMl. Both the
trained IRMn

l
and the estimated IRMn

c
can be used to integrate the

enhanced features. The results of usingIRMn
c
is denoted as JDNN-SE-

IRMc.

5. Experimental results and analysis

5.1. Experimental configurations

In Xu et al. (2015a), 104 noise types1 were used as the noise signals
for synthesizing noisy training samples. In this study, we add another
200 hours of real-world noise2 to handle a wide range of additive noise
in the real-world situations. Six hours of speech interferences covering
30 males and 30 females were also used for speech separation. On the
other hand, 2 h of Hi-Fi Mandarin data were recorded by a target female
speaker as our clean data. They are added with the above-mentioned
background noise and speech interferences at 5 levels of SNR (20 dB,
15 dB, 10 dB, 5 dB and 0 dB) to build a multi-condition stereo training
set. This resulted in a collection of approximately 100 h of noisy
training data (including two subsets, 80 h for speech enhancement and
the remaining 20 h for speech separation) used to train DNN models.
The enhancement data are more than separation data since there are
more noise types covered.

The whole 100 h of training data were used to train a unified speech
enhancement (USE) model. The two training subsets were also used for
training the specific speech enhancement and speech separation system,

Table 1
Average performance of speaker-dependent (SE-mask, SE-mapp, SE-Wiener and SE) and speaker-independent (SI-SE and OM-LSA) systems across four isolated noise situations (destroyer
engine, factory, babble and mess hall) at different SNRs.

Metrics SNR Noisy SE-mask SE-mapp SE-Wiener SE SI-SE OM-LSA

PESQ −5 dB 1.062 1.259 1.570 1.434 1.448 1.258 0.958
0 dB 1.365 1.674 2.143 1.946 1.988 1.776 1.596
5 dB 1.720 2.098 2.651 2.349 2.445 2.256 2.146
10 dB 2.100 2.478 3.050 2.651 2.770 2.616 2.617

STOI −5 dB 0.534 0.590 0.587 0.611 0.608 0.514 0.456
0 dB 0.662 0.729 0.737 0.768 0.765 0.703 0.623
5 dB 0.782 0.837 0.840 0.869 0.869 0.845 0.772
10 dB 0.872 0.905 0.897 0.926 0.927 0.920 0.871

FWSegSNR −5 dB −3.305 −0.768 5.160 −0.181 4.239 3.340 −0.907
0 dB −1.644 1.600 8.108 3.045 7.609 6.263 2.208
5 dB 1.312 5.384 9.852 6.492 10.630 9.361 5.764
10 dB 5.437 9.506 11.152 10.130 13.427 12.635 9.869

SDR −5 dB −5.290 −1.741 1.781 0.694 1.259 0.134 −1.918
0 dB −0.460 3.749 5.709 5.472 5.850 5.153 3.910
5 dB 4.483 8.547 8.617 9.415 9.723 9.286 8.662
10 dB 9.464 12.724 10.665 13.128 13.366 13.068 12.690

1 The 104 noise types are N1-N17: crowd noise; N18-N29: machine noise; N30-N43:
alarm and siren; N44-N46: traffic and car noise; N47-N55: animal sound; N56-N69: water
sound; N70-N78: wind; N79-N82: bell; N83-N85: cough; N86: clap; N87: snore; N88:
click; N88-N90: laugh; N91-N92: yawn; N93: cry; N94: shower; N95: tooth brushing; N96-
N97: footsteps; N98: door moving; N99-N100: phone dialing; N101: AWGN; N102:
babble; N103: restaurant; and N104: street.

2 The noise types are vehicle: bus, train, plane and car; exhibition hall; meeting room;
office; emporium; family living room; factory; bus station; and mess hall.
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denoted as SE and SS, respectively. Then, we applied classical energy-
based VAD algorithm on clean speech to detect speech presence seg-
ments. Because the noisy speech and clean speech in the training data
are one to one correspondence, so speech presence segments can be cut

from noisy speech by using the VAD information of clean speech. The
speech presence segments of the 80-hours training data for SE and the
entire 20 h training data for SS were used to train a conservative unified
speech enhancement (C-USE) model. The whole 20 h SS training data

Table 2
Performance comparison of speaker-dependent systems in four isolated noise situations at different SNRs.

