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An Improved VTS Feature Compensation using
Mixture Models of Distortion and IVN Training
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Abstract—In our previous work, we proposed a feature com-
pensation approach using high-order vector Taylor series (VTS)
approximation for noisy speech recognition. In this paper, we
report new progress on making it more powerful and practical in
real applications. First, mixtures of densities are used to enhance
the distortion models of both additive noise and convolutional
distortion. New formulations for maximum likelihood (ML)
estimation of distortion model parameters, and minimum mean
squared error (MMSE) estimation of clean speech are derived and
presented. Second, we improve the feature compensation in both
efficiency and accuracy by applying higher order information of
VTS approximation only to the noisy speech mean parameters,
and a temporal smoothing operation for the posterior probability
of Gaussian mixture components in clean speech estimation.
Finally, we design a procedure to perform irrelevant variability
normalization (IVN) based joint training of a reference Gaussian
mixture model (GMM) for feature compensation and hidden
Markov models (HMMs) for acoustic modeling using VTS-based
feature compensation. The effectiveness of our proposed ap-
proach is confirmed by experiments on Aurora3 benchmark
database for a real-world in-vehicle connected digits recognition
task. Compared with ETSI advanced front-end, our approach
achieves significant recognition accuracy improvement across
three “training-testing” conditions for four languages.

Index Terms—Feature compensation, irrelevant variability nor-
malization, mixture model of distortion, noisy speech recognition,
vector Taylor series.

I. INTRODUCTION

B EFORE the recent breakthrough of deep learning ap-
proaches to automatic speech recognition (ASR) (e.g.,

[16] and the references therein), historically, most of ASR
systems use Mel-frequency cepstral coefficients (MFCCs) and
their derivatives as speech features, and a set of Gaussian
mixture continuous density HMMs (CDHMMs) for modeling
basic speech units. It is well known that the performance of
such an ASR system trained with clean speech will degrade
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significantly when the testing speech is corrupted by additive
noises and convolutional distortions. One type of approaches
to dealing with the above problem is the so-called feature
compensation approach using explicit model of environmental
distortions (e.g., [1]), which is also the topic of this paper.
For our approach, it is assumed that in time domain, “cor-

rupted” speech is subject to the following explicit distortion
model:

(1)

where independent signals , and represent the th
sample of clean speech, the convolutional (e.g., transducer and
transmission channel) distortion and the additive noise, respec-
tively; and is the convolution operator. In log-power-spectral
domain denoted by superscript ‘l’, the distortion model can be
expressed approximately (e.g., [1]) as

(2)

where , , and are log power-spectra of noisy speech,
clean speech, convolutional term and noise, respectively. In
MFCC domain denoted by superscript ‘c’, the distortion model
becomes

(3)

where is a truncated discrete cosine transform (DCT)
matrix, denotes the Moore-Penrose inverse of (refer to
[1], [19], [17] for details), is the dimension of MFCC feature
vector, and is the number of channels of the Mel-frequency
filter bank used in MFCC feature extraction. In most ASR sys-
tems, . The and functions in the above equa-
tions operate element-by-element on the corresponding vectors.
The nonlinear nature of the above distortion model makes sta-
tistical modeling and inference of the above variables difficult,
therefore certain approximations have to be made.
Understandably, a simple linear approximation, namely first-

