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Boosted Mixture Learning of Gaussian Mixture
Hidden Markov Models Based on Maximum
Likelihood for Speech Recognition
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Abstract—In this paper, we apply the well-known boosted mix-
ture learning (BML) method to learn Gaussian mixture HMMs in
speech recognition. BML is an incremental method to learn mix-
ture models for classification problems. In each step of BML, one
new mixture component is estimated according to the functional
gradient of an objective function to ensure that it is added along
the direction that maximizes the objective function. Several tech-
niques have been proposed to extend BML from simple mixture
models like the Gaussian mixture model (GMM) to the Gaussian
mixture hidden Markov model (HMM), including Viterbi approxi-
mation for state segmentation, weight decay and sampling boosting
to initialize sample weights to avoid overfitting, combination be-
tween partial updating and global updating to refine model pa-
rameters in each BML iteration, and use of the Bayesian Informa-
tion Criterion (BIC) for parsimonious modeling. Experimental re-
sults on two large-vocabulary continuous speech recognition tasks,
namely the WSJ-5k and Switchboard tasks, have shown that the
proposed BML yields significant performance gain over the con-
ventional training procedure, especially for small model sizes.

Index Terms—Boosted mixture learning (BML), boosting, func-
tional gradient, speech recognition.

I. INTRODUCTION

N state-of-the-art automatic speech recognition (ASR) sys-
I tems, we normally use Gaussian mixture HMMs as acoustic
models to model basic speech units, ranging from context-inde-
pendent whole words in small vocabulary ASR tasks to con-
text-dependent phonemes (e.g., triphones) in large vocabulary
ASR. Traditionally, the HMM-based acoustic models are esti-
mated from available training data using the well-known EM
algorithm based on the maximum-likelihood (ML) criterion.
To deal with data sparseness problems in model training, we
normally use phonetic decision trees to tie HMM states from
different triphone contexts, which leads to state-tying triphone
HMMs. In order to derive a simple closed-form solution, we
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normally grow the decision trees based on simple models, such
as single Gaussian HMMs [1]. After the state-tied structure is
determined from the decision trees, a separate “mixing-up” step
is used to gradually increase the number of Gaussian mixtures in
each tied HMM state until the optimal performance is achieved.
In today’s ASR systems, e.g., HTK, “mixing-up” is normally
implemented in two steps [2]: 1) all existing Gaussians or the
most dominant Gaussian mixture component in an HMM state
is split based on some random or heuristic strategies; 2) all split
Gaussians are re-estimated based on the EM algorithm. Obvi-
ously, this incremental method for increasing model complexity
is a good strategy to learn very large-scale statistical models
without getting trapped in any bad local optimum. However, we
still face some problems when increasing model complexity in
the above “mixing-up” strategy. First of all, the random split-
ting strategy is not optimal in terms of the model estimation cri-
terion. For example, there is no guarantee that the newly added
Gaussian components from random splitting always increase the
likelihood function prior to re-estimation. Second, since the sub-
sequent EM-based re-estimation is sensitive to the initial param-
eters of the randomly split Gaussians, there is no guarantee that
the EM-based re-estimation can always converge to the optimal
point if starting from randomly split Gaussians as initial values.

On the other hand, the concept of boosting has been widely
applied to various pattern classification problems in machine
learning. Boosting is a general method to combine multiple clas-
sifiers to improve the overall classification accuracy for almost
any type of learning algorithm [3]. The basic idea is to sequen-
tially train and combine a collection of weak classifiers to con-
struct a strong and reliable classifier in such a way that these
individual classifiers focus more and more on the hard-to-clas-
sify training examples [7]. As one example, in the well-known
AdaBoost algorithm [4], a probability distribution is introduced
and maintained for all training samples in the input space. Ini-
tially, all training samples are assigned with equal weights. In
the following training iterations, the weights of those hard-to-
classify examples are gradually increased, being updated auto-
matically based on classification results of the current classifier
on the whole training set. Using the updated training weights, a
new classifier is trained to concentrate more on these hard ex-
amples. Next, the new classifier is combined with the current
classifier to derive an enhanced classifier based on the boosting
theory that analytically minimizes an upper bound on training
error rate. This process is repeated to produce a set of indi-
vidual (“base”) classifiers. The boosting algorithm has been suc-
cessfully applied to a variety of classification tasks, which can
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improve accuracy and generalization over the individual base
classifiers [6]. Furthermore, some recent theoretical work has
shown that the boosting algorithm can effectively increase the
margin of all training samples, which can be explained by a the-
oretical view related to functional gradient techniques [4]-[8].
The application of this boosting framework for probability den-
sity estimation has been widely studied [9]—[11]. More recently,
the traditional boosting algorithms have been extended to some
learning problems of mixture models [12], [13], which is called
boosted mixture learning (BML). The basic idea of BML is to
learn mixture models in an incremental and recursive manner.
The BML always starts from a single mixture model and grad-
ually adds a new mixture component in such a way that it al-
ways optimizes a predefined objective function. There are actu-
ally many other methods [14]-[16] which can follow a similar
procedure to learn mixture models, but the essential point of
BML is that a new mixture component is estimated in each step
according to the functional gradient of the objective function so
that each new component is always added to the direction that
increases the objective function the most. Compared with the
traditional random splitting, BML is less sensitive to the initial
parameter values and it may converge to a better optimal point.