Metrics SNR Noisy SE SS USE C-USE JDNN-SE-VAD JDNN-SE-IRMl JDNN-SE-IRMc

Destroyer engine noise
PESQ −5 dB 1.145 1.565 0.849 1.616 1.819 1.865 1.868 1.821

0 dB 1.359 2.015 1.293 2.030 2.193 2.211 2.208 2.177
5 dB 1.649 2.461 1.720 2.444 2.495 2.504 2.540 2.517
10 dB 2.001 2.807 2.176 2.796 2.747 2.744 2.822 2.801

STOI −5 dB 0.581 0.606 0.425 0.624 0.689 0.699 0.675 0.677
0 dB 0.696 0.759 0.559 0.769 0.806 0.805 0.799 0.800
5 dB 0.796 0.867 0.704 0.867 0.880 0.880 0.880 0.882
10 dB 0.870 0.926 0.815 0.923 0.923 0.925 0.928 0.928

FWSegSNR −5 dB −4.337 6.379 −1.096 7.165 3.963 3.587 6.143 5.992
0 dB −2.690 8.818 2.154 9.243 7.630 8.204 9.267 8.914
5 dB 0.257 11.395 5.904 11.511 10.220 10.502 11.632 11.301
10 dB 4.326 13.715 8.944 13.725 12.175 12.301 13.679 13.315

SDR −5 dB −5.237 3.469 −0.014 3.683 3.109 3.540 3.839 3.625
0 dB −0.405 7.473 4.320 7.468 7.408 7.642 7.654 7.576
5 dB 4.536 11.130 7.523 10.980 11.055 11.130 11.132 11.120
10 dB 9.515 14.484 10.393 14.294 14.335 14.386 14.401 14.451

Factory noise
PESQ −5 dB 0.968 1.416 0.680 1.541 1.600 1.549 1.690 1.698

0 dB 1.305 1.961 1.061 2.029 2.048 2.015 2.124 2.109
5 dB 1.691 2.422 1.509 2.449 2.429 2.400 2.501 2.485
10 dB 2.098 2.725 1.972 2.754 2.735 2.700 2.784 2.769

STOI −5 dB 0.526 0.599 0.443 0.594 0.615 0.617 0.628 0.628
0 dB 0.649 0.755 0.559 0.754 0.759 0.764 0.769 0.769
5 dB 0.770 0.862 0.676 0.863 0.857 0.863 0.868 0.866
10 dB 0.865 0.922 0.786 0.923 0.918 0.922 0.925 0.923

FWSegSNR −5 dB −4.728 3.106 −3.377 4.701 0.729 0.094 2.284 2.498
0 dB −3.231 6.588 −2.174 7.685 3.238 3.381 5.311 5.019
5 dB −0.502 9.761 0.219 10.063 6.006 6.378 8.419 7.634
10 dB 3.365 12.032 3.718 12.243 8.951 9.289 11.293 10.351

SDR −5 dB −5.230 0.318 −7.492 1.375 -0.403 -0.085 0.749 0.559
0 dB −0.419 5.244 −1.632 5.706 4.281 4.779 5.310 4.935
5 dB 4.514 9.046 3.655 9.242 8.361 8.652 9.190 8.714
10 dB 9.490 12.552 7.664 12.654 12.259 12.420 12.897 12.457

Babble noise
PESQ −5 dB 1.029 1.396 1.153 1.397 1.608 1.578 1.629 1.600

0 dB 1.412 1.992 1.702 1.977 2.109 2.078 2.129 2.113
5 dB 1.793 2.446 2.150 2.437 2.467 2.446 2.504 2.483
10 dB 2.188 2.783 2.485 2.750 2.727 2.715 2.781 2.764

STOI −5 dB 0.514 0.618 0.556 0.601 0.646 0.649 0.648 0.646
0 dB 0.646 0.773 0.714 0.761 0.781 0.784 0.782 0.783
5 dB 0.776 0.871 0.823 0.865 0.871 0.874 0.874 0.875
10 dB 0.873 0.927 0.887 0.923 0.924 0.927 0.927 0.928

FWSegSNR -5 dB −1.965 4.739 0.348 5.801 2.601 2.133 3.858 3.847
0 dB −0.209 8.286 3.736 8.488 5.636 5.939 7.261 6.867
5 dB 2.865 11.224 7.533 11.247 8.846 9.041 10.559 10.098
10 dB 7.175 14.248 11.205 14.172 12.376 12.345 13.813 13.520