order vector Taylor series (VTS) approximation, has been tried
in the past (e.g., [22], [23], [19]). The related works of VTS-
based feature compensation can be divided into several cate-
gories. The first category is on the more precise expression of
the distortion model in Eq. (2). An example is given in [7],
where the phase relationship between clean speech and addi-
tive noise is incorporated into the distortion model. In [14],
[15], Monte-Carlo methods are used for approximating the re-
quired intractable integrals involving the so-called “devil func-
tion” generated from the interaction model (i.e., exact distortion
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model) associated with probability densities. The second cate-
gory is on the more accurate approximation of the nonlinear dis-
tortion model. In [20], a linear function is found to approximate
the high-order Taylor series expansion of the nonlinear distor-
tion model with only additive noise by minimizing the mean-
squared error incurred by this approximation. Given the linear
function, the remaining inference is the same as in using the tra-
ditional first-order Taylor series expansion to approximate the
nonlinear distortion model directly under the Gaussian assump-
tions for both speech and noise. In [8], high-order Taylor series
expansion is used to approximate the nonlinear portion of the
distortion function by expanding with respect to instead
of . Both approaches work for each feature dimension
independently by ignoring correlations between different chan-
nels of the filter bank. In [27], the nonlinear distortion model is
approximated by a second-order VTS. Using this relation, the
mean vector of the relevant noisy speech feature vector can be
derived, which naturally includes a term related to the second-
order term in high-order VTS. In terms of using high-order
Taylor series expansion, the main difference of the approaches
in [27], [20], [8] is that the approximation operation is per-
formed in MFCC domain where the vector form of Taylor series
expansion is adopted in [27] while the scale version of Taylor
series expansion for each channel of the filter bank is used in
[20], [8]. More recently, we proposed a high-order VTS based
formulation for maximum likelihood (ML) estimation of both
additive noise and convolutional distortion, and minimummean
squared error (MMSE) estimation of clean speech in [9] where
correlations between different channels of the filter bank can be
considered. The third category is on improving the recognition
accuracy in non-stationary environments. In [7], [27], sequential
noise estimation is performed to deal with non-stationary noise.
The last category is on extension from traditional VTS-based
feature compensation under clean-condition training to real sce-
narios, where noisy speech can also be included in training data.
In [21], noise adaptive training (NAT) (e.g., [18]) is used to train
a Gaussian mixture model (GMM) for VTS-based feature com-
pensation.
In our recent work [10], [11], new progress has been made to

improve [9], which can be summarized as follows: 1) both effi-
ciency and accuracy of feature compensation can be improved
by applying higher order information of VTS approximation
only to the noisy speech mean parameters, and a temporal
smoothing operation for the posterior probability of Gaussian
mixture components in clean speech estimation, 2) irrele-
vant variability normalization (IVN) based joint training of
a reference GMM for feature compensation and HMMs for
acoustic modeling is proposed, which outperforms using the
IVN-based method in [17] for GMM training, 3) mixture
models for modeling both additive noise and convolutional
distortion are adopted to improve the recognition accuracy in
non-stationary noise environments. This is related to a recent
work in [12], where a similar idea of using noise mixture model
is proposed. However, the method in [12] differs significantly
from ours. First, the estimation of distortion parameters and
clean speech associated with VTS approximation is conducted
in Log-Mel-Filter-Bank (LMFB) domain in [12], where the

correlations between different channels of the filter bank are
not taken into consideration as all the covariance matrices in
the distributions of clean speech and noise are diagonal. How-
ever, in our approach the estimation is performed in MFCC
domain where the final feature vector is fed to the recognizer
and the problem of correlation between different dimensions
is alleviated. Second, mixture model is only used for additive
noise and the estimation of noise mixture model and bias vector
(i.e., convolutional distortion in our approach) is in an alternate
manner of switching between different auxiliary functions by
using MMSE estimation of clean speech and noise in [12],
while we use mixture models for both additive noise and
convolutional distortion and closed-form formulations can be
derived by jointly optimizing all the parameters of the distortion
model using a unique auxiliary function for ML estimation.
Furthermore, our formulations are generalized to VTS with any
order. Third, for noise suppression, a Mel-scaled Wiener filter
is exploited in [12] while we use MMSE estimation of clean
speech. Finally, the method is verified under clean-condition
training where VTS-based feature compensation is only per-
formed on the testing set with synthesized noisy speech in [12],
while we use IVN-based joint training to extend VTS-based
feature compensation to any “training-testing” condition and
verify our approach on noisy speech from real environments.
In this paper, we expand on the above work, providing a more
detailed description of the formulation and derivation, new
experiments, and an expanded discussion of results.
The rest of the paper is organized as follows. In Section II,

we give a brief introduction of conventional VTS-based feature
compensation framework. In Section III, we describe an im-
proved version of VTS-based feature compensation using mix-
ture models of distortion and several other modifications. In
Section IV, we present a detailed procedure for IVN-based joint
training of GMM and HMMs using VTS-based feature compen-
sation. In Section V, we report experimental results and anal-
ysis. Finally, we conclude the paper in Section VI.