In this paper, we study how to apply the boosting algorithm
to acoustic modeling in automatic speech recognition [28].
In previous work, some AdaBoost-like traditional boosting
algorithms have been directly applied to phoneme classifi-
cation and continuous speech recognition as in [19]-[21]. In
this paper, we use BML to learn Gaussian mixture HMMs
as an alternative method for random-split based mixing-up
in speech recognition. As the first step, we only consider the
maximum-likelihood (ML) estimation criterion in BML, where
the objective function of BML is defined as the likelihood
function of model parameters. In this paper, we first review
the standard BML algorithm for Gaussian mixture models
(GMMs) and then extend it to Gaussian mixture HMMs for
speech recognition. Furthermore, several modifications have
been proposed to make BML feasible and effective in the HMM
framework, especially for state-of-the-art speech recognition
systems. First, the Viterbi approximation is proposed to obtain
state segmentation and BML of HMM s is conducted according
to the Viterbi state segmentation. In this way, BML of Gaussian
mixture HMMs can be formulated as the same BML problem
of GMMs. Second, weight decay [17] using power scaling and
sampling boosting [4] are proposed to deal with the over-fitting
problem caused by unbounded sample weights. Third, we
propose to update the entire Gaussian mixture model when-
ever a new component is added to the mixture while only the
newly added mixture component is normally updated in each
traditional BML step. This is called global updating, which
is found to significantly improve recognition performance in
speech recognition. Finally, the Bayesian Information Criterion
(BIC) [23], [24] is used as the convergence criterion in BML
to control the size of model parameters for parsimonious mod-
eling. The proposed BML methods to learn Gaussian mixture
HMMs have been evaluated on two standard large-vocabulary
continuous speech recognition tasks using the Wall Street
Journal (WSJ0) and Switchboard databases. Experimental re-
sults have shown that the proposed BML methods significantly
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outperform the standard training procedure in the WSJ-5k task.
In the more challenging Switchboard task, compared with the
standard training procedure, the BML methods clearly yield
much better performance for small model sizes and comparable
performance when the model size is further increased.

It is noted that a similar idea of functional gradient based
learning of Gaussian mixture HMMs has recently been pro-
posed in [29]. The method in [29] significantly differs from the
algorithm developed in this paper. First, the algorithm in [29]
is based on the traditional framework of the Baum-Welch algo-
rithm, which is totally different from our method. The impact
of functional gradient based boosted learning is reflected in the
sample weight, which is heuristically inserted into the updating
formulas of parameters for Gaussian mixture state emission
densities in Baum-Welch algorithm. Second, in [29] the method
is applied to speech emotion recognition while in this work we
focus on some more challenging recognition tasks. As a result,
several key techniques have been proposed to make BML
effective for large vocabulary continuous speech recognition.

The remainder of the paper is organized as follows: In Sec-
tion II, we give a review of general BML formulation for mix-
ture models. In Section III, the BML formulation is expanded
and discussed in detail for a special mixture model, namely the
Gaussian mixture model (GMM). In Section IV, we extend the
BML methods for GMMs to estimation of Gaussian mixture
HMMs for speech recognition. In Section V, we report experi-
mental results on two standard large vocabulary speech recog-
nition tasks using the WSJO and Switchboard databases and fi-
nally we conclude the paper with our conclusions and findings
in Section VL.

II. REVIEW OF BOOSTED MIXTURE LEARNING (BML)

In this section, we first review the well-known boosted mix-
ture learning (BML) algorithm that has been successfully ap-
plied to many pattern classification problems.

First of all, as in [22], a general mixture model Fx (x) can be
represented as

K
Fr(x) =Y crfr(x),

K
>0y =1 (1
k=1 k=1

where K is the number of mixtures, x is a feature vector, and
¢r and fy(x) stand for the weight and component distribution
of the kth mixture, respectively.

Learning of mixture models has been extensively studied in
machine learning. As mentioned above, the traditional method
is based on random splitting and EM-based re-estimation. In this
paper, we focus on a different method to learn mixture models,
which is named boosted mixture learning (BML) [12], [13]. At
each stage of BML, a new component (cy, f7) is added to the
previous mixture model Fj_; with £ — 1 mixture components to
grow into a new mixture model F}, with £ mixture components
as follows:

Fk(X) = (1 — Ck)Fk_l(X) + ckfk(x) 2)

where cj, denotes a weight to combine the new mixture compo-
nent with the current mixture model. This procedure is repeated
until some convergence condition is met. The general procedure
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TABLE 1
DESCRIPTION OF BML PROCEDURE

Step 1:
Step 2:

Initialize Fy .

For k =2,3,...

{ci. i} — argmaxe, ., C(FY)

Continue to add the new component?
Yes: Fi(x) = (1 — ) Fr—1(x) + i fi (%)
No: Goto Step 4

Goto Step 2

Output final mixture model F},

Step 3:
Step 4:

of BML can be described as in Table I. The key idea of BML
is that each new mixture component f; and its mixture weight
cr. can be learned based on a predefined objective function, de-
noted as C, in an optimal way.

If we consider maximum-likelihood (ML) estimation, the
objective function C can be defined as the log likelihood
function of the mixture model F}, based on all training data
{x1,Xa, -+, xr} as follows:

T
C(Fr) =) log Fy(xy) 3)
t=1

where 1" is the number of training samples. In order to derive
a new mixture component and its weight optimally as in Step 2
of Table I, a functional gradient method [12], [13] is used. As-
sume the objective function C(F’) is viewed as a functional of
mixture model F'. When a new mixture component fj, is added,
hopefully it will increase the objective function with respect to
F' as much as possible:

C((I—E)Fk_1+5fk) >C(Fk—1) “)

where ¢ is a small deviation constant.