SDR -5 dB −5.383 0.831 −1.939 0.917 −0.203 0.220 0.874 0.439
0 dB −0.525 5.378 3.491 5.277 4.672 5.225 5.643 5.066
5 dB 4.435 9.238 7.939 9.075 8.778 9.070 9.476 9.066
10 dB 9.425 12.987 11.521 12.673 12.548 12.744 12.798 12.800

Mess hall noise
PESQ -5 dB 1.106 1.416 1.123 1.432 1.562 1.540 1.570 1.536

0 dB 1.384 1.982 1.587 1.982 2.026 2.007 2.058 2.041
5 dB 1.745 2.452 2.016 2.432 2.425 2.391 2.454 2.436
10 dB 2.112 2.765 2.399 2.741 2.695 2.674 2.751 2.735

STOI −5 dB 0.516 0.610 0.553 0.597 0.619 0.622 0.624 0.622
0 dB 0.655 0.771 0.706 0.768 0.769 0.772 0.777 0.776
5 dB 0.785 0.876 0.820 0.871 0.868 0.870 0.874 0.873
10 dB 0.878 0.932 0.890 0.929 0.922 0.925 0.929 0.929

FWSegSNR −5 dB −2.189 2.732 −1.018 3.539 1.769 1.288 2.358 2.495
0 dB −0.444 6.744 1.740 7.330 4.629 4.418 5.710 5.564
5 dB 2.629 10.228 5.268 10.496 7.752 7.787 9.144 8.742
10 dB 6.880 13.711 9.468 13.765 11.252 11.365 12.800 12.389

SDR -5 dB −5.310 0.416 −1.744 0.378 −0.558 −0.321 0.506 −0.058
0 dB −0.490 5.303 3.163 5.314 4.655 4.845 5.715 4.998
5 dB 4.447 9.476 7.513 9.342 8.991 9.135 9.839 9.223
10 dB 9.425 13.439 11.264 13.167 12.836 12.998 13.217 13.193
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were used for C-USE training because C-USE is mainly designed for
serious noise environments. The entire 100 h of training data were also
used to train a VAD DNN and an IRM DNN. Another 50 utterances re-
corded from the target speaker were used to construct the test set for
each combination of noise types (isolated noise: babble, factory, de-
stroyer engine (Varga and Steeneken, 1993), mess hall; speech inter-
ference: different gender speech interference; mixed noise: isolated
noise overlapped with speech interference) and various SNR levels
(−5 dB, 0 dB, 5 dB and 10 dB). The noise and speech text in the test set
are different from those in the training set.

As for signal analysis, speech waveform was down-sampled to
16KHz, and the corresponding frame length was set to 512 samples (or
32 msec) with a 256 samples frame shift. Short-time Fourier analysis
(Allen and Rabiner, 1977) was used to compute the DFT of each
overlapping windowed frame. Then, the 257-dimensional LPS features
were used to train the DNNs. The performance was evaluated using four
measures, namely frequency-weighted segmental SNR (FWSegSNR)
(Hu and Loizou, 2008) and source-to-distortion ratio (SDR)
(Vincent et al., 2006), STOI and PESQ. STOI is shown to be highly
correlated to human speech intelligibility while PESQ has a high cor-
relation with subjective scores.

5.2. Advantages of a speaker-dependent system

Table 1 presents the average results of speaker-dependent and
speaker-independent systems across four isolated noise types. We first
focus on speaker-dependent scenario to reveal the advantage of IRM-
based post-processing described in Section 4.3. SE-mapp is a direct
mapping DNN described in Section 4.2. When compared with masking
method SE-mask, we can find SE-mapp obtained better PESQ and
FWSegSNR performance but the performances of STOI and SDR were
not so consistent. SE-mapp removed more noise than SE-mask from the
noisy speech, so some distortions were introduced, especially at high
SNR. Because it is more desirable to enhance the intelligibility rather
than the quality of speech, Wiener filtering and IRM-based post-pro-
cessing were applied to spectral mapping DNN. The resulting SE-Wiener
system and SE system sacrificed certain PESQ gains to attain the im-
provement of STOI. SE-Wiener and SE have almost the same perfor-
mance of STOI, but SE performed better on PESQ, FWSegSNR and SDR.
So, in the following experiments, IRM-based post-processing is applied
to mapping DNN.

