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A Feature Compensation Approach Using High-Order
Vector Taylor Series Approximation of an Explicit

Distortion Model for Noisy Speech Recognition
Jun Du and Qiang Huo, Member, IEEE

Abstract—This paper presents a new feature compensation
approach to noisy speech recognition by using high-order vector
Taylor series (HOVTS) approximation of an explicit model of
environmental distortions. Formulations for maximum-likelihood
(ML) estimation of both additive noises and convolutional distor-
tions, and minimum mean squared error (MMSE) estimation of
clean speech are derived. Experimental results on Aurora2 and
Aurora4 benchmark databases, where the modeling assumption
of the distortion model is more accurate, demonstrate that the
standard HOVTS-based feature compensation approaches achieve
consistently significant improvement in recognition accuracy com-
pared to traditional standard first-order VTS-based approach.
For a real-world in-vehicle connected digits recognition task on
Aurora3 benchmark database where the modeling assumption of
the distortion model is less accurate, modifications are necessary
to make VTS-based feature compensation approaches work. In
this case, the second-order VTS-based approach performs only
slightly better than the first-order VTS-based approach.

Index Terms—Distortion model, feature compensation, noise ro-
bustness, robust speech recognition, vector Taylor series (VTS).

I. INTRODUCTION

M OST of current automatic speech recognition (ASR) sys-
tems use Mel-frequency cepstral coefficients (MFCCs)

and their derivatives as speech features, and a set of Gaussian
mixture continuous density HMMs (CDHMMs) for modeling
basic speech units. It is well known that the performance of
such an ASR system trained with clean speech will degrade
significantly when the testing speech is corrupted by additive
noises and convolutional distortions. One type of approaches
to dealing with the above problem is the so-called feature
compensation approach using explicit model of environmental
distortions (e.g., [1]), which is also the topic of this paper.

For our approach, it is assumed that in time domain, “cor-
rupted” speech is subject to the following explicit distortion
model:

(1)

Manuscript received August 02, 2010; revised December 28, 2010; accepted
March 01, 2011. Date of publication March 17, 2011; date of current version
August 19, 2011. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Brian Mak.

Dr. J. Du is with the Visual Computing Group, Microsoft Research Asia
(MSRA), Beijing 100190, China (e-mail: jundu@microsoft.com).

Dr. Q. Huo is with Speech Group, Microsoft Research Asia (MSRA), Beijing
100190, China (e-mail: qianghuo@microsoft.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2011.2129508

where independent signals , and represent the th
sample of clean speech, the convolutional (e.g., transducer and
transmission channel) distortion and the additive noise, respec-
tively. In log-power-spectral domain, the distortion model can
be expressed approximately (e.g., [1]) as

(2)

where , , , and are log power-spectra of noisy speech,
clean speech, convolutional term and noise, respectively. In
MFCC domain, the distortion model becomes

(3)

where is a truncated discrete cosine transform (DCT)
matrix, denotes the Moore–Penrose inverse of (refer to
[12] for details), is the dimension of MFCC feature vector,
and is the number of channels of the Mel-frequency filterbank
used in MFCC feature extraction. In most of the current ASR sys-
tems, . The and functions in the above equa-
tions operate element-by-element on the corresponding vectors.
The nonlinear nature of the above distortion model makes sta-
tistical modeling and inference of the above variables difficult;
therefore, certain approximations have to be made.

