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Abstract—For multi-microphone speech enhancement, differ-
ent microphones might have different contributions, assome are
even marginal. This is more likely to happen in wireless acoustic
sensor networks (WASNs), where somesensors might be distant.
In this work, we therefore consider sensor selection for linearly-
constrained beamformers. Theproposed sensor selection approach
is formulated by minimizing the total output noise power and
constraining thenumber of selected sensors. As the considered
sensor selection problem requires the relative acoustic transfer
function(RTF), the covariance whitening based RTF estimation or
a direct-path RTF approximation is exploited. For a singletarget
source, we can thus substitute the estimated RTF or the assumed
RTF to the original problem formulation in orderto design a
minimum variance distortionless response (MVDR) beamformer.
Alternatively, we can integrate the two RTFsto design a linearly
constrained minimum variance (LCMV) beamformer in order to
alleviate the effects of RTFestimation/approximation errors. By
leveraging the superiority of LCMV beamformers, the proposed
approach can beapplied to the multi-source case. An evaluation
using a simulated large-scale WASN demonstrates that the integra-
tion ofRTFs for the sensor selection based LCMV beamformer can
be beneficial as opposed to relying on either of theindividual RTF
steered sensor selection based MVDR beamformers. We conclude
that the sensors that are close to thetarget source(s) and also some
around the coherent interferers are more informative.

Index Terms—Beamformers, convex optimization, covariance
whitening, relative acoustic transfer function, sensor selection,
speech enhancement, wireless acoustic sensor networks.

I. INTRODUCTION

M ICROPHONE arrays are frequently deployed in vari-
ous audio applications, e.g., hearing aids (HAs) [1],

teleconferencing systems [2], hands-free telephony [3], speech
recognition [4], human-robot interaction [5], etc. Although the
traditional array system has been widely studied over the past
few decades, its configuration brings several limitations, leading
to a bottleneck with respect to the speech processing perfor-
mance. Usually, conventional array systems are equipped with
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multiple microphones, which are physically linked to a central
computing unit. Rearranging such a wired and centralized array
system (e.g., including a new microphone or removing a useless
microphone) seems impractical. The spatial sampling capability
is limited, as the location of the microphone arrays cannot be
changed easily. In case the microphones are distant from the
target speaker, low-quality audio recordings are obtained and
the system performance degrades. Moreover, the size of the
arrays should be determined by the application scenarios, for
example, only a small array consisting of 2-4 microphones can
be equipped by each HA.

Nowadays, with the increased popularity of using wireless de-
vices, e.g., laptops, smartphones, we are surrounded by wireless
acoustic sensor networks (WASNs). In WASNs, each node can
be mounted with a single microphone or a small microphone ar-
ray. Due to the capability of wireless communication, the sensor
network can be organized more flexibly, either in a centralized
fashion or in a distributed way [6]–[9]. The utilization of WASNs
for speech processing can potentially resolve the limitations
within the conventional microphone array systems. For instance,
as the wireless devices can be distributed anywhere, they might
be very close to the target source, resulting in high-quality
recordings which are beneficial for speech enhancement. Even
though the HAs can only host a rather limited number of micro-
phones, if the external wireless devices share their measurements
with the HAs, they are able to make use of more data, leading to
a performance improvement [10]–[12]. However, incorporating
more external sensors as a WASN in return requires a higher
power consumption and computational complexity. In this con-
text, the challenges need to be addressed are 1) how to optimally
select the most informative subset of sensors from a large-scale
WASN? and 2) how to reconstruct the target speech signal from
the incomplete observations over the WASN?

The concept of sensor selection originates from wireless
sensor networks (WSNs) [13]. Mathematically, it can be for-
mulated by optimizing a certain performance measure subject
to a constraint on the cardinality of the selected subset, or in the
other way around. In principle, sensor selection is a combina-
torial optimization problem. In order to perform sensor selec-
tion efficiently, some convex relaxation techniques [13]–[15] or
greedy heuristics (e.g., submodularity) [16] should be leveraged.
Using the selected subset of sensors can still perform source
localization [14], field estimation [17], target tracking [15], etc,
yet the resource consumption is saved, as much less sensors
are involved. In WASNs, there are also some sensor selection
algorithms that have been proposed recently for e.g., speech
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enhancement [18]–[20], speech recognition [21], and speaker
tracking [22]. It was shown in [20] that sensor selection is
effective in reducing the power consumption and computational
complexity for WASNs with a tolerable scarification of noise
reduction performance.

A. Contributions

In this work, we consider to select the most informative subset
of sensors from a large-scale WASN for linearly constrained
beamformers based speech enhancement, such that the target
speech signal can be estimated using a subset of microphone
observations. The considered sensor selection problem is formu-
lated by minimizing the total output noise power and constrain-
ing the number of selected sensors. Since the audio recordings
across different microphones are highly correlated, using all
measurements from the complete network is unnecessary and a
large amount of resource consumption is required. By using the
proposed sensor selection algorithm, the data redundancy can
thus be removed to some extent and the resource consumption
can be saved.

We begin with the sensor selection in the context of mini-
mum variance distortionless response (MVDR) beamforming
(SS-MVDR) for a single source estimation. As the original
SS-MVDR optimization problem requires the relative acoustic
transfer function (RTF), we consider two variants: 1) using an
estimated RTF and 2) exploiting an assumed RTF, as the RTF
can be approximated using a priori information. As there exist
estimation errors in the estimated RTF and approximation errors
in the assumed RTF, using the respective RTF would affect the
optimality of sensor selection and further degrade the speech en-
hancement performance. Then, we integrate the two constraints
associated with the estimated and assumed RTFs to design a
linearly constrained minimum variance (LCMV) beamformer
and consider the sensor selection criterion for such an LCMV
beamformer (SS-LCMV). Both SS-MVDR and SS-LCMV can
be derived as semi-definite programming problems using convex
optimization techniques.

Further, we analyze that for the single target source case the
obtained SS-LCMV can be approximated as an integration of
two SS-MVDRs, but SS-LCMV is more robust against the RTF
estimation/approximation errors. The selected subset obtained
by SS-LCMV can be viewed as the intersection set between the
selected subsets obtained by the two SS-MVDR methods. In case
the estimated (or assumed) RTF is more reliable, the selected
subset of SS-LCMV will be more similar to that by the estimated
(or assumed) RTF steered SS-MVDR. Therefore, compared to
SS-MVDR, the proposed SS-LCMV method is able to automat-
ically check the reliability of involved RTFs. Due to the fact that
the LCMV beamformer can handle multiple sources, we further
apply the proposed SS-LCMV algorithm to a multi-source case,
where the RTFs are estimated sequentially. Experimental results
using a simulated WASN validate the proposed approaches. We
find that the sensors close to the existing sources are more likely
to be selected, as the sensors around the target source(s) are
helpful for enhancing the target signal(s) and those close to the
interfering source(s) (even having a low signal-to-noise ratio)

are beneficial for suppressing the noise signal(s). Using the
integrated RTFs can refine the selected subset of sensors and
improve the noise reduction performance.