Speech enhancement systems are usually designed in a speaker-in-
dependent scenario (SI-SE, OM-LSA). Compared with DNN-based SI-SE,
the classical speech enhancement algorithm OM-LSA (Cohen and
Berdugo, 2001) has its limits to improve speech intelligibility. When
speech enhancement system is adopted in a speaker-dependent

scenario, it achieves reasonable performance that could not be achieved
with the SI-SE system. In Table 1, SE is trained using speech from only
one speaker. The noise data and other configurations are the same as
with the SI-SE model. The result shows SE outperformed SI-SE at all
SNRs for all metrics, especially at low SNRs, e.g., 0.094 STOI im-
provement at −5 dB SNR (from 0.514 to 0,608). This indicates that the
speaker-dependent system is much more effective than the speaker-in-
dependent system.

5.3. Performance of a unified system in isolated interference situations

In this section, we analyze the performance of unified system (USE)
when only noise or speech interference is present. We used two noise
categories to discuss the performance of USE for speech enhancement.
The first category is general noise: destroyer engine, factory. Another
category is speech-like noise: babble, mess hall. The performance of
different systems for the two noise categories at different SNRs is shown
in Table 2.

In destroyer engine and factory noise conditions, with the com-
parison of SS and SE, we first observe that the performance of SS was
dramatically degraded, even worse than unprocessed noisy speech at
low SNR. Conversely, SE improved the PESQ score effectively at all
SNRs. A comparison of SE and USE is a major focus. The results show
that the unified system USE can achieve almost the same effect when
compared with the specific system SE. SS had poor performances in the
general noise situations. However, it is interesting to note something
different when dealing with speech-like noise: babble, mess hall. In the
lower part of Table 2, SS has obtained positive effects on PESQ, STOT,
FWSegSNR and SDR when compared with unprocessed noisy speech at
all SNRs. This can be explained by the speech-like noise having some
similarities with the speech interference used in SS training. In the two
noise situations, unified system USE still yielded a fairly good perfor-
mance when compared with SE.

With USE as a benchmark, we analyze the performance of C-USE,
JDNN-SE-VAD, JDNN-SE-IRMl and JDNN-SE-IRMc. C-USE yielded
better PESQ and STOI performance, especially at low SNRs, e.g., 0.211
PESQ improvement (from 1.397 to 1.608) and 0.045 STOI improve-
ment (from 0.601 to 0.646), at −5 dB SNR of babble noise. The
FWSegSNR and SDR performance suffered degradation because C-USE
is designed to preserve weak-energy speech presence segments but
conservatively remove speech absence segments. When VAD DNN was
used to integrate USE and C-USE at frame level, the resulting system
JDNN-SE-VAD obtained inconsistent improvement on PESQ, STOI and
limited improvement on FWSegSNR. With high-resolution IRM, USE
and C-USE were effectively integrated at time-frequency unit level. The
results of using IRMl and IRMc are almost the same on PESQ and STOI,

Table 3
Performance comparison of speaker-dependent systems in isolated speech interference situation at different SNRs.

Metrics SNR Noisy SE SS USE C-USE JDNN-SE-VAD JDNN-SE-IRMl

Speech interference
PESQ −5 dB 1.360 1.409 1.624 1.551 1.559 1.613 1.599

0 dB 1.728 1.827 1.973 1.988 1.982 1.993 2.043
5 dB 2.084 2.247 2.342 2.378 2.382 2.402 2.422
10 dB 2.429 2.609 2.656 2.736 2.716 2.735 2.758

STOI −5 dB 0.571 0.601 0.683 0.674 0.666 0.666 0.675
0 dB 0.677 0.715 0.767 0.768 0.767 0.768 0.773
5 dB 0.779 0.813 0.842 0.845 0.849 0.851 0.852
10 dB 0.863 0.887 0.896 0.905 0.906 0.910 0.909

FWSegSNR −5 dB 0.880 2.619 7.918 6.444 5.334 4.739 5.434
0 dB 3.529 5.813 11.144 10.462 9.757 9.295 9.787
5 dB 7.936 10.735 14.656 14.774 14.699 14.155 14.627
10 dB 13.781 16.552 18.052 18.655 18.706 18.453 18.541

SDR −5 dB −5.213 −4.301 2.946 0.215 −0.819 −1.168 −0.460
0 dB −0.390 1.053 6.179 4.732 4.394 4.293 4.782
5 dB 4.547 6.233 9.342 8.785 8.837 8.852 9.161
10 dB 9.524 11.188 12.490 12.738 12.759 12.961 12.846
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but JDNN-SE-IRMl performed slightly better than JDNN-SE-IRMc on
FWSegSNR and SDR. In the following experiments, IRMl is chosen for
JDNN-SE-IRM method. When compared with C-USE, JDNN-SE-IRMl

could further improve PESQ, STOI and at the same time shorten the

FWSegSNR gap between C-USE and USE. For example, 0.090 PESQ
improvement, 0.013 STOI improvement and 1.555 FWSegSNR im-
provement were achieved at −5 dB SNR of factory noise. The results
demonstrate the effectiveness of the ensemble framework in low SNR

Table 4
Performance comparison of speaker-dependent systems in four mixed noise conditions at different SNRs.