Understandably, a simple linear approximation, namely the
first-order vector Taylor series (VTS) approximation, has been
tried in the past (e.g., [14], [16], and [17]). There are also ef-
forts in using high-order VTS (HOVTS) to improve the above
first-order VTS approximation. In [13], the nonlinear distor-
tion function for additive noise only is first expanded using
HOVTS. Then a linear function is found to approximate the
above HOVTS by minimizing the mean-squared error incurred
by this approximation. Given the linear function, the remaining
inference is the same as in using the traditional first-order VTS
to approximate the nonlinear distortion function directly. In [6],
HOVTS is used to approximate the nonlinear portion of the dis-
tortion function by expanding with respect to instead of

. Both approaches work for each feature dimension inde-
pendently by ignoring correlations between different channels
of the filterbank. In [21], the above nonlinear distortion func-
tion is approximated by a second-order VTS. Using this rela-
tion, the mean vector of the relevant noisy speech feature vector
can be derived, which naturally includes a term related to the
second-order term in HOVTS. In our previous work [7]–[9], we
extended the above work in the following ways: 1) the nonlinear
distortion function for both additive noise and convolutional dis-
tortion can be approximated by HOVTS with any order; 2) the

1558-7916/$26.00 © 2011 IEEE



2286 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 8, NOVEMBER 2011

Fig. 1. Flowchart of our feature compensation approach.

required sufficient statistics are derived for estimating model
parameters of additive noise and convolutional distortion, and
clean speech feature vector; and 3) correlations between dif-
ferent channels of the filterbank can be considered. In this paper,
we expand on our previous work, providing a more detailed
description of the formulation and derivation of the proposed
approach, additional implementation details, new experiments,
and an expanded discussion of the results.

The rest of the paper is organized as follows. In Section II,
we give an overview of the general formulation of our fea-
ture compensation approach. In Section III, we present the
detailed formulation of how to calculate the required sufficient
statistics based on HOVTS approximation. In Section IV,
some implementation issues are discussed. In Section V,
we report experimental results and finally we conclude the
paper in Section VI. To make the paper more accessible, in
Appendix A, we summarize how to derive a procedure for the
maximum-likelihood (ML) estimation of both additive noise
and convolutional distortion.

II. FEATURE COMPENSATION APPROACH

The flowchart of our feature compensation approach is illus-
trated in Fig. 1. In the training stage, a Gaussian mixture model
(GMM)

is trained from clean speech using MFCC features without
cepstral mean normalization (CMN), where , , and

are mean vector, diagonal covariance matrix, and mixture
weight of the th Gaussian component, respectively. Let us
assume that for each sentence, the noise feature vector in
cepstral domain follows a Gaussian probability density function
(pdf) with a mean vector and a diagonal covariance matrix

. Let us further assume that the term corresponding to
convolutional distortion has a pdf of the Kronecker delta func-
tion , where is an unknown deterministic
vector.

In the recognition stage, the above unknown distortion model
parameters can be estimated as follows.
Step 1) Initialization: We first estimate the initial noise

model parameters in cepstral domain by taking the
sample mean and covariance of the MFCC fea-
tures from the first several (ten in our experiments)
frames of the unknown utterance, and set as
a zero vector.

Step 2) Define a new random vector, , whose
pdf can be derived as follows:

(4)

Then transform all parameters from cepstral domain
to log-power-spectral domain as follows:

(5)

(6)

(7)

(8)

where the superscripts “ ” and “ ” indicate the
log-power-spectral domain and cepstral domain,
respectively.

Step 3) In log-power-spectral domain, use HOVTS approx-
imation to calculate the relevant statistics, ,

, , , which are required for re-es-
timation of distortion model parameters and estima-
tion of clean speech. The details are given in the next
section.

Step 4) Transform the above statistics back to cepstral do-
main as follows:

(9)

(10)

(11)

(12)

Step 5) Use the following updating formulas (to be derived
in Appendix A) to re-estimate the distortion model
parameters:

(13)

(14)

(15)
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where

(16)

In the above equations, we have dropped the
cepstral domain indicator “ ” in relevant vari-
ables for notational convenience. Further-
more, , is the
pdf of the noisy speech , where the true

is approximated by a Gaussian pdf,
, via “moment-matching.”