In [20], we proposed a microphone subset selection method
for MVDR (MSS-MVDR) beamformer based noise reduction,
which is formulated by minimizing the total power consumption
over the WASN and constraining the desired noise reduction
performance. In principle, MSS-MVDR is a special case of the
proposed SS-MVDR problem, as the total power consumption
is directly linked to the cardinality of the selected subset. On the
other hand, MSS-MVDR was solved based on the assumption
that the acoustic transfer function (ATF) of a single source is
given. The ATF estimation error would affect the selection of
MSS-MVDR significantly. Therefore, the proposed SS-MVDR
can be seen as a generalization of MSS-MVDR, and the pro-
posed SS-LCMV is an extension of MSS-MVDR, which is more
practical and applicable to a more dynamic scenario. Compared
to the utility-based sensor selection method that was proposed
in [18], [23], the proposed method can achieve a better noise
reduction performance in case the number of the selected sensors
is fixed.

B. Outline and Notations

The rest of this paper is structured as follows. Section II
introduces the required preliminary knowledge, including signal
model, the covariance whitening based RTF estimation method
and linearly-constrained beamformers (e.g., MVDR, LCMV).
Section III presents the proposed sensor selection method in the
context of MVDR beamforming. In Section IV, we extend the
proposed method to a more general LCMV framework with a
single source and multiple sources being taken into account.
Section V presents the experimental results using a simulated
WASN. Finally, Section VI concludes this work.

The notation used in this paper is as follows: Upper (lower)
bold face letters are used for matrices (column vectors). (·)T or
(·)H denotes (vector/matrix) transposition or conjugate trans-
position. E(·) denotes the mathematical expectation operation.
diag(·) refers to a block diagonal matrix with the elements in its
argument on the main diagonal. 1N and ON denote the N × 1
vector of ones and the N ×N matrix with all its elements equal
to zero, respectively. IN is an identity matrix of size N . A � B
means that A−B is a positive semidefinite matrix. |U| denotes
the cardinality of the set U .

II. FUNDAMENTALS

A. Signal Model

In this work, we consider a WASN consisting of M spatially
distributed acoustic sensor nodes, which are exploited for sam-
pling and monitoring the acoustic scene of interest. Without loss
of generality, we assume that each node is composed of a single
microphone. Letting l and ω, respectively, denote the frame
index and the frequency index, in the short-time Fourier trans-
form (STFT) domain, the recorded signal at the kth microphone,
say Yk(ω, l), can be written as

Yk(ω, l) = Xk(ω, l) +Nk(ω, l), k = 1, . . . ,M, (1)
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where Xk(ω, l) denotes the target signal component at micro-
phone k, and Nk(ω, l) the noise component recorded by the kth
microphone, which can incorporate coherent noise sources (e.g.,
competing speakers) and incoherent noises (e.g., late reverber-
ation of the target source, sensor thermal noise).

For the single point source case, which is characterized by the
ATF ak(ω) (relating the target source position to microphone k),
the signal component is then given by

Xk(ω, l) = ak(ω)S(ω, l), (2)

whereS(ω, l) denotes the target signal. Note that (2) holds under
the assumption that the target source keeps static, implying that
the ATF of this source is time-invariant. Without loss of gener-
ality, taking the first microphone as the reference microphone,
which can be chosen using a more sophisticated method in [24],
and defining the RTF as

hk(ω) = ak(ω)/a1(ω), (3)

then the signal component equals

Xk(ω, l) = hk(ω)X1(ω, l), (4)

whereX1(ω, l) = a1(ω)S(ω, l). The introduction of RTF is due
to the fact that in practice RTF can be estimated using covariance
subtraction or covariance whitening method [25]–[27], however
directly estimating ATF is still unknown. More importantly, the
utilization of RTF does not degrade the beamforming perfor-
mance. For notational conciseness, we will omit the frame and
frequency indexes in the sequel bearing in mind that all the
following operations are realized in the STFT domain. Let the
vector y stack the microphone measurements for each time-
frequency bin, i.e., y = [Y1, Y2, . . . , YM ]T . Similarly, we define
the vectors x, n, a and h for stacking the signal components,
noise components, the ATF and the RTF, respectively, such that
the considered signal model can also be given by

y = hX1 + n. (5)

Furthermore, we assume that the target source and the noise
components are mutually uncorrelated, such that the relationship
between the second-order statistics can be formulated as

Φyy = E
{
yyH

}
= E

{
xxH

}
+ E

{
nnH

}
= Φxx +Φnn, (6)

where Φxx and Φnn denote the correlation matrix of the signal
components and the correlation matrix of the noise components,
respectively. For a single target source case, Φxx is a rank-1
matrix in theory, since by definition we have

Φxx � σ2
Saa

H � σ2
X1

hhH , (7)

where σ2
S = E{|S|2} and σ2

X1
= E{|X1|2} denote the power

spectral density (PSD) of the target source and the PSD of the
signal component at the reference microphone, respectively. In
practice, these correlation matrices can be estimated using the
average smoothing technique. For instance, given a perfect voice
activity detector (VAD), the microphone signal can be classified
into speech-absent frames and speech-plus-noise frames. During
the two periods, the noise and noisy correlation matrices can be
estimated, respectively.

The key procedure of the linearly constrained beamforming
technique is to design a linear filter w = [w1, w2, . . . , wM ]T ,

such that the estimated target signal at the chosen reference
microphone can be obtained through beamforming as

X̂1 = wHy. (8)

B. Covariance Whitening Based RTF Estimation (CW-RTF)

For the design of such a beamformer, the RTF estimate is
required. Among various RTF estimation approaches, it was
shown in [27] that the eigen-decomposition based covariance
whitening method has a superiority in performance, particularly
in noisy and strong reverberant environments. However, it is
more complex compared to, e.g., covariance subtraction, from
the perspective of implementation, since the time consuming
matrix inversion or matrix decomposition is involved. In this
work, in order to alleviate the impact of RTF estimation on
sensor selection based noise reduction, we adopt the covariance
whitening method to estimate the RTF vector.

