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Abstract—We propose a novel data-driven approach to single-
channel speech separation based on deep neural networks (DNNs)
to directly model the highly nonlinear relationship between speech
features of a mixed signal containing a target speaker and other
interfering speakers. We focus our discussion on a semisupervised
mode to separate speech of the target speaker from an unknown
interfering speaker, which is more flexible than the conventional
supervised mode with known information of both the target and
interfering speakers. Two key issues are investigated. First, we
propose a DNN architecture with dual outputs of the features
of both the target and interfering speakers, which is shown to
achieve a better generalization capability than that with output
features of only the target speaker. Second, we propose using a
set of multiple DNNs, each intending to be signal-noise-dependent
(SND), to cope with the difficulty that one single general DNN
could not well accommodate all the speaker mixing variabilities
at different signal-to-noise ratio (SNR) levels. Experimental re-
sults on the speech separation challenge (SSC) data demonstrate
that our proposed framework achieves better separation results
than other conventional approaches in a supervised or semisuper-
vised mode. SND-DNNs could also yield significant performance
improvements over a general DNN for speech separation in low
SNR cases. Furthermore, for automatic speech recognition (ASR)
following speech separation, this purely front-end processing with
a single set of speaker-independent ASR acoustic models, achieves
a relative word error rate (WER) reduction of 11.6% over a state-
of-the-art separation and recognition system where a complicated
joint back-end decoding framework with multiple sets of speaker-
dependent ASR acoustic models needs to be implemented. When
speaker-adaptive ASR acoustic models for the target speakers are
adopted for the enhanced signals, another 12.1% WER reduction
over our best speaker-independent ASR system is achieved.

Index Terms—Deep neural network, divide and conquer, dual
outputs, robust speech recognition, speech separation.

I. INTRODUCTION

SOURCE separation [1]–[3] is a long-standing classical sig-
nal processing problem about separating individual sig-

nals from multiple sources received in a mixed mode. Speech
separation [4]–[6], to be specific, aims at singling out the voice of
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each speaker in the mixed speech with multiple speakers talking
at about the same time. Single-channel speech separation [7]–
[9] often refers to the situation that the mixed speech signals are
recorded with a single microphone. Assumptions about each of
the signal components already mixed are often required in order
to obtain a satisfactory separation performance [10], [11]. One
broad class of single-channel speech separation is the so-called
computational auditory scene analysis (CASA) [12], usually
performed in an unsupervised mode referring to the situation
that speaker identities and the reference speech for each speaker
are not available in the training stage. CASA-based approaches
[13]–[17] use a set of psychoacoustic cues, such as pitch, voice
onset/offset, temporal continuity, harmonic structures, and mod-
ulation correlation, to segregate a voice of interest by masking
the interfering sources. For example, in [16], pitch and amplitude
modulation were adopted to separate the voiced portions of co-
channel speech [18], [19]. In [17], unsupervised clustering was
used to categorize speech regions into two speaker groups by
maximizing the ratio of the between-cluster and within-cluster
distances. Recently, a data-driven approach [20] attempts to sep-
arate the underlying clean speech segments by matching each
mixed speech segment against a composite training segment.

On the other hand in a supervised mode, in which some
information of both the target and the interfering speakers is
provided, speech separation is often formulated as an estimation
problem based on:

xm = xt + xi (1)

where xm , xt , xi are speech signals of the mixture, target
speaker, and interfering speaker, respectively. To solve this
under-determined equation, a general strategy is to represent
the speakers by two models, and use a certain criterion to re-
construct the sources given the single mixture. An early study
in [10] adopted a factorial hidden Markov model (FHMM) to
describe a speaker, and the estimated sources were used to gen-
erate a binary mask. To further impose temporal constraints
on speech signals for separation, the work in [21] investigated
the phone-level dynamics using HMMs [22]. For FHMM-based
speech separation, 2-D Viterbi algorithms and approximations
have been used to perform the inference [23]. In [9], FHMM was
adopted to model vocal tract characteristics for detecting pitch to
reconstruct speech sources. In [8], [11], [24], Gaussian mixture
models (GMMs) [25], [26] were employed to model speakers,
and minimum mean squared error (MMSE) or maximum a pos-
teriori (MAP) based estimators were used to recover the speech
signals. The factorial-max vector quantization model was also
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used to infer the mask signals in [27]. Other popular approaches
include nonnegative matrix factorization (NMF) based models
[7].