In order to expand the above functional, let us first define an
inner product space where the above functional can be expanded
according to a vector Taylor’s series. Let us define a functional
inner product space based on an inner product between any two
mixture models P and () using the available training samples
{x1,%2,-+,x7} as follows:

(P.Q) = ~

S|

T
> P(x)Q(xe). ()

Assume we use the functional Taylor series to expand the
left-hand side of (4) in this inner-product space, we have

C((1—¢e)Fr_1+c¢cfr)
=C (Fr—1+e(fe — Fr-1))
=C(Fr1) +e(VC(Fr-1), (fx — Fr—1))
+ O (lle(frx — Fe—1)Il)
~ C(Fr-1) +e(VC(Fyr—1),(fx — Fr—1)).  (6)

If deviation € is small enough, all high-order items O(||e( fx. —
Fy._1)||) can be ignored. Thus, the objective function at the new
mixture model can be approximated by only the linear terms as
in (6).

Ideally speaking, the new mixture component f; should be
estimated in such a way that increases the objective function
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C((1 — e)Fr—1 + efi) most rapidly. If we adopt the above
linear approximation in the inner-product space, it means
that f should be chosen to maximize the inner product
(VC(Fr—1), (fx — Fr—1))- Therefore, the basic idea of BML is
to learn each individual mixture component, f, incrementally
as follows:

fr= arg max (VC(Fr—1), (fr = Fie-1)) - M

This equation clearly shows that the new mixture component
fx is estimated along the direction of functional gradient where
the objective function grows the most. The reason why the inner
product between the functional gradient and the mixture model
is used is to ensure that the new component fj, is estimated in
such a way that the new model F, still falls into the same model
space as Fj_1.

Given the estimated f;7, in BML, the mixture weight cj, can
be obtained by using the following line search:

¢ =arg max C((1—cgp)Fr—1+cifr). (8)
¢, €[0,1]
In practice, the optimal mixture weight ¢; can be found effi-
ciently by using a grid search in the interval [0,1].
If we consider the objective function as in (3), it is easy to
show that the functional gradient can be calculated as

1
Fr_1(x¢)

where the above functional gradient is evaluated at F' = F},_1,
which is actually a function calculated at x;.

As aresult, the BML learning formula in (7) can be rewritten
for maximum-likelihood estimation (MLE) as follows:

VC(F-1)(xt) = VC(F)|p=F,_, = €))

T
x § 1 fk(Xt) - Fk—l(Xt)
fi = arg n}%x T tE 1

Fk—l(xt)
T
fk(Xt)
= arg max —_, 10
g ma 2 i (x)) (10)

Obviously, (10) is a general form to derive each new mixture
component in BML based on the maximum-likelihood (ML)
estimation criterion. In next section, we will consider how to
solve (10) for the GMM.

III. BML OF GAUSSIAN MIXTURE MODELS

In this section, we consider to solve the optimization problem
in (10) for Gaussian mixture models (GMMs), where each mix-
ture component fj is a D-dimensional multivariate Gaussian
distribution with mean vector g, and covariance matrix Xy, as

Jr(xe| 1) =N (x4; pg Zie)
1

(27r)D/2|2k|1/2
1 _
X exp {—§(Xt - l”k)T2k1(xt - #k)} (1D

where ®;, denotes parameters for kth Gaussian, i.e., u; and
Y, and Uy, in F(x:|¥}) stands for parameters of all Gaussian
components in F}. Obviously, we have U), = {®y, Us_4 }.
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There is no closed-form solution to solve the optimization
problem in (10) for GMMs. In this paper, we optimize (10) iter-
atively using the EM algorithm to search for the optimal com-
ponent f. It is noted that the same solution has been proposed
without any detailed derivation for video processing in [12] and
[13]. In this paper, we demonstrate that the solution can be de-
rived by optimizing a lower bound on the right-hand side of (10)
with the EM algorithm and the method will be applied to HMMs
in speech recognition.

For convenience, we take the log of (10). Then the objective
function becomes a log sum as follows:

12)

Although there is no simple way to optimize the above
log-sum function, it is possible to construct a tangential
lower-bounded auxiliary function based on Jensen’s inequality.
As in the EM algorithm, the above £(®},) can be iteratively op-
timized by maximizing the auxiliary function in each iteration.

Let us define the posterior probability of the ¢th sample as
follows:

o (50) = Fic (387 /Fioa (e W) .

S fi (el @) /i (i i)
where (b,(en) denotes initial model parameters in nth iteration.

According to Jensen’s inequality, the auxiliary function,
which is a lower bound of £(®,), can be constructed as

t=1 Yt ((1)2:")) Fk*1<xt|\1/k71)
Jr (%4 Pg)

> g% ((I)gcn)) log (

e @,ﬁ’”) Fro1 (%[ Up1)

(Jensen's inequality)
T
= Z% (‘P;in)) log fi(x¢|®x) + C (‘1’2"))
t=1

=o(axlef") (14)

where C ((P,(Cn)) is a constant independent of model parameters
Dy

T
o (a0) == (2f")
t=1
X [108;% (¢§€n)) + log kal(xt|\pk71):| . (15)
As the M-Step of EM, we maximize the auxiliary function

Q(@k@,ﬁn)) with respect to @, which is equivalent to maxi-
mizing the log likelihood of fy(x:|®Py) given posterior proba-
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bilities ’yt(fbl(c")). A closed-form solution can be easily derived
as follows by setting the derivative to zero:

EYe) (%@2"’)