Given the microphone measurements y per time-frequency
bin and the estimated noise correlation matrix Φ̂nn, the covari-

ance whitening method uses Φ̂
−1/2

nn to whiten y as

ȳ = Φ̂
−1/2

nn y, (9)

where Φ̂
1/2

nn is the square root of Φ̂nn. Then, the correlation
matrix of the whitened signals can be calculated using the
average smoothing technique as

Φ̂ȳȳ =
1

Ly

Ly∑
l=1

ȳ(l)ȳ(l)H (10)

� Φ̂
−1/2

nn Φ̂yyΦ̂
−H/2

nn , (11)

where Ly denotes the number of speech-plus-noise segments.
Note that Φ̂ȳȳ and Φ̂yy should be estimated using the same
frame set. Let φ denote the principal eigenvector of Φ̂ȳȳ, i.e.,

Φ̂ȳȳφ = λmaxφ, (12)

where λmax is the maximum eigenvalue of Φ̂ȳȳ. With φ, the
covariance whitening based RTF estimate is given by

ĥCW =
Φ̂

1/2

nn φ

eH1 Φ̂
1/2

nn φ
, (13)

where e1 is a column vector with the first entry equal to one and
zeros elsewhere. Notably, it is easy to check that the covariance
whitening based RTF estimate is equivalent to the normalized
principal eigenvector of the generalized eigenvalue decomposi-
tion (GEVD) of the matrix pencil {Φ̂yy, Φ̂nn}.

C. MVDR Beamformer

The well-known MVDR beamformer is formulated by mini-
mizing the output noise power under a linear constraint, which
is exploited for preserving the signal power that comes from
the direction of interest. Mathematically, it can be designed by
considering the following constrained optimization problem:

wMVDR = argmin
w

wHΦ̂nnw s.t. wHh = 1. (14)

With such a linear constraint and using (7), we can see that
wH

MVDRΦxxwMVDR = σ2
X1

, which implies that the power of
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the desired signal component at the reference microphone is
preserved. Any reduction of the objective function is caused by
reducing the noise power. Given the true RTF vectorh and using
the technique of Lagrangian multipliers, the MVDR beamformer
can be shown to be given by [28], [29]

wMVDR = (hHΦ̂
−1

nnh)
−1Φ̂

−1

nnh. (15)

The output noise power of MVDR beamformer is given by

wH
MVDRΦ̂nnwMVDR = (hHΦ̂

−1

nnh)
−1, (16)

and the output signal-to-noise ratio (SNR) is given by

oSNRMVDR = σ2
X1

hHΦ̂
−1

nnh. (17)

Obviously, the optimal design of the MVDR beamformer is
dependent on the true RTF, which is unknown, the optimal
MVDR beamformer is thus impractical to approach. In practice,
we can substitute a priori information on RTF into (14) to obtain
near-optimal, but more practical solutions.

1) MVDR Based on the Estimated RTF (MVDR-EST): One
alternative way to design a practical MVDR beamformer is
based on the use of the estimated RTF vector. Substitutting
the RTF estimate from (13) into (15), the resulting MVDR
beamformer is then given by

wMVDR−EST = (ĥH
CWΦ̂

−1

nnĥCW)−1Φ̂
−1

nnĥCW. (18)

2) MVDR Based on an Assumed RTF (MVDR-ASS): In some
cases, the RTF of the target source can be approximated by using
a priori assumptions. For example, for the hearing-aid users,
usually the target source is located in the front direction. In this
context, the RTF of the target source can be approaximated by
gain and delay values as

ĥASS =
[
1, g21e

−j2πfτ21 , . . . , gM1e
−j2πfτM1

]
, (19)

where gk1 is the attenuation coefficient which depends on the
distance between the source position and the microphone pair,
and τk1, ∀k denotes the time-difference of arrival (TDOA).
Therefore, one can use the assumed RTF ĥASS for a practi-
cal MVDR implementation. The resulting near-optimal MVDR
beamformer is then given by

wMVDR−ASS = (ĥH
ASSΦ̂

−1

nnĥASS)
−1Φ̂

−1

nnĥASS. (20)

Note that under the utilization of an estimated RTF or an as-
sumed counterpart, the signal power cannot be exactly preserved
any more as using the true RTF, because there exist estima-
tion/approximation errors.

D. LCMV Beamformer

An important limitation within the classic MVDR beam-
formers is that the distortionless response corresponding to one
direction (which is characterized by the estimated RTF ĥCW

or the assumed RTF ĥASS) can be preserved. Clearly, in case
the mismatch between the involved RTF and the true RTF is
large, the performance of the MVDR beamformer will degrade
significantly. For this, one can add more linear constraints to
the MVDR optimization problems. These linear constraints are
associated with multiple directions, such that the distortionless
response from more RTFs can be preserved, resulting in an

LCMV beamformer as

wLCMV = argmin
w

wHΦ̂nnw s.t. CHw = b, (21)

where the matrix C ∈ CM×N is constructed from multiple
RTFs, and the vector b ∈ CN is dedicated to enforcing the
distortion level for each RTF. Similarly, the LCMV beamformer
can be resolved as a close-form solution:

wLCMV = Φ̂
−1

nnC(CHΦ̂
−1

nnC)−1b. (22)

The output noise power of LCMV filter is then given by

wH
LCMVΦ̂nnwLCMV = bH(CHΦ̂

−1

nnC)−1b. (23)

Remark 1: In order to further visualize the LCMV beam-
former, one can consider a special case. Given

C = [ĥCW, ĥASS], b = [1, 1]T , (24)

the resulting LCMV beamformer is a linear combination of the
two MVDR beamformers based on the use of the estimated and
assumed RTFs [30], i.e.,

ŵLCMV = α1wMVDR−EST + α2wMVDR−ASS, (25)

where α1 and α2 depends on the estimated and assumed
RTFs and the noise correlation matrix, and are detailed in [30,
Sec. III-C]. Clearly, the LCMV beamformer is a generalization
of the MVDR filter. Since the LCMV beamformer takes more
constraints into account, less degrees of freedom are left for
adjusting the filter coefficients to minimize the noise power.

III. SENSOR SELECTION FOR MVDR BEAMFORMING

In this section, we will present the proposed SS-MVDR
method for speech enhancement using a subset of microphone
measurements over a large-scale WASN.