, and
are the relevant conditional expectations evaluated
as follows:

(17)

(18)

(19)

Step 6) Repeat Step 2 to Step 5 times.
Given the noisy speech and the estimated distortion model

parameters, the minimum mean-squared error (MMSE) estima-
tion of clean speech feature vector in cepstral domain can be
calculated as

(20)

where is the conditional expectation of given
for the th mixture component and can be evaluated as

follows:

(21)

The other modules in Fig. 1 are self-explained.
In the next section, we elaborate on how to calculate the re-

quired statistics, , , , , using HOVTS ap-
proximation of the nonlinear distortion function in (2). For no-
tational convenience, we drop hereinafter the indices related to
the frame number, mixture component, and channel index of the
filterbank without causing confusions.

III. COMPUTATION OF REQUIRED STATISTICS

The explicit distortion model in (2) is reformulated in the
scalar form as follows:

(22)

where . Then the -order Taylor series of
with the expansion point can be represented as

(23)

where

(24)

and

(25)

When and , the coefficients in (25)
can be evaluated by using the following recursive relation

(26)

with the initial condition

(27)

For convenience, we also define the following expectations:

(28)

(29)

where and are two general functions, and
are dimensional indices.
Given the above notations and results, we summarize in the

following subsections the main statistics required in imple-
menting our feature compensation approach.

A. Calculating

Let us use to denote the th element of the vector .
Using the definition of the mean parameter, we have

(30)

where

if is odd
otherwise. (31)

represents “ ” or “ .” is the value of (24) for the th
dimension. And for is even, we have

(32)
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B. Calculating

Let us use to denote the th element of the matrix
. Using the definition of the covariance, we have

(33)

where

if is odd

otherwise.
(34)

C. Calculating

Let us use to denote the th element of the ma-
trix . Using the definition of the covariance parameter, we
have

(35)

D. Calculating

Let us use to denote the th element of the ma-
trix . Using the definition of the covariance parameter, we
have

(36)

IV. IMPLEMENTATION ISSUES

Although using a higher order VTS to approximate the ex-
plicit distortion model in (2) is well-motivated, its effectiveness
largely depends on how faithful the adopted distortion model
reflects the truth in the unknown utterance to be recognized. As
we will demonstrate in the following section on experiments,
two heuristic strategies described in the following two subsec-
tions may help improve the effectiveness of the proposed feature
compensation approach when the distortion model may not be
accurate enough.

A. Combined Cepstral Mean Normalization and VTS-Based
Feature Compensation Approach

In our experiments of real-world noisy speech recognition
on Aurora3 task, we observed that it is helpful to use a com-
bined cepstral mean normalization (CMN) and VTS-based fea-

Fig. 2. Flowchart of combined cepstral mean normalization and VTS-based
feature compensation approach.

ture compensation approach as illustrated in Fig. 2. In this case,
the clean-speech GMM is trained using the CMN-processed
MFCC features.

B. Modified Clean Speech Estimation Approaches

In our proposed approach, an important step is to use (20) to
estimate clean speech under MMSE criterion. Again, in our ex-
periments on Aurora3 task, we made the following observation:
for certain frames in both high-SNR and low-SNR regions,
the term in (21) is very close to zero on quite
a few mixture components in (20), which renders non-dif-
ferentiable to the mixture components concerned. To deal with
this problem, one possible heuristic solution is to constrain the
value of .

Let us analyze first the calculation of for the
first-order VTS case. As we have

(37)

the value of is determined by .
Furthermore, the main contribution of comes
from the diagonal elements of and , respectively.
If we ignore all the off-diagonal elements of both and

, then can be reduced to a diagonal matrix
with the th element defined (the superscript and the subscript

are ignored for neat notation) as

(38)

where

(39)
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In the above equation, is the expansion point
of VTS, which is set to the corresponding mean vectors

. From (38), we can observe that the key term
which causes close to zero is , which is
related to the expansion point as follows:

(40)

which could happen under two cases. The first case is that the
value of is large which happens when the SNR of the cur-
rent utterance is low. The second case is that the value of is
small, which can easily happen for a quite few mixture compo-
nents representing the small “energy” component of distribution
space defined in (4).