II. OVERVIEW OF CONVENTIONAL VTS-BASED FEATURE
COMPENSATION FRAMEWORK

The flowchart of a conventional VTS-based feature com-
pensation framework is illustrated in Fig. 1. In training stage,
a reference GMM for VTS-based feature compensation and
HMMs for acoustic modeling are trained from clean speech
using MFCC features under maximum likelihood (ML) crite-
rion. In recognition stage, first both the feature vector of an
unknown utterance and the reference GMM are transformed
from MFCC domain to log-power-spectral domain. Then by
applying high-order VTS approximation to explicit distortion
model, the required statistics are calculated and transformed
back to MFCC domain, followed by estimation of parameters
for additive noise and convolutional distortion (channel) under
ML criterion. Finally, clean speech is estimated using MMSE
criterion and fed to the recognizer. The details of VTS-based
feature compensation module will be described in Section III,
which is an extension of the formulations in [9].
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Fig. 1. Flowchart of a conventional VTS-based feature compensation frame-
work.

III. IMPROVED VTS-BASED FEATURE COMPENSATION

A. Mixture Models of Distortion

In [9], the clean speech is modeled by a GMM as follows:

(4)

where , , and are mean vector, diagonal covari-
ance matrix, and mixture weight of the th Gaussian compo-
nent, respectively. For each utterance, it is often assumed that
the additive noise follows a Gaussian probability density
function (PDF) while the convolutional distortion has a PDF
of the Kronecker delta function. In this work, to enhance the
modeling power for distortions, mixture models are employed
to model both additive noise and convolutional distortion as fol-
lows:

(5)

(6)

where GMM and mixture of Kronecker delta functions are used
for modeling additive noise and convolutional distortion, re-
spectively. , , and are mean vector, diagonal co-
variance matrix, and mixture weight of the th Gaussian com-
ponent for the distribution of additive noise , respectively.

and are deterministic vector and mixture weight
of the th component for the distribution of convolutional dis-
tortion . In our implementation, the mixture number of addi-
tive noise is set equal to the mixture number of convolutional
distortion as we assume that each pair of mixture component
can roughly model a stationary segment of an utterance. Also

we should define a new random vector, , whose
PDF can be derived as follows:

(7)
The above unknown distortion model parameters can be esti-
mated as follows:
Step 1: Initialization

For each utterance, we determine the mixture
number by setting , where
and are the length of a relatively stationary seg-
ment and the current utterance, respectively. First
the parameters of a single Gaussian for and
a Kronecker delta function for are estimated
using the whole utterance as in [9]. Then based on
this global set of parameters as the initialization
for each segment, the second-pass re-estimation
is performed using frames of each segment sepa-
rately to obtain sets of parameters. Finally, each
component pair of mixture models of distortion
in Eq. (5) and Eq. (6) is initialized by the set of
parameters in the corresponding segment. And all
mixture weights are set to equal.

Step 2: Computation of required statistics
First transform all parameters from cepstral domain
to log-power-spectral domain as follows:

(8)

(9)

(10)

(11)

Then with those parameters in log-power-spectral
domain, use high-order VTS approximation which
is elaborated in Section III-B, to calculate the rele-
vant statistics, , , , ,
which are required for re-estimation of distortion
model parameters and estimation of clean speech.

is the covariance matrix of and while
is the covariancematrix of and for mix-

ture component in log-power-spectral domain.
Finally, transform the statistics back to cepstral do-
main as follows:

(12)

(13)

(14)

(15)

Step 3: Joint re-estimation of distortion model parameters
Use Eq. (17) to Eq. (21) to re-estimate the distor-
tion model parameters. Note that the cepstral do-
main indicator “c” in relevant variables has been
dropped for notational convenience. The detailed
derivations for joint re-estimation can be referred to
Appendix A, which can be extended from those in
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[26], [9]. Several items used in Eq. (17) to Eq. (21)
are evaluated in Eq. (22) to Eq. (25), where the sta-
tistics , , , are cal-
culated in Step 2.