A. Sensor Selection Model

The sensor selection problem is formulated by choosing a
best subset of sensors in order to optimize an objective function
subject to certain constraints. For this, we first introduce a
Boolean selection vector

p = [p1, p2, . . . , pM ]T ∈ {0, 1}M ,

where pk = 1, ∀k indicates that the kth microphone is selected,
and otherwise unselected. Further, we use K = ||p||0 to rep-
resent the number of selected sensors with �0-norm denoting
the number of non-zero elements of a vector. Letting diag(p)
denote a diagonal matrix whose diagonal entries are given by
p, we can define a selection matrix Σp ∈ {0, 1}K×M which is
obtained by removing the all-zero rows of diag(p). Clearly, we
can obtain the following properties:

ΣpΣ
T
p = IK , ΣT

pΣp = diag(p). (26)

With the selection matrix at hand, we can construct the incom-
plete audio measurements as

yp = Σpy = Σpx+Σpn ∈ CK . (27)

Similarly, the RTF and noise correlation matrix associated with
the selection sensors are given by

hp = Σph ∈ CK , Φ̂nn,p = ΣpΦ̂nnΣ
T
p ∈ CK×K . (28)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 01,2021 at 14:38:11 UTC from IEEE Xplore.  Restrictions apply. 



1224 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

The MVDR beamformer depending on the selected sensors is
then given by

wp =
(
hH
p Φ̂

−1

nn,php

)−1

Φ̂
−1

nn,php, (29)

where we note that in general Φ̂
−1

nn,p �= ΣpΦ̂
−1

nnΣ
T
p , unless Φ̂nn

is diagonal (i.e., the uncorrelated noise case). As a result, the
estimated target signal can be obtained as X̂1 = wH

p yp.

B. Problem Formulation (SS-MVDR)

Given the RTF (e.g., ĥCW, ĥASS), the proposed sensor selec-
tion for MVDR beamforming can be formulated by minimizing
the total output noise power under a constraint that the signal as-
sociated with the considered RTF is undistorted, as the following
constrained optimization problem shows

min
p,wp

wH
p Φ̂nn,pwp

s.t. wH
p hp = 1

||p||0 ≤ K, p ∈ {0, 1}M ,

(30)

where K denotes the maximum number of sensors that can be
selected, which can be assigned by users. Obviously, this is a
non-convex optimization problem, because of the non-linear
selection operation by selection matrix Σp and the Boolean
variables p. However, we can simplify it for analysis. Consid-
ering the Lagrangian function of (30) and calculating the partial
derivative with respect to wp, we find that the MVDR beam-
former is the solution. Hence, plugging the MVDR beamformer
from (29) into (30), we obtain a simplified sensor selection
problem:

max
p

hH
p Φ̂

−1

nn,php

s.t. ||p||0 ≤ K, p ∈ {0, 1}M ,

(31)

By doing this, we can get rid of jointly optimizing the original
problem over two variables. The simplified version only needs
to consider the selection variable, which indeed is still a non-
convex (combinatorial) optimization problem.

C. Convex Solver

In this section, we will resolve the proposed sensor selection
problem following convex optimization techniques and using
the true RTF h. Note that the proposed solver also applies to
the case of using the estimated RTF ĥCW or the assumed RTF
ĥASS. First of all, in order to avoid the non-linearity within

hH
p Φ̂

−1

nn,php, we consider to decompose the matrix Φ̂nn as

Φ̂nn = λI+G, (32)

where the constant λ is positive and G is a positive semi-definite
matrix. Since Φ̂nn is always positive definite in the presence
of correlated and uncorrelated noises, we can find such a de-
composition via eigenvalue decomposition (EVD) of Φ̂nn. For
example, λ can be chosen to be the minimum eigenvalue of Φ̂nn.
Even though λ might be close to zero, as long as λ > 0, (38) will
be always feasible. With λ and G at hand, it can be seen that

Φ̂nn,p = ΣpΦ̂nnΣ
T
p = λIK +ΣpGΣT

p . (33)

Further, the objective function of (31) can be derived as

hH
p Φ̂

−1

nn,php = hH ΣT
p

(
λIK +ΣpGΣT

p

)−1
Σp︸ ︷︷ ︸

Q

h. (34)

Using the matrix inversion lemma [31]

C(B−1 +CTA−1C)−1CT = A−A(A+CBCT )−1A,

the matrix Q can be represented as

Q = G−1 −G−1
(
G−1 + λ−1diag(p)

)−1
G−1. (35)

With Q, we can equivalently re-write (31) in an epigraph form
as [32]

max
p,η

η

s.t. η ≤ hHQh

||p||0 ≤ K, p ∈ {0, 1}M ,

(36)

Substituting Q from (35) into the constraint η ≤ hHQh, we
obtain

hHG−1h− η ≥ hHG−1
(
G−1 + λ−1diag(p)

)−1
G−1h,

which can be reformulated as a symmetric linear matrix inequal-
ity (LMI) [32] using the Schur complement[

G−1 + λ−1diag(p) G−1h

hHG−1 hHG−1h− η

]
� OM+1, (37)

due to the fact that the matrix G−1 + λ−1diag(p) is always
positive definite with a positive λ and a positive semi-definite
matrix G−1.

Now the non-convexity of (31) lies in the �0-norm and the
Boolean constraint. For the �0-norm, one alternative is by using
the �1-norm which is convex to relax it. For the Boolean con-
straint, it can be relaxed using continuous surrogates or semi-
definite relaxation [33]. In this work, we will relax pk ∈ {0, 1}
to 0 ≤ pk ≤ 1, ∀k. To this end, we can represent the original
SS-MVDR problem as

max
p,η

η

s.t.

[
G−1 + λ−1diag(p) G−1h

hHG−1 hHG−1h− η

]
� OM+1

1T
Mp ≤ K, 0 ≤ pk ≤ 1, ∀k, (38)

which is a semi-definite programming problem and can be effi-
ciently solved in polynomial time using interior-point methods
or some off-the-shelf solvers, like CVX [34] or SeDuMi [35].
The computational complexity of (38) is cubic in terms of
M . The final Boolean solution can be obtained by randomized
rounding or deterministic rounding techniques. Note that (38) is
a general sensor selection problem for the RTF-steered MVDR
beamformer. In practice, given the noise statistics, we can sub-
stitute the estimated RTF ĥCW or the assumed RTF ĥASS into
(38) to solve a specific, but more practical problem.
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IV. SENSOR SELECTION FOR LCMV BEAMFORMING

Since using the estimated RTF ĥCW or the assumed RTF ĥASS

might distort the target signal, similar to SS-MVDR we thus pro-
pose a sensor selection based LCMV (SS-LCMV) beamformer
in this section.

