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An Experimental Study on Speech Enhancement
Based on Deep Neural Networks

Yong Xu, Jun Du, Li-Rong Dai, and Chin-Hui Lee, Fellow, IEEE

Abstract—This letter presents a regression-based speech en-
hancement framework using deep neural networks (DNNs) with
a multiple-layer deep architecture. In the DNN learning process,
a large training set ensures a powerful modeling capability to
estimate the complicated nonlinear mapping from observed
noisy speech to desired clean signals. Acoustic context was found
to improve the continuity of speech to be separated from the
background noises successfully without the annoying musical
artifact commonly observed in conventional speech enhancement
algorithms. A series of pilot experiments were conducted under
multi-condition training with more than 100 hours of simulated
speech data, resulting in a good generalization capability even
in mismatched testing conditions. When compared with the log-
arithmic minimum mean square error approach, the proposed
DNN-based algorithm tends to achieve significant improvements
in terms of various objective quality measures. Furthermore, in a
subjective preference evaluation with 10 listeners, 76.35% of the
subjects were found to prefer DNN-based enhanced speech to that
obtained with other conventional technique.

Index Terms—Deep neural networks, noise reduction, regression
model, speech enhancement.

I. INTRODUCTION

HE problem of enhancing noisy speech recorded by a

single microphone has attracted much research effort for
several decades in speech communication [1]. Many different
approaches have been proposed in the literature [1]-[3] under
various assumptions. Most of these techniques often can not
make a good estimate of clean speech and lead to a high level
of musical noise artifacts [4].

Early work on using shallow neural networks (SNNs) as non-
linear filters has also been proposed [5]-[7]. Nevertheless, the
performance of the SNN model with little training data and rel-
atively small network size is usually not satisfactory. Further-
more, gradient-based optimization, starting from random initial-
ization, often appears to get stuck in “apparent local minima or
plateaus” [8], especially when deep-layer network structures are
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considered. Recent insight pointed out by Hinton e? al. [9] using
a greedy layer-wise unsupervised learning procedure had resur-
rected the interest of the DNN and successfully applied to au-
tomatic speech recognition (ASR) and a few related tasks, out-
performing the state-of-the-art systems (e.g., [10], [11]).

Other data-driven methods attempt to make a binary classi-
fication decision on time-frequency (T-F) units, such as esti-
mating the ideal binary mask for monaural speech separation
[13], however the acoustic context information of the T-F unit
is not well utilized in a classification framework. In [14], DNNs
were used to estimate a smoothed ideal ratio mask (IRM) in the
Mel frequency domain for robust ASR.

In this study, we propose to learn the complex mapping
function from noisy to clean speech with nonlinear DNN-based
regression models using multi-condition training data en-
compassing different key factors in noisy speech, including
speakers, noise types, and signal-to-noise ratios (SNRs). To
our knowledge, this is one of the leading research employing
a regression DNN model for speech enhancement with a large
size of training data.

The rest of the letter is organized as follows. In Section I,
we present the proposed DNN-based speech enhancement
system. A set of evaluation experiments to assess the system
performance in various DNNs configurations are provided in
Section III. Finally we summarize our findings in Section I'V.

II. DEEP NEURAL NETWORKS FOR SPEECH ENHANCEMENT

A block of the proposed speech enhancement system is illus-
trated in Fig. 1. In the training stage, a regression DNN model
is trained from a collection of stereo data, consisting of pairs of
noisy and clean speech represented by the log-power spectra
features. In the enhancement stage, the well-trained DNN
model is fed with the features of noisy speech in order to gen-
erate the enhanced log-power spectra features. The additional
phase information is calculated from the original noisy speech.
The assumption is that the phase information is not important
for the human auditory perception, so only an estimate of the
magnitude or power of the speech is required [7]. Finally an
overlap-add method is used to synthesize the waveform of the
estimated clean speech. A detailed description of the feature
extraction module and the waveform reconstruction module
can be found in [12].

A. Pre-training DNNs with Noisy Data

The DNN training, starting with a randomly initialized net-
work, typically finds poor local minima [9], especially when the
number of hidden layers increases. Hence, as in [17], we firstly
try to learn a deep generative model of noisy log-spectra by
a stacking of multiple restricted Boltzmann machines (RBMs)
[8]. The left part of Fig. 2 illustrates the RBM pre-training fed
with noisy data. The first one is a Gaussian-Bernoulli RBM that
has one visible layer of linear variables, connected to a hidden
layer. Then a pile of Bernoulli-Bernoulli RBMs can be stacked
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Fig. 1. A block diagram of the proposed DNN-based speech enhancement
system.
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Fig. 2. Left: Illustration of the RBM pre-training that consists of only two
RBMs. Right: Description of the fine-tuning procedure of DNN-based speech
enhancement with the random initialized linear output layer.

behind the Gaussian-Bernoulli RBM. Afterwards, they can be
trained layer-by-layer in an unsupervised greedy fashion [9].
During that, an objective criterion, called contrastive divergence
(CD), is used to update the parameters of each RBM [8].