Step 4: Repeat Step 2 and Step 3 times
Given the noisy speech and the estimated distortion model

parameters,MMSE estimation of clean speech can be calculated
as

(16)

B. Use of Higher Order Information

In [9], high-order VTS approximation of the nonlinear distor-
tion function is applied to the calculation of all required statis-
tics in log-power-spectral domain. First, the explicit distortion
model in Eq. (2) is reformulated in the scalar form as follows:

(26)

where and the log-power-spectral domain indicator
“l” is dropped for notational convenience. Then the -order
Taylor series of with the expansion point can
be represented as

(27)

where

(28)

and

(29)

When and , the coefficients in Eq. (29)
can be evaluated by using the following recursive relation

(30)

with the initial condition

(31)

Given the above notations and results, the required statistics
, , , can be calculated using rel-

evant expectations of in Eq. (27). For notational con-
venience, the channel index “l” and mixture component index
“ “ have been dropped hereinafter. Let’s use to denote
the th element of the vector , and use , ,

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)
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, to denote the th element of the matrix , ,
, respectively. Then using the definition of those parame-

ters and Eq. (27), we have

(32)

(33)

(34)

(35)

where

is odd
(36)

and

is odd
is even

(37)
represents ‘ ‘ or ‘ ‘. is the value of Eq. (28) for the
th dimension.
However, according to our experiments, inconsistent im-

provements of recognition performance are observed on
different Aurora3 tasks by applying higher order VTS ap-
proximation to all statistics. One possible reason is that the
approximated calculation of statistics is not accurate due to
our model assumptions, especially for those variance and
covariance parameters. In this study, higher order information
of VTS approximation is only applied to the calculation of
noisy speech mean parameters. Our new experiments show
that consistent improvements of recognition performance can
be achieved, yet its computational complexity is much lower
than that of the original high-order VTS so that the additional
computation cost can be ignored compared with full operations
of first-order VTS.

C. Use of Acoustic Context Information

We use acoustic context information in clean speech estima-
tion to further improve the accuracy. Acoustic context informa-

tion has been widely used in several feature extraction/transfor-
mation methods, such as TANDEM [13] and fMPE [24], where
in addition to the current frame, the information from several
neighboring frames in the left and right context is also used.
In our VTS-based feature compensation, MMSE estimation of
clean speech feature vector in Eq. (16) only uses the infor-
mation of noisy speech in the th frame . To leverage acoustic
context information, we calculate the new posterior probability
by a weighted average among neighboring frames as follows:

(38)
where is the size of acoustic context. In Eq. (38), a temporal
smoothing operation of posterior probabilities using weighted
auto-regression and moving-average (ARMA) filter is adopted,
which is more effective than the traditional ARMA filtering in
[6].

IV. IVN-BASED JOINT TRAINING OF GMM AND HMMS

A. System Overview

In the traditional framework of VTS-based feature com-
pensation, both HMMs for recognition and reference GMM
for feature compensation are trained on clean speech data.
In real scenarios, the training data may include noisy speech
data. So the reference GMM and HMMs are first initialized
from multi-condition data. Then those models are updated by
compensated (pseudo-clean) features after VTS-based feature
compensation, which are called as generic (pseudo-clean)
GMM and HMMs. In [17], IVN-based HMM training using
VTS-based model compensation is used to train genericHMMs
from mixed clean and noisy speech data. In this work, we pro-
pose a novel procedure to perform IVN-based joint training
of GMM and HMMs using VTS-based feature compensation,
which is illustrated in Fig. 2. In the training stage, the procedure
is as follows:
Step 1: Initialization

First, the reference GMM for feature compensation
and HMMs for recognition are trained from multi-
condition training data using MFCC features with
cepstral mean normalization (CMN).

Step 2: VTS-based feature compensation
Given the reference GMM, VTS-based feature com-
pensation is applied to each training utterance.