One way to constrain the value of not to be
very small, which represents the frame differentiability in (21),
is to constrain which is related with and . To
achieve this goal, here we adjust the value of and still set

to . This is a natural idea as is estimated online
using EM algorithm which represents the noise information of
the current utterance while of some small “energy” com-
ponents is not suitable to be used as the expansion point
due to several assumptions made in the inference. Let us define
an SNR measure for the th dimension as follows:

(41)

where

(42)

is the correlation coefficient of and . By using (38) to (42),
the expansion point can be expressed as

(43)

Consequently, we propose to constrain as follows:

(44)

where

(45)

with being a predefined threshold for .
For high-order VTS approximation, no closed-form solution

of like (44) exists for a given . Based on (41)
and (42), is related to , , and , which
can be calculated as described in Section III. Consequently, we
can identify a nonlinear and monotonic function

. The problem becomes that given , how to
find the corresponding constrained by . A numerical
solution can be obtained by an iterative process as follows:
Step 1: Set . Calculate .
Step 2: If , exit; otherwise, go to Step 3.

Step 3: Calculate
(inspired by (45)).

Set .
• While ( ) do { ;

}.
Step 4: Set ,

. Obviously
and . Given and

, we can then use bisection method to up-
date iteratively until a maximum number of
iterations (10 in our experiments) is reached or the
following criterion is satisfied:

The modified approach to MMSE-based clean speech esti-
mation with the above safeguard measure will be referred to as
“MMSE-SAFE” hereinafter.

As a special case, when is set directly to 1,
the MMSE-based clean speech estimation using (20) and (21)
becomes the same as what was described in [16], [17], which
will be referred to as “MMSE-VTS0” approach hereinafter. Ac-
tually, this case corresponds to the zero-order VTS approxima-
tion described in [16] and [17].

V. EXPERIMENTS AND RESULTS

The traditional first-order VTS-based feature compensation
approach has been treated as an established technique for noisy
speech recognition. In [16], VTS-based approach has been
verified to outperform several noise reduction techniques, e.g.,
RATZ (Multivariate-Gaussian-Based Cepstral Normalization)
and CDCN (Codeword Dependent Cepstrum Normalization). A
comparison of the computational complexity of the first-order
VTS approach with other techniques is also given there. There-
fore, in this study, experiments are designed to compare the
performance of our proposed HOVTS approaches with the
first-order VTS approach only.

A. Experimental Setup

As a proof-of-concept study, Aurora2 [10] and Aurora4
[11], [18] databases are used to verify the effectiveness of the
proposed approach for the small-vocabulary task of recognition
of connected digit strings and the large-vocabulary continuous
speech recognition (LVCSR) task, respectively. Both Aurora2
and Aurora4 databases contain speech data in the presence
of additive noises and linear convolutional distortions, which
were introduced synthetically to “clean” speech derived from
TIDigits [15] and WSJ [19] databases, respectively. The mod-
eling assumptions made in our adopted distortion model can
be treated as correct in both cases. In order to verify the effec-
tiveness of the proposed approach on real-world ASR, Aurora3
database [2]–[5] was used, which contains utterances of digit
strings recorded in real automobile environments for Danish,
Finnish, German and Spanish, respectively. A full description
of the above databases and the corresponding test frameworks
are given in [2]–[5], [10], [11], [18].