A. General Sensor Selection for LCMV (SS-LCMV)

The considered sensor selection based LCMV beamformer is
formulated by minimizing the total output noise power under a
set of linear constraints together with the cardinality constraint,
as the following optimization problem shows

min
p,wp

wH
p Φ̂nn,pwp

s.t. CH
p wp = b

||p||0 ≤ K, p ∈ {0, 1}M ,

(39)

where Cp = ΣpC ∈ CK×N . Again, (39) is a non-convex com-
binatorial optimization problem. In order to find an efficient
solver for (39), similarly to Section III, we consider its Lagrange
function and derive the partial derivative with respect towp. The
resulting beamformer wp is then given by

wp = Φ̂
−1

nn,pCp

(
CH

p Φ̂
−1

nn,pCp

)−1

b, (40)

which is the classic LCMV beamformer given in (22), but now
depends on the selected subset of sensors. Under the utilization
of such an LCMV beamformer, the output noise power in the
objective function of (39) is given by

wH
p Φ̂nn,pwp = bH

(
CH

p Φ̂
−1

nn,pCp

)−1

b. (41)

Substituting (41) into (39), we can therefore get rid of opti-
mizing the filter coefficients, and only the selection variable is
unknown. The original problem can then be simplified as

min
p

bH
(
CH

p Φ̂
−1

nn,pCp

)−1

b

s.t. ||p||0 ≤ K, p ∈ {0, 1}M .

(42)

By introducing a new variable η, (42) can be equivalently
reformulated in the following epigraph form:

min
p,η

η

s.t. bH
(
CH

p Φ̂
−1

nn,pCp

)−1

b ≤ η

||p||0 ≤ K, p ∈ {0, 1}M .

(43)

In order to linearize the first constraint in (43), we introduce a
symmetric positive semi-definite matrix T ∈ SN

+ , such that it
can be relaxed as two new constraints:

bHT−1b ≤ η, (44)

CH
p Φ̂

−1

nn,pCp � T. (45)

Clearly, (44) and (45) are sufficient to obtain the first constraint
in (43). Furthermore, using the Schur complement (44) can be
reformulated as an LMI[

T b

bH η

]
� ON+1. (46)

The left-hand side of (45) can be shown to be given by

CH
p Φ̂

−1

nn,pCp = CHQC, (47)

where Q is given by (see Section III-C)

Q = G−1 −G−1
(
G−1 + λ−1diag(p)

)−1
G−1.

Hence, (45) can be re-written as

CHG−1C−T � CHG−1
(
G−1 + λ−1diag(p)

)−1
G−1C,

(48)
which can further be reformulated as an LMI:[

G−1 + λ−1diag(p) G−1C

CHG−1 CHG−1C−T

]
� OM+N . (49)

In addition, we relax the cardinality constraint �0-norm in
(43) using the corresponding �1-norm, and relax the Boolean
constraint using the box counterpart, such that (43) can be
reformulated in a semi-definite programming form as

min
p,η,T

η

s.t.

[
T b

bH η

]
� ON+1

[
G−1 + λ−1diag(p) G−1C

CHG−1 CHG−1C−T

]
� OM+N

1T
Mp ≤ K, 0 ≤ pk ≤ 1, ∀k, (50)

which can be efficiently solved by exploiting convex optimiza-
tion techniques as before. Note that the computational com-
plexity of solving (50) is of the order of O((M +N)3). The
final Boolean selection variables should be recovered by using
rounding techniques.

B. Relation to SS-MVDR

For the single target source case, either applying the estimated
RTF ĥCW or using the assumed RTF ĥASS to the SS-MVDR
optimization problem in Section III might not achieve the best
subset of sensors, leading to a decrease in the noise reduction
performance, due to the errors between the involved RTFs and
the true one. In this case, using both RTFs and considering
the sensor selection for LCMV beamforming, we can obtain
an instantiation of (50). Let

Cp = [ĥCW,p, ĥASS,p] = [ΣpĥCW,ΣpĥASS], b = [1, 1]T ,

The corresponding LCMV beamformer can be computed as

wp = α1w1,p + α2w2,p, (51)

where the weights α1 and α2 can be calculated [30], and the
respective MVDR beamformers are given by

w1,p =
Φ̂

−1

nn,pĥCW,p

ĥH
CW,pΦ̂

−1

nn,pĥCW,p

, w2,p =
Φ̂

−1

nn,pĥASS,p

ĥH
ASS,pΦ̂

−1

nn,pĥASS,p

.

Applying such an LCMV beamformer, the resulting total output
noise power can be calculated as

wH
p Φ̂nn,pwp=

|α1|2
ĥH
CW,pΦ̂

−1

nn,pĥCW,p

+
|α2|2

ĥH
ASS,pΦ̂

−1

nn,pĥASS,p
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Fig. 1. The residual noise power (in dB) in terms of the number of the selected
sensor using different RTFs.

+2R
⎛
⎝ α∗

1α2ĥ
H
CW,pΦ̂

−1

nn,pĥASS,p

ĥH
CW,pΦ̂

−1

nn,pĥCW,pĥH
ASS,pΦ̂

−1

nn,pĥASS,p

⎞
⎠ ,

(52)

where the operation R(·) extracts the real part of a complex
number, and the first (or second) term represents the residual
noise power using the estimated (or assumed) RTF steered
MVDR beamformer. The third term denotes the residual noise
power using the mixed RTF. In order to analyze the function
of each term, we consider the experimental setup as shown
in Fig. 2(a) and randomly select K sensors to perform beam-
forming. The estimated RTF is obtained using the covariance
whitening method, and the assumed RTF is calculated using (19),
so the assumed RTF is much more accurate than the estimated
one. In Fig. 1, we show the residual noise power in terms of
the number of selected sensors using different RTFs. It is clear
that in case the assumed RTF is more accurate, the noise power
obtained by using the mixed RTF approaches that obtained using
the estimated RTF. In case the estimated RTF is more accurate,
the noise power can be compared similarly. Therefore, we can
approximate wH

p Φ̂nn,pwp using

wH
p Φ̂nn,pwp≈ (1 + μ1)|α1|2

ĥH
CW,pΦ̂

−1

nn,pĥCW,p

+
(1 + μ2)|α2|2

ĥH
ASS,pΦ̂

−1

nn,pĥASS,p

,

(53)
where μ1 and μ2 denote the confidence level of ĥCW and
ĥASS, respectively, and μ1 + μ2 = 1. In case the assumed RTF
is more accurate, μ1 > μ2; otherwise μ2 > μ1. Note that the
introduction of this approximation is to find the link between the
proposed SS-MVDR and SS-LCMV methods. A more accurate
derivation for (52) is left to the reader. Substituting (51) and
(53) into the general LCMV problem description in (39), we
arrive at