Step 3: Joint training of GMM and HMMs
Based on the compensated features of training set,
single pass retraining (SPR) [29] is performed to
generate the generic GMM and HMMs by using
the last updated GMM and HMMs with the corre-
sponding feature set. The SPR works as follows:
given one set of well-trained models, a new set
matching a different training data parameteriza-
tion can be generated in a single re-estimation
pass, which is done by computing the forward and
backward probabilities using the original models
together with the original training data and then
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Fig. 2. Flowchart of IVN training using VTS-based feature compensation.

switching to the new training data to compute the
parameter estimation for the new set of models.
In our case, the original model and training data
correspond to the models and compensated features
in the last iteration while a new set matching a
different training data parameterization refers to the
models and corresponding features to be updated
using VTS-based feature compensation in the cur-
rent iteration.

Step 4: Repeat Step 2 and Step 3 times
In the recognition stage, after feature extraction for
an unknown utterance, we perform VTS-based fea-
ture compensation using the genericGMM and then
do recognition using the generic HMMs.

B. Discussions

In the above procedure, the IVN concept is implemented by
SPR using VTS-based feature compensation which is denoted
as IVN-1. Actually, there are other two alternatives which can
also achieve this goal. One method (denoted as IVN-2) is to
use the compensated features to retrain GMM from scratch and
then use the new GMM to compensate features again in an iter-
ative way. Finally a generic GMM can be generated. The other
method (IVN-3) is to use a similar procedure as in [17] to gen-
erate a generic GMM. In [17], IVN training using VTS-based
model compensation is adopted to generate a generic HMM.
For those two methods, the generic HMMs can be trained from
scratch using compensated features based on generic GMM.
The main differences among IVN-1, IVN-2, and IVN-3 are how
to generate the GMM for feature compensation and HMM for

acoustic modeling. For both GMM and HMM, IVN-1 uses SPR
training while IVN-2 adopts the conventional retraining proce-
dure by using the compensated features. However, IVN-3 em-
ploys a VTS-based model compensation procedure for GMM
and a retraining procedure for HMM. As a comparison, SPR-
based IVN training has two advantages: 1) GMM and HMMs
are jointly trained in each iteration, 2) both GMM and HMMs
are progressively updated, which brings stable improvements of
recognition performance. Our experimental results also confirm
that SPR-based IVN training can achieve better recognition per-
formance, which is recommended as a practical solution.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

In order to verify the effectiveness of the proposed approach
on real-world ASR, Aurora3 databases were used, which con-
tained utterances of digit strings recorded in real automobile en-
vironments for German, Danish, Finnish and Spanish, respec-
tively. A full description of the above databases and the corre-
sponding test frameworks are given in [2], [3], [4], [5].
In our ASR systems, each feature vector consisted of

13 MFCCs (including ) plus their first and second order
derivatives. The number of Mel-frequency filter banks was
23. MFCCs were computed based on power spectrum. Each
digit was modeled by a whole-word left-to-right CDHMM,
which consisted of 16 emitting states, each having 3 Gaussian
mixture components. Three “training-testing” conditions were
designed for Aurora3. The first one was high-mismatch (HM)
condition, where training data included utterances recorded by
close-talking (CT) microphone, which could be considered as
“clean”, while testing data was recorded by hands-free (HF)
microphone. The second one was well-matched (WM) condi-
tion, where both training and testing data were recorded by CT
and HF microphones. The last one was mid-mismatch (MM)
condition, where training data included quiet and low noisy
data recorded by HF microphone while testing data included
high noisy data recorded by HF microphone. The relevant
control parameters were set as , , ,

, . Other control parameters related to
our previous work on VTS-based feature compensation could
be found in [9]. Our baseline system used CMN for feature
normalization. In all the experiments, tools in HTK [29] were
used for training and testing. VTS-based feature compensation
was applied to the static 13-dimensional MFCC features while
the dynamic features were extracted from the compensated
static features.