Recently, deep learning techniques become increasingly pop-
ular in many speech research areas, e.g., speech recognition
[28]–[30], speech enhancement [31], [32], speech synthesis
[33], [34]. In this study, inspired by our recent work on speech
enhancement based on deep neural networks (DNNs) [32], [35],
we propose to solve the separation problem in Eq. (1) by adopt-
ing DNNs to directly model the highly non-linear relationship of
speech features from the mixed signals to a target speaker [36]
and possibly an interference speaker as well. Eq. (1) plays the
role of synthesizing a large amount of mixed speech for DNN
training, given the speech sources of the target speaker and in-
terfering speakers. Our proposed approach avoids the difficulty
of using complex but inaccurate model assumptions for both the
target and interfering speakers based on Eq. (1).

As a supervised approach, our experiments show that DNN-
based separation achieves a superior performance to GMM-
based separation in [24] due to the powerful modeling capability
of the nonlinear mapping functions implied by DNNs. More
recently, several representative approaches via deep learning
[31], [37]–[44] are also proposed to solve the single-channel
speech separation. One category discusses the segregation of
the background noises from the speech, including the noise
perturbation for DNN-based speech separation [37], the use
of long short-term memory based recurrent neural networks
(RNNs) [38] and deep NMF models [39]. Another category,
which is more related with our work, aims to segregate the
speech from mixed speakers. In [40], [41], DNN and RNN are
adopted to estimate each source of the mixed speech with a post-
processing using masking technique. The main differences from
our approaches are: (i) although our DNN architecture with dual
outputs [45] is similar to that in [40], [41], the learning targets
are log-power spectra rather than the power spectra used in
[40], [41], which is inspired by that the MMSE criterion in the
log-domain is more consistent with the human auditory system
[46]; (ii) we next propose using multiple speakers to be mixed
with the target speaker to train the DNN which is shown to well
predict an unseen interferer in the separation stage in a more
realistic scenario, namely the semi-supervised mode where only
the target speaker information (characterized by training data) is
given. More significantly, our DNN-based approach in the semi-
supervised mode even outperforms the GMM-based approach
in the supervised mode. Another related work is the generative
stochastic network (GSN) based speech separation [42]–[44] via
a hybrid generative-discriminative training objective. The main
difference from our approach is the use of the generative term,
which requires a development set to tune the weighting factor.
Compared with all these deep learning approaches, our approach
is also innovative in adopting a divide and conquer strategy
to design signal-noise-dependent DNNs (SND-DNNs) with a
detailed resolution [47] by considering that a single general
DNN might not be able to well accommodate all the variabilities
at a wide range of signal-to-noise-ratio (SNR) levels. Two SND-
DNNs are trained to cover the mixed speech with positive and
negative SNRs, respectively. At the separation stage, the first-

Fig. 1. Development flow for DNN-based separation system.

pass separation using a general DNN can give an accurate SNR
estimation for the follow-up model selection used in the second-
pass SND-DNN based separation.

Finally, a comprehensive series of experiments are con-
ducted for speech separation, especially with a larger scale
of training data (typically about 100 hours) in comparison to
other approaches [40]–[44] which is crucial for improving the
separation performance. Its effectiveness has also been veri-
fied for robust speech recognition [48]. The evaluation results
on the speech separation challenge (SSC) corpus [49] show
that the proposed SND-DNNs approach significantly outper-
forms the general DNN approach [48] in terms of both sep-
aration and recognition performance. Furthermore, our purely
front-end only pre-processing method achieves significant per-
formance improvements over the best system in the competi-
tion [50], [51] and a comparable performance with the recent
work in [52], where a complicated joint decoding framework
or/and DNN-based acoustic modeling are implemented in the
back-end.