2290 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 8, NOVEMBER 2011

TABLE I
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF THE BASELINE

SYSTEM AND VTS(N) SYSTEMS USING VTS-BASED FEATURE COMPENSATION,
AVERAGED OVER SNRS BETWEEN 0 dB AND 20 dB ACROSS ALL NOISE

CONDITIONS ON THREE DIFFERENT TEST SETS OF AURORA2 DATABASE

In our ASR systems, the feature vector we used consists of
13 MFCCs (including ) plus their first- and second-order
derivatives. The number of Mel-frequency filter banks is 23.
MFCCs are computed based on power spectra. The mixture
number of clean-speech GMM for feature compensation is 256.
For Aurora2 and Aurora3 tasks, each digit is modeled by a
whole-word left-to-right CDHMM, which consists of 16 emit-
ting states, each having three Gaussian mixture components. For
Aurora4 task, triphones are used as basic speech units. Each
triphone is modeled by a CDHMM with three emitting states,
each having eight Gaussian mixture components. There are in
total 2800 tied states based on decision trees. A bigram language
model (LM) for a 5 k-word vocabulary is used in recognition.

For experiments on Aurora2 and Aurora4 databases, “clean-
training” is used, where “8 kHz data” is used for Aurora4. For Au-
rora3 experiments, we focus on high-mismatch (HM) “training-
testing” condition, where training data includes utterances
recorded by close-talking (CT) microphone, which can be con-
sidered as “clean,” while testing data is recorded by hands-free
(HF) microphone. For re-estimation of distortion model param-
eters, the control parameter is set as 4. Our baseline ASR
systems used CMN for feature compensation. In all the exper-
iments, tools in HTK [22] are used for training and testing. In
the following subsections, we report the experimental results.

Proof-of-Concept Study on Aurora2 and Aurora4 Tasks

In the first set of experiments, we study the effectiveness of one
of our HOVTS-based feature compensation methods on Aurora2
database, where only additive noise is considered in our distor-
tion model (i.e., the method in [8] and referred to as “VTS(N)”
method hereinafter). Table I summarizes a performance (word
accuracy in %) comparison of the baseline system and VTS(N)
systems. The performance is averaged over SNRs between 0 dB
and 20 dB on test Set A, Set B and Set C, respectively. Several
observations can be made. First, all VTS(N) systems outperform
the “Baseline” system. Higher the order in VTS approximation,
better the performance. Second, although “3rd-order VTS(N)”
achieves the best performance in all cases, the gap between
“2nd-order VTS(N)” and “3rd-order VTS(N)” is small.

In the second set of experiments, we study the effectiveness
of another HOVTS-based feature compensation method on Au-
rora2 database, where both additive noise and convolutional dis-
tortion are considered in our distortion model as described in
Section II. This method is referred to as “VTS(N,H)” method
hereinafter. Table II compares the performance of VTS(N) and
VTS(N,H) systems on Set C, where both additive noise and
channel mismatch exist. As expected, VTS(N,H) performs con-
sistently better than VTS(N), because the channel mismatch

TABLE II
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF VTS(N) AND

VTS(N,H) SYSTEMS USING VTS-BASED FEATURE COMPENSATION, AVERAGED

OVER SNRS BETWEEN 0 dB AND 20 dB ACROSS ALL NOISE CONDITIONS

ON TEST SET C OF AURORA2 DATABASE

TABLE III
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF THE BASELINE

SYSTEM AND SEVERAL ROBUST ASR SYSTEMS USING VTS-BASED FEATURE

COMPENSATION FOR THE SECOND MICROPHONE UNDER SEVERAL NOISY

ENVIRONMENTS OF AURORA4 DATABASE

was compensated for as well in VTS(N,H) method. Again, it
is observed that higher the order in VTS approximation, better
the performance. Considering the tradeoff between recognition
performance and computational complexity, we will not use an
order higher than 2 in the following experiments.

The above experiments are repeated on Aurora4 task.
Table III summarizes a performance (word accuracy in %)
comparison of the baseline system and several robust ASR
systems using VTS-based feature compensation for the second
microphone under several noisy environments of Aurora4
database. Due to the different microphones used in training
(Sennheiser microphone) and testing (the second microphone),
these results are used for demonstrating the effects of both
additive noises and channel mismatch. The same observations
can be made as on Aurora2 task.