B. Effects of VTS Approach

In the first set of experiments, we study the effectiveness of
several innovations in our proposed VTS approach under the
“clean-condition” training. Table I summarizes a performance
(word accuracy in %) comparison of several robust ASR sys-
tems using VTS-based feature compensation in the high-mis-
match (HM) condition on Aurora3 databases. VTS-Old refers
to the practical solution of feature compensation recommended
in [9], namely (N,H)(MMSE-VTS0) where a
first-order VTS approximation in distortion model parameter
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TABLE I
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF SEVERAL ROBUST

ASR SYSTEMS USING VTS-BASED FEATURE COMPENSATION IN THE
HIGH-MISMATCH (HM) CONDITION ON AURORA3 DATABASES

TABLE II
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF THE BASELINE
SYSTEM AND SEVERAL ROBUST ASR SYSTEMS USING VTS-BASED FEATURE
COMPENSATION WITH DIFFERENT IVN TRAINING APPROACHES UNDER THREE

“TRAINING-TESTING” CONDITIONS ON AURORA3 DATABASE

estimation for both additive noise and convolutional distortion
(N,H), and a zero-order VTS approximation in MMSE estima-
tion (MMSE-VTS0) for clean speech is used. VTS-HO-1 uses
a second-order VTS approximation to calculate all required
parameters while VTS-HO-2 only applies a second-order
VTS approximation to the calculation of noisy speech mean
parameters. VTS is an improved version of VTS-Old using
higher order information (second order here) and acoustic
context information described in Section III. MMD-VTS uses
mixture models of distortion on top of VTS. IVN-MMD-VTS
adds IVN-1 to MMD-VTS. IVN-SMMD-VTS is a simple
version of IVN-MMD-VTS without the step of joint re-estima-
tion of distortion model parameters in Section III-A. Several
observations can be made. First, consistent and significant
improvements of recognition performance can be achieved
by using higher order information of VTS approximation to
the noisy mean parameters and acoustic context information.
Second, MMD-VTS system outperforms VTS system for
four languages, which indicates that mixture models play an
important role in modeling non-stationary distortions in real ap-
plications. Third, IVN-MMD-VTS system using IVN training
yields further improvements over the MMD-VTS system for
all testing cases in the HM condition, especially on Finnish
and Spanish databases where more training data is provided
than German and Danish databases. Finally, joint re-estimation
of distortion model parameters based on the whole utterance
in IVN-MMD-VTS system can achieve better performance
than just initializing the parameters of mixture models in each
segment of the utterance in IVN-SMMD-VTS system.
The second set of experiments are designed to examine the

effectiveness of several IVN training approaches. Table II gives

TABLE III
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF TWO ROBUST ASR
SYSTEMS USING VTS-BASED FEATURE COMPENSATION AND AFE UNDER
THREE “TRAINING-TESTING” CONDITIONS ON AURORA3 DATABASES

TABLE IV
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF THREE ROBUST ASR
SYSTEMS USING OUR PROPOSED MMD-VTS APPROACH, DNA APPROACH,

AND NTT APPROACH ON DATASET

a performance (word accuracy in %) comparison of the baseline
system and several robust ASR systems using VTS-based fea-
ture compensation with different IVN training approaches under
three “training-testing” conditions on Aurora3 databases. Note
that MMD is not used here. From those results, first all robust
ASR systems using VTS-based feature compensation with IVN
training significantly outperform the baseline system without
using feature compensation under all “training-testing” condi-
tions for four languages. On Finnish and Spanish databases,
IVN-1 system consistently achieves much better performance
than IVN-2 and IVN-3 systems, which can also be applied to
the WM condition for all languages. For very few cases where
IVN-1 system slightly underperforms IVN-2 and IVN-3 sys-
tems, the main reason may be due to the lack of enough training
data under HM and MM conditions on German and Danish
databases. Overall, IVN-1 approach using SPR can achieve the
best performance in most cases, which is used in all the other
experiments.