The rest of the paper is organized as follows. In Section II,
we first give an overview of our proposed speech separation and
recognition systems. In Section III, DNN-based speech sepa-
ration is described in detail. In Section IV, SND-DNNs based
approach is elaborated. In Section V, we report experimental
results on speech separation and speech recognition. Finally we
summarize our findings in Section VI.

II. SYSTEM OVERVIEW

An overall flowchart of the general DNN based speech sep-
aration system is illustrated in Fig. 1. In the training stage, the
general DNN as a regression model is trained by using log-
power spectral features from pairs of the mixed signal and the
individual sources. Note that in this work we only consider the
case of two speakers in the mixed signals, namely one target
speaker and one interfering speaker. In the separation stage, the
log-power spectral features of the mixture utterance are pro-
cessed by the well-trained DNN model to predict the speech
feature of the target speaker. Then the reconstructed spectra
could be obtained using the estimated log-power spectra from
DNN and the original phase of mixed speech. Finally, an overlap
add method is used to synthesize the waveform of the estimated
target speech [32]. As an improved version, the SND-DNNs
based system is given in Fig. 2. The main difference from the
general DNN based system is that two SND-DNNs, namely
positive and negative DNNs, are trained using mixture
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Fig. 2. Development flow for SND-DNNs based separation system.

Fig. 3. Development flow for speech recognition system.

utterances with positive and negative SNRs, respectively. In the
separating stage, we use a general DNN to perform the first-pass
separation for SNR estimation of the mixture. Then based on
the estimated SNR, the positive or negative DNN is selected for
the second-pass separation.

Meanwhile, in Fig. 3, the development flow of an automatic
speech recognition (ASR) system as one application of our sepa-
ration approaches is introduced. In the training stage, the acous-
tic models using Gaussian mixture continuous density HMMs
(denoted as GMM-HMMs) or using DNN based HMMs (de-
noted as DNN-HMMs) [28], [30] are trained from the clean
speech of the target speaker using mel-frequency cepstral co-
efficients (MFCCs) or other features under the maximum like-
lihood criterion for GMM-HMMs or minimum cross-entropy
for DNN-HMMs. In the recognition stage, the mixture utter-
ance is first preprocessed by speech separation based on DNN
or SND-DNNs to extract the speech waveforms of the target
speaker. Then the conventional feature extraction and recogni-
tion follow. In this study, the recognition experiments are only
conducted for GMM-HMMs with MFCC features as we mainly
focus on the speech separation part as a front-end processing.
In the next two sections, the details of DNN and SND-DNNs
based approaches are elaborated.

III. DNN BASED SPEECH SEPARATION

A. DNN Architectures: Single Versus Dual Outputs

In this work, DNN is adopted as a regression model to pre-
dict the log-power spectral features of the target speaker along
with those of interfering speakers given the input log-power

Fig. 4. DNN-1 architecture.

spectral features of mixed speech. Two types of DNN architec-
tures are investigated. One network configuration is a DNN with
a single set of output features for the target speaker, denoted as
DNN-1, which is shown in Fig. 4. We use the log-power spec-
tral features which can offer perceptually relevant speech pa-
rameters. The acoustic context information along both the time
axis (with multiple neighboring frames) and the frequency axis
(with full frequency bins) can be fully utilized by DNN to im-
prove the continuity of the estimated target speech signals while
the conventional GMM-based approach does not fully explore
the temporal dynamics of speech. As training of this regression
DNN requires a large amount of time-synchronized stereo-data
of target and mixed speech pairs, the mixed training speech ut-
terances are synthesized by corrupting the speech utterances of
the target speaker with interferers at different SNRs (here we
consider interfering speech as noise) based on Eq. (1). Note that
generalization to different SNR levels in the separation stage
can inherently be well addressed by a full coverage of SNR
levels in the mixed speech training set.