Metrics SNR Noisy SE SS USE C-USE JDNN-SE-VAD JNN-SE-IRMl

Destroyer engine noise+ speech interference
PESQ −5 dB 0.990 1.258 1.258 1.394 1.455 1.471 1.546

0 dB 1.496 1.741 1.689 1.845 1.894 1.896 2.035
5 dB 1.883 2.217 2.111 2.302 2.321 2.333 2.447
10 dB 2.268 2.625 2.475 2.674 2.645 2.672 2.774

STOI −5 dB 0.540 0.565 0.570 0.600 0.610 0.610 0.626
0 dB 0.656 0.706 0.700 0.736 0.742 0.743 0.763
5 dB 0.765 0.816 0.803 0.837 0.838 0.841 0.856
10 dB 0.855 0.892 0.875 0.902 0.901 0.906 0.913

FWSegSNR −5 dB −1.524 2.613 2.913 3.681 2.300 2.900 3.008
0 dB 0.544 5.436 5.598 6.775 5.864 5.638 6.490
5 dB 4.123 9.300 8.601 10.602 9.584 9.410 10.712
10 dB 9.085 13.882 12.486 14.602 13.435 13.436 14.644

SDR −5 dB −5.212 1.201 1.516 1.361 −2.940 −3.005 −1.825
0 dB −0.391 6.061 4.960 5.968 2.953 2.802 3.892
5 dB 4.546 10.279 7.802 10.101 8.230 8.206 9.001
10 dB 9.524 13.961 10.899 13.809 12.613 12.805 13.175

Factory noise+ speech interference
PESQ −5 dB 0.942 1.193 0.709 1.287 1.348 1.373 1.375

0 dB 1.326 1.796 1.167 1.855 1.886 1.868 1.932
5 dB 1.750 2.286 1.616 2.329 2.343 2.319 2.373
10 dB 2.159 2.681 2.110 2.713 2.688 2.671 2.729

STOI −5 dB 0.510 0.532 0.457 0.540 0.559 0.563 0.563
0 dB 0.635 0.707 0.573 0.713 0.721 0.723 0.726
5 dB 0.759 0.837 0.698 0.841 0.841 0.842 0.846
10 dB 0.859 0.911 0.814 0.914 0.911 0.913 0.916

FWSegSNR −5 dB −3.979 1.641 −3.053 2.731 0.784 0.353 1.681
0 dB −2.379 4.675 −1.448 5.374 3.051 2.987 4.264
5 dB 0.485 8.113 1.322 8.457 6.014 6.073 7.478
10 dB 4.531 11.279 5.124 11.512 9.144 9.279 10.690

SDR −5 dB −5.211 −3.169 −5.288 −2.675 −2.948 −2.776 −2.698
0 dB −0.402 2.924 0.474 3.176 2.676 2.933 3.054
5 dB 4.532 7.977 5.081 8.095 7.658 7.902 8.023
10 dB 9.509 12.458 8.782 12.462 12.144 12.354 12.432

Babble noise+ speech interference
PESQ −5 dB 0.949 1.098 1.093 1.138 1.352 1.358 1.331

0 dB 1.394 1.725 1.604 1.720 1.827 1.846 1.861
5 dB 1.782 2.264 2.063 2.248 2.281 2.291 2.322
10 dB 2.179 2.683 2.422 2.676 2.621 2.632 2.692

STOI −5 dB 0.492 0.530 0.531 0.535 0.571 0.573 0.567
0 dB 0.622 0.709 0.680 0.706 0.724 0.727 0.725
5 dB 0.752 0.832 0.801 0.830 0.835 0.838 0.839
10 dB 0.856 0.908 0.875 0.907 0.903 0.907 0.909

FWSegSNR −5 dB −2.123 2.176 −0.016 2.741 1.559 1.217 2.100
0 dB −0.336 5.490 3.148 5.722 4.367 4.308 5.147
5 dB 2.794 9.046 6.643 9.146 7.648 7.518 8.661
10 dB 7.109 12.886 10.141 12.921 11.215 11.144 12.327