C. Comparison of VTS and other Approaches

In this section, we first compares our VTS approach to a
representative noise robust front-end, namely ETSI advanced
front-end (AFE) [30]. AFE was designed as the standard
of the activity for distributed speech recognition by ETSI.
This standard includes the feature extraction module and fea-
ture compression/transmission part at both the terminal and
server sides. In the feature extraction part, first a two-stage
Mel-warped Wiener filter is designed for noise reduction. Then
the waveform processing is applied to the denoised signal and
cepstral features are calculated. Finally, the blind equalization
is applied to the cepstral features, which are then fed to the
further compression process for channel transmission. In our
evaluation, we ignore all the operations of that standard at
the server side in the distributed speech recognition. Actually
AFE is a very competitive noise robust front-end on Aurora3
task. Table III shows a performance (word accuracy in %)
comparison of two robust ASR systems using VTS-based
feature compensation and AFE under three “training-testing”
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TABLE V
PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF TWO ROBUST ASR SYSTEMS USING A SIMPLE VTS-BASED
FEATURE COMPENSATION (IVN-SVTS) DURING THE RECOGNITION STAGE AND DIFFERENT VERSIONS OF VTS
DURING THE TRAINING STAGE UNDER THREE “TRAINING-TESTING” CONDITIONS ON AURORA3 DATABASES

conditions on Aurora3 databases. We can observe that our
proposed IVN-MMD-VTS system can achieve consistent and
significant improvements of recognition performance over
AFE system for all conditions and languages, especially under
the HM condition. This is reasonable as IVN-MMD-VTS has
a more powerful modeling capability for clean speech and
distortions compared with AFE.
To further verify the effectiveness of our approach on non-

stationary noises, we make a comparison with two other ap-
proaches, namely dynamic noise adaptation (DNA) approach
in [25] and the approach proposed by NTT researchers in [12],
under the framework which is a benchmark
designed by Rennie [25]. The framework
has been designed as an extension of the Aurora II task, cre-
ated for the evaluation of adaptive speech denoising algorithms.
Table IV lists a performance (word accuracy in %) comparison
of three robust ASR systems using our proposed MMD-VTS
approach, DNA approach, and NTT approach on

dataset. Note that both the baseline and DNA results are
cited from [25] while we evaluate the NTT and MMD-VTS
approaches with the same configuration. In NTT approach, 3
mixture components are used for noise mixture model. Obvi-
ously, our proposed MMD-VTS approach yields consistently
the best performance for all SNRs, especially low SNRs. The
reason why both NTT and MMD-VTS approaches outperform
DNA might be more precise models are used for both clean
speech and noise in NTT and MMD-VTS. Meanwhile, the con-
volutional distortion is not considered in DNA. Our approach
shares the similar VTS framework with NTT approach. But the
implementations of parameter estimation for both clean speech
and distortions described in Section I are quite different, which
demonstrates the superiority of our approach.

D. A Practical Version of VTS Approach

Although our IVN-MMD-VTS approach yields very
promising results on Aurora3 task, one concern is the com-
putational complexity during the recognition stage. The main
overhead comes from the re-estimation of distortion model
parameters and the clean speech estimation using mixture
models of distortion. To make our approach more practical,
a simplified VTS-based feature compensation (IVN-SVTS)
without any re-estimation of distortion model parameters, in
which mixture models of distortion are not used and only the
parameters of additive noise are initialized by first several
frames of the current utterance according to Step 1 of Section II
in [9], is adopted in the recognition stage, which is a tradeoff
between recognition accuracy and run-time overhead. Table V