Training of DNN-1 consists of unsupervised pre-training and
supervised fine-tuning. Pre-training treats each consecutive pair
of layers as a restricted Boltzmann machine (RBM) [53] while
the parameters of RBM are trained layer by layer with the ap-
proximate contrastive divergence algorithm [54]. For supervised
fine-tuning, we aim at minimizing the mean squared error, E1 ,
between the predicted DNN output and the reference clean fea-
tures of the target speaker shown below:

E1 =
1
T

T∑

n=1

‖x̂t
n (xm

n±τ ,W , b) − xt
n‖2

2 (2)

where x̂t
n and xt

n are the current nth D-dimensional vectors
of estimated and reference clean features of the target speaker,
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Fig. 5. DNN-2 architecture.

respectively. xm
n±τ is a D(2τ + 1)-dimensional vector of the

input mixed features with the preceding left and following right
τ frames as the acoustic context. W and b denote all the weight
and bias parameters of the DNN. The objective function is opti-
mized using back-propagation with a stochastic gradient descent
(SGD) method in a mini-batch mode of T sample frames.

The other DNN configuration is with dual outputs, denoted
as DNN-2, and illustrated in Fig. 5. The main difference from
DNN-1 is that DNN-2 predicts both the target and interference
at the output layer. Pre-training of DNN-2 is exactly the same
as that of DNN-1 while supervised fine-tuning is performed
by jointly minimizing the combined mean squared error, E2 ,
between the estimated DNN output and the reference clean
features of both the target and interference speakers as follows:

E2 =
1
T

T∑

n=1

(
‖x̂t

n (xm
n±τ ,W , b) − xt

n‖2
2

+ ‖x̂i
n (xm

n±τ ,W , b) − xi
n‖2

2
)

(3)

where x̂i
n and xi

n are the nth D-dimensional vectors of the
estimated and reference clean features of the interference, re-
spectively. The second term of Eq. (3) can be considered as a
regularization term for Eq. (2), which can potentially lead to bet-
ter generalization than DNN-1 for separating the target speaker.
Another benefit from DNN-2 is that the interference speech sig-
nal can also be separated as a by-product for developing new
advanced algorithms in other applications.

B. Supervised and Semi-Supervised Separation Setups

To investigate the effectiveness of the proposed DNN-based
separation approach, experiments in both supervised and semi-
supervised modes are designed. One case is a mixture consists
of one target and only one interferer, denoted as 1 + 1 mode.

Then each mixture utterance for training of DNN is synthesized
by adding the randomly selected segment of the interferer with
a specified SNR to the utterance of the target speaker. In the
separation stage, only the mixture with the same target and in-
terferer is tested in a supervised manner. The other case is a
mixture consisting of one target and N possible interferers, de-
noted as 1 + N mode. Then each mixture utterance for training
of DNN is synthesized by adding the randomly selected seg-
ment of one interferer from the set of N possible interferers
with a specified SNR to the utterance of the target speaker. In
the separation stage, if the interferer in the mixture is still among
the N possible interferers used in the training stage, then the
separation is in a supervised manner. Otherwise, the separa-
tion is in a semi-supervised manner with an unseen interferer.
Our definitions of supervised and semi-supervised modes are
also corresponding to the speaker dependent (SD) and speaker
independent (SI) terms in [44] by considering the information
awareness of the interferers. But to avoid the confusion with the
same terms for ASR experiments in Table VIII, the supervised
or semi-supervised terms will be used by default.

IV. SIGNAL-NOISE-DEPENDENT DNNS

So far in our proposed DNN-based speech separation, one
single DNN is expected to accommodate all the speaker mixing
conditions at different SNRs. A further complication is for the
semi-supervised mode in which the interferer is also unseen a
general DNN is usually limited in separation capabilities. To cir-
cumvent this difficulty, we adopt a divide and conquer strategy
to design multiple DNNs with a detailed resolution, each is ca-
pable of handling some specific conditions. As a demonstration,
we propose the use of signal-noise-dependent DNNs to allevi-
ate the problem of the mixing variabilities caused by different
noise levels. As shown in Fig. 2, two SND-DNNs, namely pos-
itive DNN and negative DNN, are generated using mixture ut-
terances with positive and negative SNRs, respectively. In the
separating stage, the separated target and interference utterances
by the general DNN with dual outputs can be used for SNR es-
timation of the current utterance according to the following
equation:

SNR = 10 log
(∑

m x2
t [m]∑

m x2
i [m]

)
(4)

where xt [m] and xi [m] are the mth samples of the reconstructed
target and interference signals in the time domain, respectively.
With this estimated SNR level, the corresponding SND-DNNs
(positive or negative SNR in this case) can be selected for
second-pass speech separation. In this work, we simply set
0 dB as a threshold to select positive DNN or negative DNN.
Using only two SND-DNNs we could achieve both high model
resolution and accurate model selection to be illustrated next. A
similar idea is used in [55] to train SNR dependent multilayer
perceptrons (MLPs) and use SNR estimation for MLP selection
in the context of robust speaker identification.
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V. EXPERIMENTS AND RESULT ANALYSIS

Separation experiments were conducted on the SSC corpus
[49] originally designed for recognizing a few keywords em-
bedded in simple target utterances but mixed with another si-
multaneous masker utterance by a competing speaker with a
very similar structure [50]. All the training and test materials
were drawn from the GRID corpus [56]. There were 34 speak-
ers for both training and testing, including 18 males and 16
females. For the training set, 500 utterances were randomly se-
lected from the GRID corpus for each speaker. The test set of
the SSC corpus consisted of two-speaker mixtures at a range
of SNRs from −9 dB to 6 dB with an increment of 3 dB. For
training the general DNN of each target speaker, all the utter-
ances of the target speaker in the training set were used while
the corresponding mixtures were generated by adding randomly
selected interferers to the target speech signals at SNR levels
ranging from −10 dB to 10 dB with an increment of 1 dB. The
mixture speech data with SNRs ranging from −10 dB to 0 dB
were used to train the negative DNN while the positive DNN
was trained using the mixture speech with SNRs ranging from
0 dB to 10 dB. To accommodate for possible errors in SNR esti-
mation, the 0 dB section of the training set was included in both
subsets of training speech. Obviously, the mixtures in the train-
ing set have a good SNR coverage for the test set. The method
in [24], denoted as “GMM” approach in the following exper-
iments, was adopted for separation performance comparisons
with the proposed DNN framework.

As for the signal analysis, all waveforms were down-sampled
from 25 kHz to 16 kHz, and the frame length was set to 512
samples (or 32 msec) with a frame shift of 256 samples. A short-
time Fourier transform was used to compute the discrete Fourier
transform (DFT) of each overlapping windowed frame. Then
257-dimensional log-power spectral features were used to train
DNNs. The separation performance was evaluated using several
measures, including output SNR [24], a short-time objective
intelligibility (STOI) [57] believed to be highly correlated to
speech intelligibility, perceptual evaluation of speech quality
(PESQ) [58] with a high correlation to subjective scores, and the
corresponding recognition accuracy. The DNN-1 architecture
used in all experiments was 1799-2048-2048-2048-257, which
denoted that the sizes were 1799 (257 ∗ 7, τ = 3) for the input
layer with a 7-frame context, 2048 for three hidden layers, and
257 for the output layer. The DNN-2 architecture was 1799-
2048-2048-2048-514, with 514 (257 ∗ 2) nodes at the output
layer which was the only difference from DNN-1. The number
of epochs for each layer of RBM pre-training was 20 while
the learning rate of pre-training was 0.0005. For fine-tuning, the
learning rate was set at 0.1 for the first 10 epochs, then decreased
by 10% after every epoch. The total number of epochs was 50
and the mini-batch size T was set to 128. Input features of DNNs
were globally normalized to zero mean and unit variance. Other
parameter settings can be found in [59].

For the speech recognition system, the feature vector con-
sisted of 39-dimensional MFCCs, i.e., 12 mel-cepstral coeffi-
cients and the logarithmic energy plus the corresponding first
and second order time derivatives. Each word was modeled by
a whole-word left-to-right HMM with 32 Gaussian mixtures

Fig. 6. Output SNR comparison of different approaches on the test set with
four gender combinations in the 1 + 1 supervised mode.

per state as specified in [50]. The chosen number of states for
each word is the same as the setting in [50] and no extensive
HMM retraining is performed. Please note that for SSC corpus,
the ASR task has the limitation due to the constrained and sim-
ple grammar compared with other medium or large vocabulary
recognition tasks. However, we intend to focus our attention
mainly on speech separation part.