B. MMSE-based Fine-tuning

Back-propagation algorithm with the minimum mean
squared error (MMSE) object function between the target and
enhanced log-power spectral features is used to train the DNN.
The right part of Fig. 2 describes the procedure of fine-tuning.
The MMSE criterion in the log domain is more consistent with
the human auditory system [6]. A stochastic gradient descent
algorithm is performed in mini-batches with multiple epochs to
improve learning convergence as follows,

N D

1 N
B= 3 SKIW B - X
n=1d=1

(1)

where E is the mean squared error, X 4(W* b’) and X? denote
the d-th enhanced and target frequency bins of the log-spectral
feature at sample index n, respectively, with N representing
the mini-batch size, D being the size of the log-spectral feature
vector, (W*, b®) denoting the weights and bias parameters to be
learned at the /-th layer, with L indicating the total number of
hidden layers and L + 1 representing the output layer. Then the
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updated estimate of the weights W and bias b, with a learning
rate A, can be computed iteratively in the following:
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During the derivation of the model parameters, we employ
nearly no assumptions because we believe that the DNN can be
used to fit the desired nonlinear mapping function. Furthermore,
the independence assumption among different frequency bins,
used in the conventional model-based speech enhancement
methods [12], is not needed in our proposed framework. The
DNN is capable of capturing the context information along
the time axis (using multiple frames expansion) and along the
frequency axis (using log-spectral features with full frequency
bins) by concatenating them into a long input feature vector for
the DNN learning.

III. EXPERIMENTS AND RESULT ANALYSIS

All experiments below were conducted on TIMIT database
[19]. As in [12], additive white Gaussian noise (AWGN) and
three other types of noise recordings extracted from the Aurora2
database [18], namely Babble, Restaurant and Street, were used
as our noise signals. All 4620 utterances from the training set of
the TIMIT database [19] were added with the abovementioned
four types of noise and six levels of SNR, at 20 dB, 15 dB, 10 dB,
5 dB, 0 dB, and -5 dB, to build a multi-condition stereo training
set. This resulted in a collection of about 100 hours of noisy
training data (including one case of clean training data) used
to train the DNN-based speech enhancement models. Another
200 randomly selected utterances from the TIMIT test set were
used to construct the test set for each combination of noise types
and SNR levels. Two other noise types, namely Car and Exhi-
bition, were used for mismatch evaluation. To evaluate the per-
formance of DNN-based speech enhancement, an improved ver-
sion of the optimally modified log-spectral amplitude (OMLSA)
[2], [15], [16], denoted as log-MMSE (L-MMSE) method, was
used for performance comparison. The optimal spectral gain
function of them, which minimizes the mean-square error of the
log-spectra, is obtained as a weighted geometric mean of the hy-
pothetical gains associated with the speech presence uncertainty
[15].

As for signal analysis, speech waveform was down-sampled
to 8KHz, and the corresponding frame length was set to 256
samples (or 32 msec) with a frame shift of 128 samples. A
short-time Fourier analysis was used to compute the DFT of
each overlapping windowed frame. Then 129 dimensions log-
power spectra features [12] were used to train DNNs. Two ob-
jective quality measures, segmental SNR (SegSNR in dB) and
log-spectral distortion (LSD in dB), were used for evaluating
the quality of the enhanced speech as in [12]. In addition, per-
ceptual evaluation of speech quality (PESQ), which has a high
correlation with subjective score [20], was also used to com-
pare system performance. In the following experiments, we only
gave selective results of those three objective measures due to
space limitation. Subjective listening tests would also be con-
ducted for comparison.

The number of epoch for each layer of RBM pre-training was
20. Learning rate of pre-training was 0.0005. As for the fine-
tuning, learning rate was set at 0.1 for the first 10 epochs, then
decreased by 10% after every epoch. Total number of epoch was
50. The mini-batch size was set to N = 128. Input features of
DNNs were normalized to zero mean and unit variance.
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Fig. 3. Average LSD results using input with different acoustic context on the
test set at different SNRs across four noise types.
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Fig. 4. Average SegSNR results using different training set size on the test set
at different SNRs across four noise types.