min
p

(1 + μ1)|α1|2
ĥH
CW,pΦ̂

−1

nn,pĥCW,p

+
(1 + μ2)|α2|2

ĥH
ASS,pΦ̂

−1

nn,pĥASS,p

s.t. ||p||0 ≤ K, p ∈ {0, 1}M ,

(54)

which can further be re-written in an epigraph form as

min
p,η1,η2

(1 + μ1)|α1|2
η1

+
(1 + μ2)|α2|2

η2

s.t. ĥH
CW,pΦ̂

−1

nn,pĥCW,p ≥ η1

ĥH
ASS,pΦ̂

−1

nn,pĥASS,p ≥ η2

||p||0 ≤ K, p ∈ {0, 1}M .

(55)

Based on the decomposition of the matrix Φ̂nn and the intro-
duction of the matrix Q, the two inequality constraints in (55)
can be reformulated as two LMIs (similar to (37)). Following the
convex relaxation strategies in Section III-C, (55) can be relaxed
as a semi-definite programming problem:

min
p,η1,η2

(1 + μ1)|α1|2
η1

+
(1 + μ2)|α2|2

η2

s.t.

[
G−1 + λ−1diag(p) G−1ĥCW

ĥH
CWG−1 ĥH

CWG−1ĥCW − η1

]
� O

[
G−1 + λ−1diag(p) G−1ĥASS

ĥH
ASSG

−1 ĥH
ASSG

−1ĥASS − η2

]
� O

1T
Mp ≤ K, 0 ≤ pk ≤ 1, ∀k. (56)

Remark 2: By inspection, (56) can be regarded as an inte-
gration of two sensor selection problems, which are designed
using the estimated RTF ĥCW and the assumed RTF ĥASS based
MVDR beamformers, respectively. Let the estimated RTF ĥCW

based MVDR sensor selection problem refer to as SS-MVDR-
EST, and the selected subset of sensors from (38) be denoted by
SEST. Let the assumed RTF ĥASS based MVDR sensor selection
problem refer to as SS-MVDR-ASS, and the corresponding
selected subset be denoted by SASS. Further, we refer to (56)
which is based on the integration of two RTFs as SS-LCMV-INT,
and the selected subset of sensors as SINT. From the perspective
of sensor selection, SINT should be the intersection between
SEST and SASS. In order to more clearly see the link between
(56) and (38), we can consider two extreme cases. In case |α1|2
is too small, the second term in the objective function of (56)
dominates, then SS-LCMV-INT reduces to SS-MVDR-ASS.
This means that the assumed RTF approximates the true RTF
well and the estimated one is not trustable. In case |α2|2 → 0,
the first term dominates, then SS-LCMV-INT reduces to SS-
MVDR-EST. This means that the covariance whitening method
provides a good RTF estimate.

C. Application to the Multi-Source Case

In the presence of multiple target speech sources, which are
required to be preserved at the output of a linearly constrained
beamformer, we need to design an LCMV beamformer, as the
MVDR filter can only handle a single source. We assume that
there areN ≥ 2 sources, and let ĥi, ∀i denote the estimated RTF
of the ith source with respect to the sensor nodes. Then, we can
substitute

C = [ĥ1, ĥ2, . . . , ĥN ], b = 1N , (57)
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Fig. 2. Sensor selection examples where the blue sensors are activated by different approaches for K = 40: (a) SS-MVDR-EST, (b) SS-MVDR-ASS, (c)
SS-LCMV-INT, (d) SS-utility-EST, which uses the estimated RTF for sensor selection (the selection result of SS-utility-ASS is similar).

into (50) to obtain the most informative subset of sensors. We
refer to this multi-source case as SS-LCMV-N.

From the implementation view of point, the RTF estimation of
multiple sources can be estimated using, e.g., [36]. To improve
the accuracy, we will estimate the RTF of each source suc-
cessively in this work. Specifically, given the noise correlation
matrix Φ̂nn which is estimated during the training phase and
a perfect VAD, we can detect the speech-plus-noise segments,
in which only one speech source of interest is active and the
other target sources are inactive. During this period, the noisy
correlation matrix can be estimated via average smoothing (e.g.,
Eq. (10)). Using the covariance whitening method, the RTF
of this active source can thus be estimated. The RTF of other
sources is estimated similarly. Note that for the multiple source
case, the number of candidate sensors should be larger than the
number of sources, i.e., M > N , such that there are M −N
degrees of freedom left for adjusting the beamformer coefficients
to perform noise reduction.

To this end, we have shown the sensor selection for RTF-
steered MVDR and LCMV beamformers. It was shown that
using the estimated RTF and the assumed RTF for LCMV is
an integration of two individual SS-MVDR solutions. Also,
the proposed general LCMV sensor selection algorithm can
be extended to the multiple source case. We summarize the
proposed algorithms in Table I.

TABLE I
A SUMMARY OF SENSOR SELECTION FOR RTF-STEERED LINEARLY

CONSTRAINED BEAMFORMERS

V. EXPERIMENTS

In this section, we will validate the proposed approaches via
numerical simulations. At first, we will present the experimen-
tal setup and the comparison approaches. Then the proposed
methods will be applied to the single target source case. Finally,
we will consider the application of the proposed SS-LCMV-N
method to the multi-source scenario.

Experimental setup: Fig. 2 shows the typical experimental
setting that we use in the simulations. We consider a 2D room
with dimensions (12× 12) m, where 169 candidate microphones
are uniformly distributed. All the speech sources are originated
from the TIMIT database [37], and all the noise signals from the
NoiseX-92 database [38]. The room impulse responses (RIRs)
of directional sources are generated using the toolbox [39]. The
measurements of each microphone are synthesized by summing:
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1) the source component (convolving the source signal and its
RIR), 2) interference component (convolving the interferer (i.e.,
a competing speaker) and the corresponding RIR) and 3) the
uncorrelated sensor noise (i.e., microphone self noise). The un-
correlated noise is modeled as a white Gaussian noise. The signal
to interferer ratio (SIR) and the signal to uncorrelated noise ratio
(SNR) are set to be 0 dB and 50 dB, respectively. The final
signal-to-interferer-noise ratio (SINR) is around -2 dB. All the
signals are sampled at 16 kHz. The signals are segmented using
a square-root-Hann window with a length of 32 ms and 50%
overlap. The reverberation time is set to be T60 = 200 ms. In
order to focus on the sensor selection problem, the microphone
signals are synchronized already in this work, and the noise
correlation matrix is estimated during 15 seconds speech-absent
period before performing the online sensor selection algorithms
(e.g., using the average smoothing technique or [40]). The noise
source positions are assumed to be static.