=0.
a9y,

(16)

Substituting (14) into (16), we can derive the iterative re-es-
timation formula in the (n 4 1)th for model parameters of f, as
follows:

u(n Y > 0 (xe) %o
* Pty ) (x:)

= i Ve ((I’I(cn)) Xyt
t=1

ST ™ (x,). (Xt _ u,ﬁ"“)) (xt —_ u,ﬁnﬂ))r
ey W (xy)
(5 (sl

o0y’

7)

El(cn—i-l) —

[l
M=

-
Il

X

~/ =

Xt — [ (18)
M) = 2\ (x2”)
w'™ (%) = (19)

R ST AT
where w<")(xt) denotes a weight assigned to sample x; after
nth iteration, similar to sample weights used in the traditional
boosting algorithms. The physical meaning of sample weight
is that samples with lower probability by F},_; are given larger
weights than those more likely samples. Hence, the new compo-
nent fj focuses on those samples poorly modeled by the current
mixture model Fj,_.

In many BML algorithms, the sample weight is often initial-
ized for the first iteration as

1

(0) - -
W) = el

(20)

In the subsequent iterations, we use (17), (18), and (19) to update
mean vector, covariance matrix, and sample weights iteratively
until it converges. After that, we can apply the line search in (8)
to determine the optimal mixture weight cj,.

IV. BML OF GAUSSIAN MIXTURE HMMS
FOR SPEECH RECOGNITION

In this section, we extend the above BML algorithm for
GMMs to estimation of Gaussian mixture HMMs for speech
recognition. We have proposed several approximations and
techniques to make the above standard BML procedure fea-
sible and effective for speech recognition under the HMM
framework.

A. Viterbi Approximation for State Segmentation

Due to the dynamic and sequential nature of HMMs, if we
directly apply the above BML formulation in (2) to HMMs, it
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leads to the so-called mixture of HMMs, where each compo-
nent fi, is a single Gaussian HMM and X stands for a speech
segment modeled by one HMM. Here a single Gaussian HMM
means a state-tied triphone HMM having a single Gaussian for
each state. As a result, the mixture model F}, becomes a mixture
of many single Gaussian HMMs. In each iteration, the BML
algorithm attempts to learn a new single Gaussian HMM, fy,
and combine it with the current model, Fj_q, to form a new
mixture of HMMSs, F},. Therefore, the mixture of HMMs is a
possible framework to apply BML to HMM in speech recog-
nition. However, under the framework of a mixture of HMMs,
we need to redesign the entire training and recognition proce-
dure in speech recognition, and especially significant changes
must be made in the Viterbi decoder to accommodate the new
model form. In this paper, for simplicity, we consider an alter-
native way to use the BML algorithm under the current HMM
framework instead of completely switching to a new modeling
framework with a mixture of HMMs. In other words, we still use
the traditional training procedure to estimate single Gaussian
HMMs and then use the BML method to add more and more
Gaussian components in each HMM state to grow model com-
plexity. As discussed above, in BML, each new Gaussian com-
ponent is estimated based on the functional gradient of the ob-
jective function so that it may have some benefits over the tra-
ditional “mixing-up” relying on random splitting.

Under the HMM framework, the log likelihood function can
be viewed as a mixture of all possible hidden state sequences

5081 ...S8T7
C(F) =logp(X) =log Y s, Haef 1o F (Xt |st)
SpS1...8T
2D
where X = {x1 s X2, 00y XT} is an utterance from the tralmng

set, {m; } and {a;; } denote the initial state probabilities and state
transition probabilities in HMMs, and F'(x;|s) represents the
output probability distribution of one HMM state s, which is
modeled by a GMM in Gaussian mixture HMMs. Obviously, if
we use the BML algorithm to add a new Gaussian component to
an HMM state, denoted as s, we need to calculate the functional
gradient of the objective function, C(F'), with respect to this
state model given one frame x:, i.e., F(x¢|s), which can be
easily derived as follows:

VC(F)|p=r(xs)
_ 9C(F)
- OF

F=F(x¢|s)

- _X Z OF( xt|

S081-

T b

$081...8T

[WSO H As._ys, X‘r|s‘r>

a'St—lst 7I-50

T
X H as,_ys, F'(%xr]sr)
T#t, T=1
1 p(X,s=s1) _ p(s = s/X)

X)) Flxis)

22
F(x]s) 22
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where p(s = s;/X) denotes the posterior probability, which
can be calculated based on state occupancy statistics of s col-
lected for X in the forward-backward algorithm. Obviously,
(22) shows that the functional gradient of C(F') w.r.t. F(x¢|s)
depends on the entire utterance X and the whole HMM model,
not only the current frame x; and the underlying state s. There-
fore, if we follow the BML algorithm to add Gaussian com-
ponents to an existing HMM, we are unable to decouple the
BML algorithm to process all HMM states independently. In
other words, if we substitute (22) to (7) to determine each new
Gaussian component, we have to calculate the posterior prob-
ability for all HMM states and choose the maximum one as
the candidate to add a new Gaussian component. After the new
Gaussian is added to the HMM, posterior probabilities for all
HMM states must be recalculated. Therefore, the computational
complexity is quite high. In this paper, for simplicity, we accept
the Viterbi approximation where the likelihood function is cal-
culated based on the optimal Viterbi path instead of a summation
over all possible state sequences. In this way, we can decouple
BML of HMMs to deal with all HMM states independently so
that the above BML algorithm of GMMs can be directly used to
estimate state distribution of all HMM states independently.