Finally, clean condition is very special for the speech en-
hancement task. And for almost all speech enhancement algo-
rithms, including L-MMSE, they do harm to the clean signal.
To keep all of the information in clean utterances, a background
detection operation, about whether the testing utterance was
clean or not, was conducted before enhancing. It was easily
implemented based on the energy and zero-crossing rate [22]
of the framed utterance. With this pre-processing step, better
overall results could be obtained. As the signal of clean utter-
ances stayed unchanged after this pre-processing, the results of
noise-free conditions were omitted below.

A. Evaluation of the Acoustic Context Information

Fig. 3 shows the average LSD results on the test set at dif-
ferent SNRs across four noise types using input features with
multiple frames expansion, ranging from 1 to 11 frames at a two-
frame increment. Other configurations of the DNN were L = 3
hidden layers, 2048 hidden units, and 100 hours training data. It
is clear that the longer frames (no more than 11 frames) the DNN
was fed with, the better the performance could be achieved. In
addition, more acoustic context information could smooth the
enhanced speech to obtain better hearing sense. However too
long frames also made the DNN structure more complicated to
learn in training.

B. Evaluation of the Training Set Size

Fig. 4 presents the average SegSNR results of different
training set size on the test set at different SNRs across four
noise types. Other configurations of the DNN were L. = 3
hidden layers, 2048 hidden units and 11 frames expansion.
Poor results were obtained if the data size was only one hour,
which was almost at the same scale as that used in [7], in-
dicating that sufficient training samples are very important
to obtain a more generalized model. The performance was
improved greatly when the data size was getting larger. Even
up to 100 hours, the performance was not saturated.
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TABLE I
AVERAGE PESQ RESULTS AMONG NoISY, L-MMSE, SNN AND DNXN
ON THE TEST SET AT DIFFERENT SNRS ACROSS FOUR NOISE TYPES. THE
SUBSCRIPT L OF DN N1 REPRESENTED THE HIDDEN LAYER NUMBER

Noisy | L-MMSE | SNN | DNN; DNN> | DNN3 | DNNy

SNR20 2.99 3.32 3.48 3.46 3.59 3.60 3.59
SNR15 2.65 2.99 3.26 3.24 3.35 3.36 3.36
SNR10 2.32 2.65 2.99 2.97 3.08 3.10 3.09
SNRS 1.98 2.30 2.68 2.65 2.76 2.78 2.78
SNRO 1.65 1.93 2.32 2.29 2.38 2.41 2.41
SNR-5 1.38 1.55 1.92 1.89 1.95 1.97 1.97
Ave 2.16 2.46 2.78 2.75 2.85 2.87 2.87

C. Overall Evaluation

For the match evaluations of noisy testing, average PESQ
results among Noisy, L-MMSE, SNN, and DNN with various
number of hidden layers on the test set at different SNRs across
four noise types are listed in Table I. The configurations for the
DNN were L = 1, 2, or, 3 hidden layers (denoted as DNN,),
2048 hidden units and 11 frames of input feature expansion.
As for the SNN, its configurations were L, = 1 hidden layer,
6144 hidden layer units and 11 frames input. And the RBM
pre-training was not used to initialize the weights of the SNN.
The DNN and the SNN were both trained with 100 hours
training data. It shows that each DNN-based method outper-
formed the L-MMSE method significantly indicating that the
DNNs were capable of making more accurate estimation of the
target speech corrupted by noise. The DNNs with more hidden
layers (no more than 3 hidden layers) were demonstrated
more effective and the DNN3-based method achieved the best
performance. The improvement of objective measures over
the SNN which have the same number of parameters with the
DNNj indicated that deeper architectures had a much stronger
regression capability.