Comparison methods: In [18], [23], a utility-based sensor
selection approach was proposed. Since in principle sensor
selection is a combinatorial optimization problem, the utility-
based method greedily removes the sensor that has the least
contribution to the noise reduction task from the total sensor set
(i.e., backward selection), or adds the sensor that has the largest
contribution to the selected subset (i.e., forward selection). Ob-
viously, the utility-based method can only determine the status
of one sensor at each iteration. The procedure works like a
sub-modularity based optimization problem [41]. Since usually
the cardinality of the selected subset is rather smaller than the
total number of sensors, in order to save the number of iterations,
we will adopt the forward selection strategy for comparison.
As the utility-based method also requires the RTFs, we will
design two variants. In case the covariance whitening based RTF
estimate is used, the utility-based method will be referred to as
SS-utility-EST; in case the assumed RTF is exploited, it is then
referred to as SS-utility-ASS.

Further, a random selection method will be compared to the
proposed method, which randomly selectsK sensors to perform
beamforming. Using the estimated or assumed RTF, we thus
obtain two variants of the random procedure, which are referred
to as random-EST and random-ASS, respectively. Note that
the performance of the random selection methods is averaged
over 100 trails. In addition, as usually a microphone signal is
dominated by the target/interfering source in case the source
is close to the microphone, it is somehow reasonable that the
microphones close to the source(s) are more informative for
noise reduction. Therefore, we will also compare a maxEnergy
method, which selects K sensors that have the largest input
power. Similarly, using the estimated or assumed RTF, we can
obtain maxEnergy-EST or maxEnergy-ASS.

A. Simulations for a Single Target Source

In this part, we consider the proposed sensor selection for
the single target source case. The target point speech source
(red dot) is located at (3.6, 8.4) m. We also place a coherent
interfering source (blue star) at (8.4, 3.6) m. The variance of
the signals is controlled by the SIR parameter. We use the

Fig. 3. Beam patterns (in dB) in terms of 2D spatial positions with K = 40.

RTF model in (19) for free fields as the assumed RTF, which
is obtained by exploiting the source position in combination
with the microphone positions. In reverberant environments, this
modeling indeed reveals the direct-path component of the source
signal. Further, we set μ1 = 0.95 and μ2 = 0.05.

Fig. 2 illustrates some typical sensor selection examples
obtained by different approaches for K = 40. Clearly, for all
comparison methods, most of the selected sensors are close to
the target source, as these microphones can record high-quality
signals, leading to a great contribution to speech enhancement.
Comparing SS-MVDR-EST or SS-utility-EST to SS-MVDR-
ASS, due to the RTF estimation errors, the obtained selected
subset of sensors might not be optimal, as some sensors that are
far away from the sources are also selected. Since the assumed
RTF that is exploited by SS-MVDR-ASS is based on the exact
use of source position and sensor positions, it can improve the
selection performance, as the selected sensors are more assem-
bled around the source position. Comparing SS-LCMV-INT to
SS-MVDR-EST, it is clear that the selected subset is refined
by integrating the superiority of SS-MVDR-ASS. From the
perspective of set theory, the selected subset of SS-LCMV-INT
can thus be viewed as the intersection set between the two subsets
obtained by SS-MVDR-EST and SS-MVDR-ASS. The corre-
sponding beam patterns for the angular frequency ω = 0.02π
rad are shown in Fig. 3, from which we can observe that the
mainlobes of SS-LCMV-INT are more concentrated to the true
source position.

Fig. 4 shows the output noise power (in dB) of the comparison
methods in terms of the cardinality of the selected subset for T60

= 200 ms. Comparing SS-MVDR-ASS (or SS-utility-ASS) to
SS-MVDR-EST (or SS-utility-EST), it is clear that the use of
the assumed RTF can improve the noise reduction performance
in moderately reverberant situations, since the assumed RTF
represents the accurate direct-path propagation of the target
source. More importantly, the proposed SS-LCMV-INT method
achieves the minimum output noise power, i.e., the best speech
estimation quality. This reveals that integrating the estimated
RTF and the assumed RTF is beneficial for sensor selection
based linearly-constrained beamformers. Due to the fact that
the proposed methods are based on a global optimization strat-
egy, the proposed SS-MVDR-EST (or SS-MVDR-ASS) method
performs better than SS-utility-EST (or SS-utility-ASS) which
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Fig. 4. The output noise power (in dB) in terms of the number of the selected
sensor for T60 = 200 ms.

Fig. 5. The output noise power (in dB) in terms of K for T60 = 800 ms.

is on a basis of greedy local selection strategy. Besides, the ran-
dom selection method performs much worse than the proposed
methods or the utility-based method. Also, the maxEnergy-
based methods fail to improve the noise reduction performance,
particularly when K is small, as they perform sensor selection
only depending on the input microphone signal power, leading
to many sensors that are close to the interfering source to be
selected, especially in case SIR is low (e.g., SIR = 0 dB).
Moreover, we show the output noise power in terms of K
for T60 = 800 ms in Fig. 5. Due to the strong reverberation,
the SS-MVDR-EST (or SS-utility-EST) method works better
than SS-MVDR-ASS (or SS-utility-ASS), as in this case the
estimated RTF is more accurate than the assumed one. Again,
the proposed SS-LCMV-INT method achieves the best perfor-
mance.

Due to the fact that in practice it is difficult to obtain the
accurate RTF model in (19) depending on the source position
together with the sensor locations, resulting in an inevitable
error between the assumed RTF and the true RTF, we further
investigate the output noise power in terms of the RTF calibration
error Δd (in m) in Fig. 6. We assume that the target source is
randomly located within the circle centered by the true source
location with a radius of Δd. Since SS-MVDR-EST, SS-utility-
EST, random-EST and maxEnergy-EST do not rely on the
assumed RTF, their performance keeps constant in terms of Δd
in Fig. 6. It is obvious that with an increase in the calibration

Fig. 6. The output noise power (in dB) in terms of the average distance error
between the true source position and the assumed position.