A. Separation Experiments on DNN-1

In this section, the term “DNN” is referred to DNN-1.
1) 1+1 Supervised Speech Separation: In the 1 + 1 super-

vised mode, information of both the target and one interferer
is provided in advance. Since training of each DNN combin-
ing one target and one interferer from the set of 34 speakers
was time-consuming, a subset of 16 combinations of targets and
interferers was randomly selected for training and evaluation.
They were equally assigned for the four possible gender group-
ings, namely female and female (F + F), male and male (M +
M), female and male (F + M), male and female (M + F). For each
combination, about 30 hours of mixed speech were synthesized
for training the corresponding DNNs.

Fig. 6 gives an output SNR comparison of different separa-
tion approaches with the four gender combinations in the 1 + 1
supervised mode. Several observations can be made. First, all
DNN systems significantly improved the output SNR over the
GMM systems across different input SNRs and gender group-
ings. For example, about 2 dB enhancement was observed in the
best case of M + F for almost all input SNR levels. On the other
hand, for the worst F + F grouping, we could achieve at least an
improvement of 1 dB for an input SNR level of 3 dB or less. Sec-
ond, the output SNRs for different gender combinations in both
GMM and DNN approaches roughly followed a certain trend
across different input SNRs, namely, monotonically decreased
in the order of M + F, F + M, F + F, and M + M.

For comparing the objective intelligibility of synthesized
speech, the corresponding STOI values are plotted in Fig. 7.
Not surprisingly, DNN still consistently outperformed GMM



DU et al.: REGRESSION APPROACH TO SINGLE-CHANNEL SPEECH SEPARATION VIA HIGH-RESOLUTION DNNs 1429

Fig. 7. STOI comparison of different approaches with four gender
combinations in the 1 + 1 supervised mode on the test set.

in all conditions. Moreover, it was interesting to note that our
proposed DNN approach was more effective and robust than
GMM, especially at low input SNR levels. Even at the −9 dB
level, an STOI value of 0.87 for DNN with the M + M combina-
tion could still be achieved, which was better than that obtained
by the corresponding GMM at about the 1 dB level, represent-
ing a very significant improvement of about 10 dB. Furthermore
at least 0.9 STOI was obtained by the DNN approach at input
SNR levels of −3 dB or above. It is also noted that the GMM
approach produced the worst STOI in the easy M + F group-
ing than the other three gender combinations at all tested input
SNR levels. It seems the DNN based results are more intuitive
for gender grouping separation. On the other hand, the DNN
approach managed to boost the STOI values to the best for
the M + F combination among all gender groupings at almost
all the input SNR levels which also agrees with our common
belief that the different gender mixture is often easier to be
handled than the same gender mixture.

2) 1 + N Speech Separation: In the 1 + N mode, 1 target
and N interferers were used in the training stage to generate
the mixed speech with two speakers. In the testing stage for
separating the target, if the interfering speaker is one of the N
interferers in the training stage, then it is still in a supervised
mode. Otherwise, it is a semi-supervised mode with an unknown
interferer. To test the effect of the number of mixing speakers,
N , experiments on N = 6 and N = 27 were conducted. The
data amount of mixed speech synthesized as the training set
for N = 6 and N = 27 were about 30 hours and 140 hours,
respectively. This number of 27 is the most we can do with
the SSC Corpus because there are only 34 speakers and the
remaining speakers should be reserved as the unseen interferers
in the separation stage. Training of DNNs with such an amount
of data was time-consuming. So only one female target and one
male target were randomly selected, and all the mixtures with
those two targets on the test set were used for evaluation in the
following experiments.

Fig. 8 shows an STOI comparison of different approaches
with the female target (F) and the male target (M) in the 1 +

Fig. 8. STOI comparison of different approaches with the female (F) and the
male (M) targets in the 1 + N supervised mode on the test set.