SDR −5 dB −5.217 −2.381 −1.030 −1.367 −1.923 −1.843 −1.482
0 dB −0.404 3.598 3.847 4.090 3.525 3.678 3.995
5 dB 4.530 8.499 7.984 8.513 8.252 8.378 8.596
10 dB 9.506 12.895 11.401 12.629 12.349 12.586 12.665

Mess hall noise+ speech interference
PESQ −5 dB 0.917 1.183 1.131 1.241 1.363 1.381 1.366

0 dB 1.432 1.777 1.585 1.793 1.857 1.858 1.884
5 dB 1.800 2.284 2.022 2.271 2.317 2.308 2.339
10 dB 2.185 2.694 2.400 2.675 2.635 2.637 2.688

STOI −5 dB 0.507 0.547 0.533 0.556 0.576 0.577 0.578
0 dB 0.643 0.722 0.685 0.724 0.733 0.733 0.737
5 dB 0.770 0.842 0.802 0.841 0.842 0.844 0.847
10 dB 0.867 0.914 0.880 0.912 0.909 0.911 0.914

FWSegSNR -5 dB −1.837 1.645 −0.717 2.221 1.454 1.128 1.721
0 dB −0.037 5.216 2.154 5.518 4.242 4.012 4.783
5 dB 3.086 9.073 5.641 9.031 7.514 7.362 8.375
10 dB 7.429 13.114 9.829 12.979 11.150 11.065 12.325

SDR −5 dB −5.325 −1.747 −1.283 −1.210 −1.853 −1.759 −1.377
0 dB −0.487 3.772 3.586 4.089 3.602 3.727 4.032
5 dB 4.462 7.693 7.558 8.511 8.299 8.422 8.647
10 dB 9.446 10.371 11.204 12.632 12.358 12.522 12.701
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environments. It should be noted that this work preliminarily in-
vestigated the implementation of an original DNN VAD in the ensemble
framework. If more advanced DNN VAD methods, like the work in
Zhang and Wang (2016a), Hwang et al. (2016) and Zazo et al. (2016),
are used, the result of JDNN-SE-VAD may be improved.

For speech separation, the speech from different gender speakers
were used as speech interference. In Table 3, we show the results of
speech separation. The specific speech separation system SS effectively
improved the PESQ, STOI and FWSegSNR. The system SE also achieved
slight improvement compared with Noisy due to some speech-like
noises being covered in SE training. The proposed system USE obtained
a performance comparable with SS. Note, SS was better than USE at
−5 dB. Then, with the increase of SNR, USE achieved even better per-
formance than SS. We try to explain this phenomenon as follows. In
high SNR environments, the speech interference segments have weak
energy and sound similar to babble noise. When speech interference
segments are seen as noise, the existence of noisy data with background
noise becomes helpful for speech separation. C-USE achieved almost the
same results with USE because both the speech presence segments and
speech absence segments of SS training data were used to train C-USE.
The reason for treating SS and SE differently is that noises are more
difficult to process than speech interference and has greater destructive
power, especially in low SNR environments. So C-USE is only designed
to address serious noise situations. Based on these two comparable re-
sults, JDNN-SE-IRMl still yielded a little improvement on PESQ and
STOI.

In summary, the unified system USE can maintain the system per-
formance achieved by the SE and SS systems when isolated interference
is present. The training data for the two specific tasks are also found to
be complementary. The data corrupted by background noise become
helpful for speech separation with increasing SNR, and the speech in-
terference is useful for dealing with speech-like noise. In addition,
JDNN-SE-IRM can take advantages of both USE and C-USE effectively.

5.4. Performance of a unified system in mixed noise situations

The performance of unified system USE in four mixed noise situa-
tions (by adding the speech interference to each isolated noise) is