From the above experimental results, it is clear that the pro-
posed HOVTS-based feature compensation methods can im-
prove the recognition accuracy under different conditions com-
pared with its first-order VTS counterpart when the modeling
assumption of our distortion model reflects the truth in unknown
utterances to be recognized.

B. Effects on a Real-World ASR Task

In order to verify the effectiveness of the proposed approach
on real-world ASR, a set of comparative experiments are con-
ducted on Aurora3 database. Table IV summarizes a perfor-
mance (word accuracy in %) comparison of the baseline system
and the following robust ASR systems using VTS-based feature
compensation in the high-mismatch (HM) condition on Aurora3
database:

• VTS(N,H)(Standard): the approach described in
Section II;

• CMN+VTS(N,H)(Standard): the approach described in
Section IV-A;

• CMN+VTS(N,H)(MMSE-VTS0): the combined CMN
and VTS-based feature compensation approach, where the
MMSE-VTS0 approach as described in Section IV-B is
used for clean speech estimation;
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TABLE IV
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF THE BASELINE

SYSTEM AND SEVERAL ROBUST ASR SYSTEMS USING VTS-BASED

FEATURE COMPENSATION IN THE HIGH-MISMATCH (HM) CONDITION

ON AURORA3 DATABASE

• CMN+VTS(N,H)(MMSE-SAFE): the combined CMN
and VTS-based feature compensation approach, where the
MMSE-SAFE approach as described in Section IV-B is
used for clean speech estimation. The corresponding SNR
thresholds for German, Danish, Finnish, and Spanish,
which are determined on a development set, are set as
20, 7.5, 20, and 12.5 dB, respectively. The performance
of MMSE-SAFE-based approach is not sensitive to these
SNR thresholds beyond certain levels

From the above experimental results, we made the following
observations.

• Although “VTS(N,H)(Standard)” approach performs
better than the baseline system in most of cases, it indeed
performs worse than the baseline system on Spanish task,
especially for the first-order VTS case.

• All the combined CMN and VTS-based feature compensa-
tion approaches achieve significant performance improve-
ment against the Baseline system for all the tasks. They
also perform better than the “VTS(N,H)(Standard)” ap-
proach in most of cases.

• Both modified MMSE-based approaches for clean speech
estimation help. MMSE-SAFE based approach is more
complicated but achieves better performance than the
MMSE-VTS0 approach.

• Overall, the “CMN+VTS(N,H)(MMSE-SAFE)” approach
achieves thebestperformance. In thiscase, thesecond-order
VTS approximation performs better than the first-order
case.

C. Computational Complexity

Another concern of our proposed feature compensation solu-
tion is its computational complexity during recognition stage.
The main overhead comes from the noise/channel estimation
and the clean speech estimation, which are affected directly by
the number (i.e., ) of components in clean-speech GMM and
the number of EM iterations (i.e., ) in estimating distor-
tion model parameters. Table V gives readers an idea of how
the User CPU Time (in second) looks like for the above-men-
tioned two modules of the CMN+VTS(N,H)(MMSE-SAFE)
approach. The timing experiment is conducted on a Pentium
IV PC with a clock rate of 2.66 GHz by using a randomly se-
lected testing sentence with a length of 1.54 s from Aurora3
database. The relevant control parameters are set as ,