Fig. 7. The output noise power in terms of the number of noise frames.

error Δd, the performance of all assumed RTF based methods
degrades. However, the proposed SS-LCMV-INT still achieves
the best performance owing to the estimated RTF, because for
a large Δd the estimated RTF is more accurate compared to
the assumed one. Hence, in case the estimated RTF is more
reliable, the performance of SS-LCMV-INT converges to that
of SS-MVDR-EST; in case the assumed RTF is more accurate,
it converges to that of SS-MVDR-ASS, which is consistent to the
conclusion from (56). The proposed SS-LCMV-INT method can
automatically check the reliability of the estimated and assumed
RTFs and perform sensor selection based on the more reliable
one. This validates that integrating the two RTFs for designing
an LCMV beamformer is superior over using the respective RTF
for an MVDR beamformer in the context of noise reduction.

Further, as the proposed methods together with the RTF
depend on the noise correlation matrix, which has to be estimated
using a limited amount of noise frames. The number of frames
for estimating the noise correlation matrix will affect the RTF
estimation accuracy and thus the performance of the proposed
methods. We therefore show the output noise power of the
comparison methods in terms of the number of noise frames
in Fig. 7 with K = 40 and Δd = 0. Increasing the number of
noise frames leads to an improvement in the noise correlation
matrix estimation accuracy. It is clear that with an increase in the
number of noise frames, the noise reduction performance of all
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Fig. 8. Sensor selection examples where the blue sensors are activated by different approaches for K = 60: (a) SS-MVDR-EST, (b) SS-MVDR-ASS, (c)
SS-LCMV-INT, (d) SS-utility-EST, which uses the estimated RTF for sensor selection. The considered scenario includes two target sources (red solid dots) and
two coherent interfering sources (blue stars).

approaches improves, and the proposed SS-LCMV-INT method
achieves the best performance.

B. Application to the Multiple Source Case

In this section, we apply the proposed SS-LCMV-N method to
the scenario with multiple target sources. The experimental setup
is shown in Fig. 8. Two target point sources are placed at (2.4,
9.6) m and (9.6, 9.6) m, respectively. Two coherent interfering
sources are located at (2.4, 2.4) m and (9.6, 2.4) m, respectively.
The other required parameters are set similarly as before. Note
that the RTFs of the two target sources are estimated using the
covariance whitening method one by one. Given a perfect VAD
and the noise statistics, we detect the segments where the first
target source is active and the other target is inactive, and during
this period the corresponding RTF is estimated. This procedure
applies to the RTF estimation of the other target source. Again,
the assumed RTFs of the target sources are approximated by the
direct-path RTF model in (19) based on the source positions in
combination with the microphone locations. For the comparison
approaches, in case the estimated RTFs are applied to (56), the
proposed SS-LCMV-N is referred to as SS-LCMV-EST. If the
assumed RTF is used in (56), it is then called SS-LCMV-ASS.
Similarly to the integration of the estimated RTF and the as-
sumed RTF in the single source case, we can also integrate the
estimated RTFs and assumed RTFs of the two target sources as

a spanned LCMV beamformer, referred to as SS-LCMV-INT
(which includes four linear equality constraints in this case).

Fig. 8 illustrates typical sensor selection examples obtained
by SS-LCMV-EST, SS-LCMV-ASS, SS-LCMV-INT and SS-
utility-EST, respectively. Obviously, the proposed methods
achieve a superiority over the utility-based method, as the
regions of the sources are detected. The proposed methods
can effectively select some sensors that are close to the target
sources (having a high SNR) and some that are also close to the
interfering sources (having a low SNR), which are beneficial
for enhancing the targets and suppressing the noise sources,
respectively. The selection results of SS-LCMV-EST and SS-
LCMV-ASS only differ in a very limited number of sensors, and
the intersection of them results in the selection of the proposed
SS-LCMV-INT approach.

VI. CONCLUSION

In this paper, we investigated the selection of a subset of
sensors from a large amount of candidate sensors for the linearly
constrained beamformers based speech enhancement issue. The
proposed sensor selection problem was formulated by minimiz-
ing the total output noise power and constraining the cardinality
of the selected subset, as the number of selected sensors directly
affects the system complexity. In the context of both MVDR and
LCMV, the considered sensor selection problem can be solved
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using convex optimization techniques. The proposed method is
applicable to both the single target source case and the multiple
source case. It was shown that the sensors that close to the target
source(s) and some close to the interfering source(s) are more
likely to be selected.

Given the estimated/assumed RTF of a single source, we can
use the proposed SS-MVDR-EST/SS-MVDR-ASS method to
find the subset of informative sensors. By integrating the esti-
mated RTF and the assumed RTF from the MVDR beamformers
to design an LCMV beamformer, the proposed SS-LCMV-INT
method is obtained. It was shown that the integration of RTFs can
improves the noise reduction performance, as SS-LCMV-INT
can perform sensor selection based on the reliability of the
respective RTFs. As the LCMV beamformer based on the two
constraints associated with the estimated and assumed RTFs
can be regarded as a linear combination of the two MVDR
beamformers, the selected subset by SS-LCMV-INT indeed is
the intersection between the two subsets obtained by SS-MVDR-
EST and SS-MVDR-ASS. In case the estimated RTFs is more
reliable, the selected subset of sensors by SS-LCMV-INT is
more dominated by the sensors selected by SS-MVDR-EST;
otherwise the sensors selected by SS-MVDR-ASS will domi-
nate. Therefore, the proposed SS-LCMV-INT method is more
robust against the RTF estimation/approximation errors. Since
the proposed method performs sensor selection per frequency
bin, in order to further reduce the time complexity, we will
consider sensor selection across frequencies in the future.

As the proposed method depends on the noise correlation
matrix and the estimated RTF and in practice the estimation of
these parameters also consumes a certain amount of transmis-
sion energy, the proposed method is thus model-based. Given
a WASN and required parameters, the proposed method can
thus be applied to include a subset of microphones for speech
enhancement. In case the parameters are unknown a priori, we
can add an initialization step for parameter estimation and then
use the proposed method for speech enhancement. Compared to
the case of full WASN inclusion for both parameter estimation
and noise reduction, the proposed method can still save power
consumption. It would be more practical to design a data-driven
method, which can adaptively increase the selected sensor subset
from an initial point in the WASN. This can be implemented by
combining the proposed method with the greedy sensor selection
method in [20] and data-based parameter estimation approaches
in [27]. As the focus of this work is mainly on the impact of RTF
on the sensor selection based beamforming, we will leave this
combination as a part of future research. In dynamic scenarios,
online parameter estimation and sensor scheduling should be
taken into account.
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