presented in Table 4. The results show that SS and SE have improved
PESQ, STOI, FWSegSNR and SDR performance compared with un-
processed speech in three mixed noise situations. In the factory noise
adding speech interference condition, SS caused performance de-
gradation. Fig. 6 presents spectrograms of an utterance example cor-
rupted by mixed noise at 5 dB and the enhanced results from the
speaker-dependent system. As shown in the red rectangle of Fig. 6(c) for
SS enhanced speech, SS degraded the continuity of target speech in the
presence of noise. SE was able to protect target speech. However, SE
was insufficient for removing speech interference that had a high en-
ergy, as shown in the red rectangle of Fig. 6(d). From the above ana-
lysis, we find the two isolated systems (SE, SS) have their own short-
comings when addressing mixed noises. The proposed USE significantly
outperformed the individual SE and SS systems when mixed noises were
present for three metrics at all SNRs, e.g., 0.136 PESQ improvement
(from 1.258 for SE and SS to 1.394 for USE) and 0.035 STOI im-
provement (from 0.565 for SE and SS to 0.600 for USE) at −5 dB of
destroyer engine noise adding speech interference condition. The pro-
blems in the red rectangles of Fig. 6(c)(d), where SS degraded target
speech and SE removed speech interference insufficiently, have largely
been solved in Fig. 6(e) by utilizing the complementarity of SS and SE.
More results can be found at the demo website3. In short, unified system
could yield much better results over individual enhancement or se-
paration systems in mixed noise scenarios.

In mixed noise situations, the performance of C-USE, JDNN-SE-VAD
and JDNN-SE-IRMl were consistent with isolated interference condi-
tions. C-USE improved the PESQ and STOI results of USE except 10 dB
case. JDNN-SE-VAD and JDNN-SE-IRMl performed effectively to take
advantages of both USE and C-USE.

In order to verify the generalization capacity of the proposed fra-
mework, another set of experiments for three additional speakers were
added. Table 5 presents the average performance of speaker-dependent
systems across four speakers (two females and two males) in the mixed
noise conditions. Through the analysis of Table 5, the conclusion on the
basis of more speakers is the same as before.

Fig. 6. Spectrograms of an utterance corrupted by
mixed noise (destroyer engine + speech inter-
ference) at 5 dB and enhanced by speaker-dependent
systems: (a) clean speech, (b) noisy speech, (c) SS
enhanced speech, (d) SE enhanced speech and (e)
USE enhanced speech.

3 http://home.ustc.edu.cn/~gtian09/demos/USE_DNN_Journal.html.
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6. Conclusion

We present a unified DNN approach to reduce both background
noise and speech interference in a speaker-dependent scenario. A

speaker-dependent system is much more robust than a speaker-in-
dependent system and can unify speech enhancement and speech se-
paration. Empirical results demonstrate that the unified system USE can
achieve fairly good results compared with specific systems where only

Table 5
Average performance of speaker-dependent systems across four speakers (two females and two males) in four mixed noise conditions.

Metrics SNR Noisy SE SS USE C-USE JDNN-SE-VAD JDNN-SE-IRMl

Destroyer engine noise+ speech interference
PESQ −5 dB 1.120 1.454 1.252 1.554 1.592 1.624 1.639

0 dB 1.413 2.017 1.706 2.090 2.111 2.135 2.164
5 dB 1.748 2.481 2.157 2.525 2.526 2.547 2.576
10 dB 2.109 2.840 2.531 2.861 2.826 2.846 2.890

STOI −5 dB 0.580 0.649 0.596 0.670 0.676 0.677 0.683
0 dB 0.690 0.786 0.728 0.797 0.799 0.800 0.806
5 dB 0.786 0.864 0.824 0.870 0.869 0.871 0.876
10 dB 0.859 0.910 0.887 0.912 0.911 0.913 0.916

FWSegSNR −5 dB −3.348 3.856 1.064 3.254 2.958 2.829 3.030
0 dB −1.626 7.287 4.019 6.591 6.584 6.086 6.488
5 dB 1.374 10.506 7.088 9.882 9.773 9.241 9.841
10 dB 5.513 13.746 10.686 13.258 12.873 12.411 13.140

SDR −5 dB −5.598 0.193 −0.457 0.492 −0.649 −0.588 −0.268
0 dB −0.699 5.399 4.316 5.552 4.770 4.766 5.060
5 dB 4.268 9.865 8.400 9.912 9.340 9.356 9.619
10 dB 9.257 13.933 12.384 13.945 13.538 13.605 13.778

Factory noise+ speech interference
PESQ −5 dB 1.069 1.450 1.079 1.527 1.541 1.572 1.572

0 dB 1.392 2.011 1.543 2.063 2.077 2.087 2.101
5 dB 1.781 2.465 2.013 2.500 2.504 2.510 2.525
10 dB 2.168 2.829 2.438 2.854 2.834 2.838 2.864

STOI −5 dB 0.562 0.628 0.549 0.638 0.645 0.647 0.649
0 dB 0.680 0.776 0.682 0.781 0.783 0.785 0.787
5 dB 0.785 0.866 0.791 0.867 0.867 0.867 0.869
10 dB 0.863 0.914 0.869 0.913 0.913 0.913 0.914