. In practice, it is observed that a large portion of

TABLE V
SUMMARY OF THE USER CPU TIME (IN SECONDS) FOR THE NOISE/CHANNEL

ESTIMATION COMPONENT AND THE CLEAN SPEECH ESTIMATION COMPONENT

OF THE CMN+VTS(N,H)(MMSE-SAFE) APPROACH BY USING A RANDOMLY

SELECTED TESTING SENTENCE WITH A LENGTH OF 1.54 s FROM AURORA3
DATABASE (� � ���, � � �)

recognition accuracy improvement is still kept by decreasing the
mixture number from 256 to 8 and the number of EM iterations
from 4 to 2. The efficiency of our proposed method is not a big
issue under this setting.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we have presented a new feature compensa-
tion approach using high-order vector Taylor series (HOVTS)
approximation of an explicit distortion model. Experimental
results on Aurora2 and Aurora4 benchmark databases, where
the modeling assumption of the distortion model is more
accurate, demonstrate that the standard HOVTS-based feature
compensation approaches achieve consistently significant
improvement in recognition accuracy compared to traditional
standard first-order VTS based approach. For a real-world
in-vehicle connected digits recognition task on Aurora3 bench-
mark database where the modeling assumption of the distortion
model is less accurate, modifications are necessary to make
VTS-based feature compensation approaches work. In this
case, the second-order VTS-based approach performs only
slightly better than the first-order VTS based approach. By
further considering computational complexity of different
approaches, the “CMN+VTS(N,H)(MMSE-VTS0)” approach
using the first-order VTS approximation in distortion model
parameter estimation offers a very attractive practical solution.
We therefore recommend our readers to try out this approach
in their applications.

APPENDIX

DERIVATION OF ML TRAINING OF DISTORTION

MODEL PARAMETERS

In this appendix, we summarize how to derive, by extending
the formulations in, e.g., [14] and [20], a procedure for the es-
timation of the parameters of explicit distortion model by max-
imizing the likelihood function defined on a given set of noisy
observations in cepstral domain.

First we make a general assumption that both and are
modeled by GMMs, although only a single Gaussian model is
used for additive noise vector in this paper. The likelihood
function is defined as

(46)

where and are model parameter sets for and ,
respectively. is the sequence of the noisy observation vec-
tors in the current utterance. and are the sequences
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of Gaussian component indices for and , respectively.
can be expressed as

(47)

where and are the hidden Gaussian component indices
at the th frame for and , respectively; and
denote the weights of the corresponding Gaussian components
for and , respectively; and are pdfs of
Gaussian components for and , respectively; and the notation

represents the -fold iterated integral, each component of
which is along the contour defined by the explicit model

. It is important to note that one can define a
particular model for the corruption of the clean speech by noise
simply by defining particular contours of integration .

It is impossible to obtain the closed-form ML estimation
directly by maximizing the likelihood function in (46). Here
we adopt an iterative EM algorithm to solve the problem. The
M-Step of the EM algorithm is to maximize the following
auxiliary function:

(48)

where

(49)
and and are the sets of old and new model parameters,
respectively. If we assume that the observations are independent
in time and random processes representing , are
independent, can be reduced to

(50)

where

(51)
and are the Gaussian component indices for and ,

respectively; and is an indicator function
defined as follows:

if
otherwise

(52)

Individually maximizing in (50) with respect to
each of the model parameters in is straightforward. Max-
imizing (50) with respect to under the constraint

gives

(53)

Meanwhile, it is easy to prove that

(54)

where

(55)
is the posterior probability of two hidden random variables
and . Substituting (54) into (53), the final updating formula
for is as follows:

(56)

The mean and covariance matrix of Gaussian components
can be estimated similarly. By setting the following partial
derivative

(57)

equal to zero with the Gaussian pdf , we have

(58)

The integral in the numerator of (58) can be reduced to

(59)

where is the conditional expectation of
given for components and . By substituting (54) and
(59) into (58), the updating formula for can be obtained
as

(60)
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By a similar procedure, the updating formula for the covariance
matrix can also be obtained as follows:

(61)

where is the conditional expectation
of given for components and .

Now let us consider how to derive the updating formula for
. Given that and , we

have

(62)

The partial derivative of in (50) with respect to
can be written as

(63)
Using (62) and setting the above expression equal to zero, the
updating formula for can be derived as

(64)

where is the conditional expectation of
given for components and .
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