Under the Viterbi approximation, we can calculate the log
likelihood function as follows:

T
C(F)= logl max T, Hag, . (x,|sf)]

8081...8T
t=1

= log [m 1_[(1Q s F (x¢]s7)

(23)

where s§s7 ... s%. denotes the optimal state sequence obtained
by the Viterbi algorithm. Under the Viterbi approximation, the
functional gradient of the log likelihood function with respect
to one HMM state s can be calculated as

1

_ 24
Flxi]s) 24

VC(F)|r=F(x.s) =

Obviously, the above functional gradient has the same form
as that of the GMM in (9). Therefore, the BML method for the
GMM can similarly be used to estimate each individual HMM
state under the Viterbi approximation. In this case, we first use
an initial HMM to align each training utterance X to obtain
its optimal Viterbi state sequence. Then, the BML method in
Section III is used to incrementally estimate a Gaussian mix-
ture for every HMM state based on all feature vectors aligned to
this state. The estimated models can be used to realign all fea-
ture vectors so that the whole learning procedure can be run in
an iterative manner. In this way, the BML method has similar
computational complexity to the conventional training proce-
dure since the BML training can be performed in parallel for all
HMM states as long as training utterances are aligned based on
the Viterbi state segmentation. It is noted that {m;} and {a;;}
are not updated in the BML procedure since they are not critical
to final performance in speech recognition.



2096

B. Initialization of Sample Weights

After state segmentation, the GMM parameters of each HMM
state can be learned using the BML algorithm in Section III, but
we have realized several problems when we apply the BML to
Gaussian mixture HMMs. The first problem is related to ini-
tialization of sample weights for each new mixture component
using (20). In Gaussian mixture HMMs for speech recognition,
it is found that the dynamic range of Fj_; is so large that the
initial sample weights w(®)(x,) are dominated by only a very
small number of samples with low probability. If we use (20) to
initialize sample weights, the subsequent BML algorithm may
cause overfitting since it quickly concentrates only on a few
samples with low probability, which may be outliers. To deal
with this problem, we have investigated two different methods
to initialize sample weights.

In the first method, we use the so-called weight decay in [17]
to smooth initial sample weights based on power scaling:

w® (x;) = <m> a

where « is the exponential scaling factor 0 < a < 1. In the
first iteration, (25) is first used to initialize sample weights for
all training data and then (17) and (18) are used to initialize the
corresponding mean vector and covariance matrix. As shown
in [18], weight decay can significantly smooth sample weights
and in turn make BML more robust especially in presence of
outliers.

In the second method, the idea of sampling boosting in [4]
is used to initialize sample weights. In sampling boosting, the
initial sample weights calculated in (20) are used to sample all
training data to form a subset according to some rules. In next
iteration, only the selected subset of training data (assuming
equal sample weights) is used to estimate the new Gaussian
component. One possible way to sample training data is based
on mean and variance of all initial sample weights. Assume
mean £ and variance o2 of initial sample weights are denoted as
1 = mean{logw®(x;)} and 6% = variance{log w(®) (x;)},
where w(®)(x;) stands for sample weights calculated in (20).
Then, a subset of training samples with large sample weights is
selected based on

(25)

Xauh = {xt| log w(o)(xt) > u+ Bo,x; € X} (26)
where X denotes the set of all training samples and /3 is a linear
scaling factor to control the size of Xgyp. The goal of this se-
lection mechanism is to ensure that the selected subset is large
enough so that f is not dominated by a few samples. In next
step, we only use the subset Xy, with equal sample weights
to estimate mean vector and covariance matrix of the corre-
sponding Gaussian.

It has been observed in our experiments that the above two
initialization strategies for sample weights are very important to
achieve good performance in speech recognition since they can
effectively avoid the overfitting problem in BML. Typically, the
proper values of exponential factor o and linear scaling factor
(3 are not sensitive to any particular ASR task.

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 7, SEPTEMBER 2011

C. PFartial and Global Updating in BML

In the traditional BML, when a new mixture component f
is added to the mixture model, we first estimate a new mixture
component as in (10) and then the mixture weight is estimated
from a separate line search process as in (8). In this section, we
propose an alternative method to estimate each mixture compo-
nent and its weight. After we derive each new mixture compo-
nent fj, using functional gradient, as in [22], we can use it as
an initial point, and then apply the EM algorithm to optimize
the original log likelihood function only with respect to the new
mixture component fj and weight ¢; while F},_ are assumed
to be constants:

r=1{fr,cr} = argmaxC ((1 — cx)Fr—1 + cr fi) -

frscr

27)

The lower-bound based optimization as in Section III can
similarly be used to solve the above optimization. For GMMs,
it can be easily derived that mixture weight ¢, mean vector and
covariance matrix of fj are estimated in the (n + 1)th (n > 0)

iteration as follows:
fr (Xt|‘I’§:))

")) =
w X¢
C;cn)fk (Xf|¢)](cn))+(l_0£n)) Fk_l(xt|\pk_1)
(28)
(n+1 Zc(n) n) (x¢) 29)
(nt1) _ Zt:l w™(x;) - %, (30)
S )
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In this paper, this step of re-estimation is named partial EM.
Compared with the re-estimation based on the functional
gradient method from (17) to (19), the updating formula for
mean vector and covariance matrix are the same and the main
difference is the estimation formula of sample weights. Com-
paring the estimation formula (19) with (28), it is easy to see
that sample weights in partial EM have much smaller dynamic
range due to normalization in (28). As a result, it may result
in more robust and reliable estimation of the new mixture
component. In partial EM, we simply initialize each mixture
weight c,(co) as 1/k for each BML iteration.