FWSegSNR −5 dB −3.966 2.553 −0.976 2.396 1.794 1.573 2.072
0 dB −2.424 6.029 1.320 5.501 4.627 4.415 5.096
5 dB 0.325 9.378 4.364 8.629 7.535 7.321 8.211
10 dB 4.160 12.438 7.953 11.833 10.585 10.461 11.421

SDR −5 dB −5.613 −1.354 −3.304 −1.116 −1.244 −1.113 −1.116
0 dB −0.716 4.289 2.460 4.448 4.288 4.386 4.427
5 dB 4.251 8.982 7.243 9.046 8.871 8.913 9.024
10 dB 9.240 13.306 11.515 13.348 13.162 13.215 13.328

Babble noise+ speech interference
PESQ −5 dB 1.107 1.425 1.348 1.510 1.586 1.604 1.602

0 dB 1.458 2.000 1.818 2.061 2.104 2.125 2.126
5 dB 1.826 2.476 2.265 2.515 2.521 2.533 2.547
10 dB 2.203 2.839 2.624 2.866 2.830 2.841 2.873

STOI −5 dB 0.552 0.627 0.611 0.641 0.651 0.653 0.655
0 dB 0.671 0.775 0.740 0.779 0.783 0.785 0.786
5 dB 0.780 0.863 0.836 0.863 0.863 0.864 0.866
10 dB 0.860 0.913 0.893 0.912 0.910 0.911 0.913

FWSegSNR −5 dB −0.851 2.386 0.095 2.551 2.062 1.952 2.239
0 dB −0.838 6.072 3.032 5.952 5.215 5.151 5.594
5 dB 2.158 9.847 6.734 9.423 8.592 7.586 9.099
10 dB 6.246 13.450 10.705 12.922 12.122 11.942 12.645

SDR −5 dB −5.609 −1.611 −1.793 −0.274 −1.243 −1.120 −1.014
0 dB −0.718 4.249 3.326 4.546 4.283 4.372 4.520
5 dB 4.245 9.093 8.042 9.138 8.919 8.959 9.132
10 dB 9.232 13.420 12.315 13.342 13.193 13.254 13.356

Mess hall noise+ speech interference
PESQ −5 dB 1.110 1.510 1.384 1.594 1.629 1.657 1.660

0 dB 1.503 2.078 1.834 2.125 2.154 2.158 2.170
5 dB 1.846 2.528 2.265 2.544 2.549 2.549 2.572
10 dB 2.211 2.868 2.621 2.875 2.833 2.842 2.878

STOI −5 dB 0.574 0.669 0.640 0.681 0.685 0.681 0.692
0 dB 0.692 0.800 0.765 0.803 0.805 0.801 0.809
5 dB 0.794 0.877 0.851 0.876 0.877 0.874 0.879
10 dB 0.868 0.920 0.903 0.918 0.918 0.917 0.920

FWSegSNR −5 dB −2.387 4.028 0.869 3.471 3.044 2.785 3.200
0 dB −0.593 7.358 4.098 6.679 6.175 5.984 6.368
5 dB 2.505 10.678 7.707 9.978 9.386 9.122 9.648
10 dB 6.719 14.145 11.607 13.551 12.860 12.452 13.220

SDR −5 dB −5.653 −0.343 −0.995 0.029 −0.207 −0.118 0.016
0 dB −0.756 4.924 3.974 5.139 4.952 4.997 5.130
5 dB 4.211 9.252 8.369 9.529 9.374 9.384 9.545
10 dB 9.201 13.045 12.499 13.649 13.478 13.516 13.645
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noise or speech interference is present, and it can achieve better per-
formance for noise and speech interference mixed conditions.
Moreover, we use a joint DNN based framework to improve the per-
formance of USE in low SNR environments. In this ensemble learning-
based method, speech presence segments and speech absence segments
are presented to C-USE DNN and USE DNN separately. A VAD DNN and
an IRM DNN are investigated to integrate the outputs of C-USE and
USE. The resulting system can take advantages of both C-USE and USE
to yield improvement in serious noise environments. In this paper, we
mainly investigate the concept of speaker-dependent speech enhance-
ment and employ an ensemble framework for low SNR environments.
The upgrade of modules in the proposed framework, like advanced VAD
method and speech enhancement architecture will be an important
future research problem.
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