TABLE VI
SUMMARY OF REAL TIME FACTOR (RTF) FOR TWO VTS-BASED SYSTEMS

lists a performance (word accuracy in %) comparison of two
robust ASR systems using IVN-SVTS during the recognition
stage and different versions of VTS during the training stage
under three “training-testing” conditions on Aurora3 databases.
With the same run-time overhead in the recognition stage, the
system using IVN-MMD-VTS approach in Table III during
the training stage consistently outperforms the system using
IVN-SVTS approach during the training stage for all conditions
and languages, which indicates that even two different versions
of VTS-based feature compensation are used for training and
recognition stages, joint re-estimation of distortion model
parameters only for the training stage can bring further gain of
recognition performance during the recognition stage. Com-
pared with Table III, the simplified system still outperforms the
AFE system in most cases though its performance is slightly
worse than that of IVN-MMD-VTS system but much faster
in run-time. Table VI gives readers an idea of computational
complexity during the run-time for two VTS-based systems.
The timing experiment is conducted on a “Pentium-4” PC with
a clock rate of 2.66 GHz by using utterances from Aurora3
database. It is obvious that IVN-MMD-SVTS system which
uses IVN-MMD-VTS in the training stage and IVN-SVTS
in the recognition stage as in Table V is much faster than
IVN-MMD-VTS system as in Table III. Another benefit from
using IVN-MMD-SVTS system is that it can be implemented
in an online manner without the re-estimation of parameters for
distortion model using the whole utterance.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we propose to use mixture models for modeling
both additive noise and convolutional distortion to improve the
recognition accuracy in non-stationary environments. Com-
bined with IVN-based joint training of a reference GMM for
feature compensation and HMMs for acoustic modeling using
VTS-based feature compensation, significant performance gain
can be achieved under all the “training-testing” conditions on
Aurora3 task. This paper improves our previous work in [9] in
both algorithms and practicality for real applications. As for our
future work, we aim to further improve our estimation method
for parameters of distortion model and verify our approach on
other tasks, such as CHiME challenge data [28].
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APPENDIX A
DERIVATION OF ML TRAINING OF DISTORTION

MODEL PARAMETERS

In this appendix, we summarize how to derive a procedure
for the estimation of the parameters of explicit distortion model
by maximizing the likelihood function defined on a given set of
noisy observations in cepstral domain.
First we make assumptions that both and are modeled by

GMMs. The likelihood function is defined as:

(39)

where and are model parameter sets for and ,
respectively. is the sequence of the noisy observation vec-
tors in the current utterance. and are the sequences
of Gaussian component indices for and , respectively.

can be expressed as

(40)

where and are the hidden Gaussian component indices
at the th frame for and , respectively; and
denote the weights of the corresponding Gaussian components
for and respectively; and are PDFs of
Gaussian components for and , respectively; and the notation

represents the -fold iterated integral, each component of

which is along the contour defined by the explicit model
. It is important to note that one can define a

particular model for the corruption of the clean speech by noise
simply by defining particular contours of integration .
It is impossible to obtain the closed-form ML estimation di-

rectly by maximizing the likelihood function in Eq. (39). Here
we adopt an iterative EM algorithm to solve the problem. The
M-Step of the EM algorithm is to maximize the following aux-
iliary function:

(41)

where and are the sets of old and new model parameters,
respectively. If we assume that the observations are independent
in time, and further assume that random processes representing
, , , and are independent, then:

(42)

Furthermore, as , and follows Eq. (7),
can be reduced to

(43)

where

(44)

, , and are the component indices for , and , respec-
tively. and are the sequences of component indices for
and , respectively. is an indi-

cator function defined as follows:

(45)

Individually maximizing in Eq. (43) with respect to
each of the model parameters in is straightforward. Max-
imizing Eq. (43) with respect to under the constraint

gives

(46)

Meanwhile, it is easy to prove that

(47)
where defined in Eq. (48) is the posterior
probability of hidden random variables , and . Sub-
stituting Eq. (47) into Eq. (46), the final updating formula for

is as follows:

(49)

The mean and covariance matrix of Gaussian components
can be estimated similarly. By setting the following partial
derivative
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(48)

(53)

(54)

(50)

equal to zero with the Gaussian PDF , we have

(51)

The integral in the numerator of Eq. (51) can be reduced to

(52)

where is the conditional expectation
of given for components , and . By substituting
Eq. (47) and Eq. (52) into Eq. (51), the updating formula for

can be obtained as Eq. (53). By a similar procedure, the
updating formula for the covariance matrix can also
be obtained as Eq. (54) where is
the conditional expectation of given for components
, and .
Now let’s consider how to derive the updating formula for

the parameters of convolutional distortion. First the updating
formula for can be similarly derived as:

(55)

Based on Eq. (7), we have

(56)

The partial derivative of in Eq. (43) with respect to
can be written as

(57)

Using Eq. (56) and setting the above expression equal to zero,
the updating formula for can be derived as

(58)

where is the conditional expectation of
given for components , and .
Finally, Eq. (49), Eq. (53), Eq. (54), Eq. (55), and Eq. (58), are

corresponding to Eq. (17) to Eq. (21) with the setting of ,
, .
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