Our experimental results show that in each stage of BML, if
only the newly added mixture component is updated, the conver-
gence of recognition performance is quite slow. Therefore, sim-
ilar to the re-estimation in partial EM, an additional EM-based
re-estimation step can be applied to re-estimate all mixture com-
ponents in Fj, not just f:

= argmax C((1—cp)Fr_1+ crfr). (32)

Fr—1,fr,cn
Along the same line, the EM algorithm can be used to it-
eratively update all model parameters. In this paper, this step
of re-estimation is called global EM. It has been found that
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the additional global EM step can significantly improve per-
formance of Gaussian mixture HMMs in speech recognition.
It should be clarified that both partial EM and global EM are
implemented under the state-level Viterbi approximation. For
global EM, the updating formulas are very similar to those of
the standard Baum—Welch EM. Actually, given an initial f, the
system can be updated as in normal Baum—Welch EM.

D. BIC for Parsimonious Modeling

BML is an incremental and recursive learning process where
only one new mixture component is added in each iteration.
In this section, we use Bayesian information criterion (BIC) to
select the optimal number of mixture components. The BIC has
been widely used as a model selection criterion and it can be
viewed as a regularized likelihood function as follows:

BIC(k) = C(Fy) — ng log(T) (33)
where C(F},) is the conventional log likelihood function defined
in (3), My, is the number of parameters used in mixture model
Fi, and T represents total number of training samples. A is the
control parameter of updated model size. In our BML proce-
dure, we first run BML to gradually increase the number of mix-
ture components until a certain point. At last, we use the BIC
criterion to roll back the model size and select the optimal value
of k which maximizes the BIC criterion in (33) for each state.
By doing so, we can typically reduce model size significantly
for parsimonious modeling.

At last, we summarize the whole procedure of BML for
HMMs in Table II. As shown in Table II, we first build single
Gaussian state-tied triphone HMMs using the conventional
training procedure and then apply the proposed BML methods
to incrementally increase the number of Gaussians in each
tied state until the optimal performance is achieved. During
each step of BML, we only add one Gaussian component to
each HMM state. The new Gaussian and its mixture weight are
first calculated by the BML method based on the functional
gradient of the log likelihood function, where each sample
weight is initialized by either weight decay (WD) or sampling
boosting (SB). Next, the new Gaussian and all other Gaussian
components in the HMM state are refined by using the proposed
partial EM and/or global EM, respectively. At last, BIC is used
as the convergence criterion to determine the optimal number
of Gaussian components for each HMM state.

V. EXPERIMENTS

The proposed BML algorithms have been evaluated in two
large-vocabulary continuous speech recognition tasks using the
WSIJO0 and Switchboard databases. The proposed BML methods
have been compared with the conventional maximum-likeli-
hood estimation (MLE) method as in [1], [2]. In the BML
experiments, we set the exponential factor o in weight decay to
0.05. The linear scaling factor 3 in sampling boosting is set to
—0.5. The initial single Gaussian HMMs are estimated using
the standard HTK method as in [2]. For EM iterations, we set
Np = Ng = 2 for step 2.3 and 2.4 in Table II. The initial state
probabilities and state transition probabilities in HMMs are not
updated in the BML stage.
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TABLE II
BML PROCEDURE OF HMMS FOR SPEECH RECOGNITION

1.0 Initialization of BML:

Generate single Gaussian F for all tied states in triphone HMMs

2.0 For k = 2,3, ... (each boosting stage for all F}, in all tied states)

2.1 State segmentation:

Use previous model F;_; to do forced alignment

to update state segmentation for all training samples

2.2 BML of new mixture component and its weight:

l Use functional gradient to estimate fi and ¢ (initialized by WD or SB)

2.3 Refinement of new mixture component and its weight:

[ Use partial EM to refine f and ¢ for Np iterations

2.4 Refinement of all mixture components and all weights:

[ Use global EM to refine all parameters of Fy for Ng iterations

2.5 BIC as a convergence criterion of boosting:

[ If BIC(k) > BIC(k — 1) then continue; Otherwise, terminate and output Fj_;

A. Experimental Results in the WSJ-5k Task

In the WSJO task, the training set is the standard SI-84 set,
consisting of 7133 utterances from 84 speakers (about 12 hours
speech data in total). Evaluation is performed on the standard
Nov’92 non-verbalized 5k closed-vocabulary test set (WSJ-5k),
including 330 utterances from eight speakers. For the baseline
system, we use HTK to build standard state-tied cross-word tri-
phone HMMs [1], which includes a total number of 2774 tied
states. The feature vectors are 39-dimensional MFCC features
(including delta and delta-delta features) with sentence level
cepstral mean normalization processing. A standard trigram lan-
guage model is used in evaluation.