Table II shows the PESQ results among Noisy, L-MMSE,
SNN and DNN3 on the test set at different SNRs in mismatch
environments under Car and Exhibition noises, which were
both derived from Aurora2 database [18]. The Car noise was
more stable than the Exhibition noise. Comparing the results of
the DNN3-based method and the L-MMSE method, the former
was superior to the latter at all SNRs across two unseen noise
types, especially at low SNRs and under the unstable Exhibition
noise. These results indicated that the proposed DNN-based
method had more powerful capacity to model low SNRs and
unstable noise conditions. Meanwhile, the DNN-based method
outperformed the SNN-based method at different SNRs across
two noise types. Another two mismatch testings were also
conducted, namely, (i) SNR at 7 dB which was not seen in
the training set; (ii) 200 randomly selected Mandarin utter-
ances were used as clean speech added with Babble noise at
10 dB to evaluate cross-language performance. When com-
pared the DNNg-based method with the L-MMSE method,
PESQ of (i) was improved from 2.48 to 2.95, and PESQ of
(i1) was increased from 2.20 to 2.31. Clearly the proposed
DNN-based approach outperformed the L-MMSE method and
the SNN-based method in all mismatched settings. Large-size
multi-condition training data ensured good generalization to
mismatched environments, which could be further improved
using more noise types in training.

A subjective preference listening test with 10 subjects (five
males and five females), under match (AGWN and Babble) and
mismatch (Car) environments, comparing the DNN method
with L-MMSE method, was also conducted. 36 pairs of
DNN-based and L-MMSE enhanced speech utterances, from
the test set for each SNR in each environment, were assigned
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TABLE 11
PESQ RESULTS AMONG NoIsY, L-MMSE, SNN AND DNNj; ON THE TEST
SET AT DIFFERENT SNRS IN MISMATCH ENVIRONMENTS UNDER Car AND
Exhibition NOISES, LABELED AS CASE A AND B, RESPECTIVELY

Noisy L-MMSE SNN DNN3
A B A B A B A B
SNR20 | 3.15 | 289 | 3.52 | 3.19 | 343 | 324 | 3.58 | 3.30
SNRI5 | 2.81 255 | 323 | 285 | 3.19 | 296 | 3.31 | 3.01
SNRIO | 247 | 221 2.89 | 2.51 293 | 266 | 3.03 | 2.69
SNR5 2.14 1.87 | 2.57 | 2.11 2.60 | 230 | 271 | 2.33
SNRO 1.81 1.56 | 2.21 1.72 | 2.24 192 | 235 | 193
SNR-5 1.52 1.28 1.82 1.34 1.85 1.52 | 1.96 | 1.54

Ave 232 | 206 | 270 | 229 | 2.71 243 | 2.83 | 247

TABLE III
SUBJECTIVE PREFERENCE EVALUATIONS UNDER ONE MISMATCH (CAR) AND
TwO MATCH ENVIRONMENTS (AGWN AND BABBLE)

AGWN  Babble Car Average
DNN 86.98% 80.21% 61.86%  76.35%
L-MMSE  13.02% 19.79% 38.14%  23.65%
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Fig. 5. Spectrograms of an utterance example with DNN enhanced (upper
left), L-MMSE enhanced (upper right), original (bottom left), and noisy
(bottom right) speech. Test on AGWN noise at SNR = 10 dB.

to each listener. Table III gives the preference results given by
the listeners. An average of 76.35% of the subjects preferred
DNN-based to L-MMSE based enhanced speech, even under
mismatched noise conditions.

Musical noise appeared in almost all traditional speech
enhancement methods due to noise or SNR estimation errors
leading to spurious peaks in the processed spectrum [21]. Fig. 5
displays the spectrograms of an utterance example. No musical
noise was found in the DNN-enhanced spectrogram shown
in the upper left panel. Furthermore, the DNN model could
restore the spectrum at high frequencies buried under noise.
This was not observable in the L-MMSE method (shown in
the upper right panel). The DNN-enhanced spectrogram was
noted to give a closer match to the original clean spectrogram
(shown in the bottom left panel) than the L-MMSE enhanced
version. More results and enhanced examples can be found at
http://home.ustc.edu.cn/~xuyong62/demo/SE_DNN.html.

IV. CONCLUSION

In this letter, a speech enhancement framework based on the
DNN, is proposed. An RBM pre-training scheme is introduced
to initialize the DNN. A large training set is crucial to learn the
rich structure of the DNN. Using more acoustic context infor-
mation is also shown to improve the performance and make the
enhanced speech less discontinuous. Multi-condition training
can deal with speech enhancement of new speakers, unseen
noise types, various SNR levels under different noise condi-
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tions, and even cross-language generalization. Compared with
the SNN-based and L-MMSE methods, significant improve-
ments were achieved on the TIMIT corpus. On average, 76.35%
subjective preference was obtained due to the absence of mu-
sical noise in enhanced speech. This work represents our first
study applying the DNN as a regression model to the speech
enhancement task. In the future, we will improve the current
DNN-based speech enhancement system to perform noise adap-
tation in real environments and to adopt objective functions rel-
evant to auditory perception.
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