1) Compare BML With HTK in WSJ-5k: First of all, we build
the baseline system using HTK [1], [2] to compare with our
proposed BML algorithms. Here we adopt the standard training
strategy to build our HTK baseline. As we know, we first build
state-tied single Gaussian HMMs based on the phonetic deci-
sion tree and then gradually increase the number of Gaussian
mixtures in each tied state. The strategy of HTK to split Gaus-
sians is

k' = arglg}g(K(ck —ng) (34)
where the mixture component with the largest mixture weight
cr, is selected to split, which is equivalent to selecting the mix-
ture component with the most of data assigned to it. Here ny, is
the number of times that the kth mixture has been split, which
is a penalty item to the mixture weight. Then, the selected
mixture component k* is replaced by the following two new
components:

%: B1o = pye £0.2¢/diag{E-}, Xio =Xy

(35)
where the actual split is performed by copying the selected mix-
ture component, dividing the weights of both copies by 2, and
finally perturbing the mean vectors by plus or minus

C1,2 =
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TABLE III
VARIOUS BML CONFIGURATIONS
Weight Decay | Sampling Boosting | Partial EM [ Global EM

BML1 vV

BML2 v/ v/
BML3 ¥ v

BML4 Vv N
BML5 vV N N
BML6 N N N

0.2 standard deviations. If multiple components should be split
at a time, the above procedure is repeated until the target mixture
number is achieved. In our HTK baseline training procedure,
we increase the number of mixtures by one in each state, where
two EM iterations are run. The results are shown in Table IV,
denoted as HTK. Our best HTK-trained baseline system (with
K =9) yields 5.06% in word error rate (WER), which is com-
parable with the best performance reported on this task.!

Next, we investigate several different ways to configure the
BML method as summarized in Table III, which are all slightly
different from the general BML algorithm as shown in Table II.
For these BML methods, we use single Gaussian HMMs (with
2774 tied states) from the baseline system as the initial models
for BML. BMLI can be considered as the original version of
BML widely used in other pattern classification areas [12],
[13], [29]. BML2 is modified by adding global EM to BMLI.
In BML3, we use the functional gradient to calculate each
new Gaussian component and weight decay (WD) to initialize
sample weights. In each iteration only partial EM is used
to refine the new Gaussian component and its weight after
functional gradient. On the other hand, BML4 is configured
in a similar way as BML3 except that global EM is used to
refine the whole mixture rather than partial EM. In BMLS,
both partial EM and global EM (one after another) are used to
refine mixture models after functional gradient. Furthermore,
BMLE6 is similar to BML5 except that sampling boosting (SB)
is used to initialize sample weights in the functional gradient in
place of weight decay. For all these configurations, recognition
results are summarized in Table IV. First, it is clear that BML]
is ineffective in speech recognition due to the unbounded
sample weight. Although the performance of BML2 is better
than that of BMLI, it is still much worse than that of our
baseline system. However, we can see that BML4 significantly
outperforms BML3 in recognition performance and it indicates
that global EM is an important strategy to refine BML in speech
recognition. Furthermore, we can see that global EM and
partial EM can be combined to yield even better performance,
as in the case of BML5. At last, we also compare different
initialization strategies (WD versus SB) in functional gradient
methods as shown between BML5 and BML6. Experimental
results show that both weight decay (BLM5) and sampling
boosting (BML6) are quite effective in BML, but weight decay
slightly outperforms sampling boosting in this task. Therefore,
in the following experiments we will only examine the best
configuration, i.e., BML5.

2) Performance Comparison With BIC: In this section, we
summarize the above-mentioned experiments and combine

![Online]. Available: http://www.inference.phy.cam.ac.uk/kv227/htk/
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them with BIC for parsimonious modeling. In Table V, we list
the recognition performance of HTK and BML when combined
with BIC. With different settings of control parameter A, the
average number of Gaussians per tied state is generated. From
these results, we can draw the conclusion that it can make
a good balance between the recognition performance and
model size to combine HTK or BML with BIC. In the case of
“BMLA+BIC,” when A is set to 0.9, WER is 4.50 with an aver-
aged of 8.8 Gaussians per tied state. Compared with the best
BML performance with K = 10 in Table IV, the model size has
been significantly reduced (12% relative reduction) without any
loss in recognition performance. On the other hand, when X is
set to 8.0, the model is extremely compressed to an average of
2.3 Gaussians per tied state, but the corresponding recognition
performance is still maintained at a high level compared with
the results with K’ = 2 and K = 3 in Table IV. All these results
show that BIC is really effective for parsimonious modeling.

B. Experimental Results in Switchboard Task

For the Switchboard task, the training data set consists of two
parts: Switchboard-1 Phase-1 Release 2 [25] and Call Home
English (CHE). The Switchboard set is a large multi-speaker
corpus of conversational telephony speech including 2435 con-
versations of 241 female and 302 male speakers. Each conver-
sation is double-side and about 3—10 minutes in duration. The
training set amounts to 250 hours speech data in total. The tran-
scriptions of the Switchboard data are available from Missis-
sippi State University. The CHE database has 200 conversations
with about 10 minutes for each conversation, among which only
120 conversations are selected for training, accounting for about
20 hours of speech data in total. To make a balance between
these two databases, three-fold CHE data is mixed with Switch-
board data. The test set is 1998 Hub-5 evaluation released by
NIST, which consists of 20 conversations from Switchboard-2
Phase-2 and 20 conversations from CHE, about 3 hours data
in total. The standard HTK toolkit is used to build cross-word
triphone HMMs with a total number of 9000 tied-states using
39-dimensional PLP features with side-based cepstral mean and
variance normalization. The same methods as in [26] are used to
build the test dictionary and trigram language models. We use
the standard NIST scoring software [27] to calculate recogni-
tion performance for this task.

In this section, we further examine the effects of BML on
the Switchboard task compared with the conventional training
procedure on the above 1998 evaluation set. Experimental re-
sults are summarized in Table VI. The fourth row of this table
marked with “p-value” is the minimum value of p which can
find a significant difference at the level of p in the statistical
significance tests for HTK and BML systems. Here we adopt
the “Matched Pair Test” method mentioned in [27]. The sig-
nificance test is a two-tailed test with the null hypothesis that
there is no performance difference between the two systems.
The smaller “p-value” is, the bigger significant differences be-
tween two systems are. Based on the results in Table VI, we can
observe that BML is more effective than HTK for small mixture
numbers (K =2, 3, 4, 5) but performance of bigger model sizes
is almost the same as that of HTK (K =6, 7, 8). We analyze
the reason of this observation from the Switchboard task itself.



DU et al.: BML OF GAUSSIAN MIXTURE HMMs BASED ON ML FOR SPEECH RECOGNITION

2099

TABLE IV
RECOGNITION PERFORMANCE (WER IN %) COMPARISON AMONG DIFFERENT BML STRATEGIES ON THE WSJ-5k TEST SET
WER(%) K=1 | K=2 | K=3 | K=4 | K=5 | K=6 | K=7 | K=8 | K=9 [ K=10
HTK 11.02 | 9.90 8.59 8.11 7.02 | 5.92 | 5.34 | 5.10 | 5.06 5.23
BML1 - 10.98 | 10.52 | 10.22 | 8.80 | 8.76 | 8.87 | 8.07 | 7.66 7.55
BML2 - 10.89 | 10.20 | 9.66 9.34 | 8.63 | 8.00 | 749 [ 7.08 6.74
BML3 - 9.14 7.51 7.04 7.01 | 6.91 | 6.93 | 6.93 | 6.93 6.93
BML4 - 8.07 6.63 5.81 5.47 | 5.23 | 5.01 | 5.10 | 4.89 5.01
BML5 - 7.53 6.28 5.72 5.53 | 5.23 | 5.03 | 4.75 | 4.69 4.50
BML6 - 8.14 6.52 5.81 5.53 | 5.32 | 4.97 | 4.84 | 4.99 5.08
TABLE V
RECOGNITION PERFORMANCE (WORD ERROR RATE) OF BASELINE AND BML WITH BIC ON THE WSJ-5k TEST SET
HTK+BIC BML5+BIC
A 0.9 2.0 3.0 5.0 8.0 0.9 2.0 3.0 5.0 8.0
Avg. # of Gaussians | 9.5 | 6.4 | 4.7 | 3.2 | 25 | 88 | 5.2 | 3.8 | 2.7 | 2.3
WER(%) 5.04 | 5.16 | 5.34 | 5.70 | 6.39 | 4.50 | 4.75 | 4.88 | 5.47 | 5.55
TABLE VI

PERFORMANCE (WORD ERROR RATE IN %) COMPARISON BETWEEN HTK BASELINE AND BML IN SWITCHBOARD TEST SET.
THE P-VALUE ROWS INDICATE SIGNIFICANCE TEST RESULTS BETWEEN BML AND HTK BASELINE

K=1]| K=2 K=3 K=4 K=5 K=6 K=7 K=8
HTK 66.0 63.9 61.0 58.0 55.6 54.1 52.9 52.2
BML - 61.0 58.1 56.1 54.8 53.8 52.9 52.5
p-value - <0.001 | <0.001 | <0.001 | <0.001 | 0.215 0.697 0.653
Iterative-BML - 59.7 56.1 54.4 53.2 52.6 52.1 51.4
p-value - <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001
Iterative-BML + BIC Avg. 7.1 Gaussians per state, WER is 51.0%

It is well known that the Switchboard task is one of the most
challenging LVCSR tasks. The speech is conversational and
spontaneous, with many instances of the so-called disfluencies
such as partial words, hesitation and repairs, etc. Another major
problem of Switchboard is poor quality of the training transcrip-
tions. Since we accept the Viterbi approximation in BML, this
may affect the quality of state segmentation in each iteration. To
confirm this idea, an experiment called “Iterative-BML” is de-
signed. “Iterative-BML” denotes that Viterbi state segmentation
is regenerated using the best HMMs (with K = 8) of “BML”
in Table VI, and then the same BML training procedure is re-
peated to grow HMMs from 1-mix to 8-mix without regener-
ating the state labels at each stage. As shown in Table VI, with
more accurate state segmentation, “Iterative-BML” consistently
outperforms “BML” in Table VI. In the sixth row of Table VI,
we perform a significance test between “HTK” system and “It-
erative-BML” system in Table VI. Now for all cases of mixture
number K, the difference between these two systems is signif-
icant. When BIC is applied to “Iterative-BML,” from Table VI,
we can see that model size can be reduced from 8 Gaussians to
7.1 Gaussians per tied state and meanwhile it slightly improves
recognition performance from 51.4% to 51.0% in WER.

VI. CONCLUSION

In this paper, we have presented a novel boosted mixture
learning (BML) framework based on maximum-likelihood
(ML) criterion for Gaussian mixture HMMs in speech recogni-
tion. To accommodate BML under the HMM framework, the
Viterbi approximation has been accepted for state segmentation

to extend BML from GMMs to Gaussian mixture HMMs. Sev-
eral techniques have been proposed to improve performance of
BML in speech recognition, such as weight decay to initialize
sample weights to avoid overfitting, combination of partial
updating and global updating to refine model parameters in
BML, and the use of BIC as a convergence criterion in BML for
parsimonious modeling. Experimental results on two large-vo-
cabulary ASR tasks, WSJO and Switchboard, have shown that
the proposed BML method yields significantly better perfor-
mance than the conventional HMM training procedure. Even
though the BML framework is investigated only for the max-
imum-likelihood criterion in this paper, it is straightforward to
extend to other discriminative training criteria to grow Gaussian
mixtures discriminatively for speech recognition.
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