Fig. 9. STOI comparison of different approaches with the female target (F)
and the male target (M) in the 1 + N semi-supervised mode on the test set.

N supervised mode. First of all, we found the STOI values for
the male target speaker were always higher than those of the
female target speaker in all testing conditions for input mixture,
GMM and DNN systems with N = 6 and N = 27 at all six
SNR levels, which might be due to the random selection of only
one male and female target from the corpus. We also observed
that by increasing N with more training data we could always
improve STOI in the proposed DNN approach although the en-
hancement in objective intelligibility is relatively small. Similar
to the results in Fig. 7, the STOI values of DNN were much
better than those of GMM even with more confusing interferers
included in training.

One benefit of including various interfering speakers in DNN
training is to have the trained DNNs perform speech separation
in a semi-supervised mode. Fig. 9 lists an STOI comparison of
the different approaches with the same female target (F) and the
same male target (M) as in Fig. 8 for the 1 + N semi-supervised
mode. Note that the results for GMM in Fig. 9 were still in a
supervised mode. Similar observations as those in Fig. 8 could
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Fig. 10. Illustration of spectrograms for separating the target male utterance
from the mixed utterance with a female interferer in the semi-supervised 1 + N
mode (N = 27).

also be made although the STOI values in Fig. 9 tended to be
slightly worse than those in the corresponding supervised system
configuration shown in Fig. 8. There was only one exception that
the semi-supervised DNN (F, N = 6) at 3 dB generated slightly
worse STOI than supervised GMM at about 0.89 STOI. Overall,
the DNN approach with N = 27 achieved consistently the best
separation performance. These results were encouraging as our
proposed DNN approach without any information about the
interferers could outperform the conventional GMM approach
with information of both the target and the interferer. This also
confirms that using many interferers in training DNN can well
predict an unseen interferer in the separation stage due to the
powerful modeling capability of DNN.

Finally, the spectrograms of an example utterance are illus-
trated in Fig. 10 with Fig. 10(a) for a mixed utterance with a
male target and a female interferer at −9 dB SNR and Fig. 10(b)
for the original signal of the target male. Fig. 10(c) is a
corresponding version with energy normalization (denoted as
Target_N) as in [24] which is used as a reference for the spec-
trogram in Fig. 10(d) using a GMM approach where energy
normalization should have been performed. Fig. 10(e) is the
spectrogram of our proposed approach in the semi-supervised 1
+ N mode (N = 27). To give a fair comparison with Fig. 10(d),
the normalized version of our result (denoted as DNN_N) is
also shown in Fig. 10(f). Clearly, our results were closer to the
reference shown in Fig. 10(b) than that obtained with the GMM
approach. Again it is also interesting to note that no interferer
information was used in our DNN.

B. Separation Experiments on DNN-2

In this section, all the separation experiments are conducted
on the 1 + N semi-supervised mode with N = 10. And for each

Fig. 11. PESQ comparison of GMM, DNN-1 and DNN-2 approaches for 5
male (M) or 5 female (F) target speakers on the test set under different input
SNRs.

Fig. 12. PESQ comparison of input mixture, GMM and DNN-2 approaches
for male (M) or female (F) interferers on the same data set as in Fig. 11.

target speaker, about 50 hours of mixed speech were used for
DNN training. Fig. 11 shows a PESQ comparison of GMM,
DNN-1 and DNN-2 approaches for 5 male (M) or 5 female
(F) target speakers on the test set under different input SNRs.
The PESQ performance was averaged across the target speakers
with the same gender. The performances of DNN-2 were con-
sistently better than those of both GMM and DNN-1 for all SNR
levels, which confirmed that DNN-2 had a better generalization
capacity over DNN-1. Furthermore, the PESQ performance of
the male target for both DNN-1 and DNN-2 approaches was al-
ways better than that of the female target. And the performance
gain of DNN-2 over DNN-1 was more significant for the female
target especially at low SNR levels.

Another benefit from DNN-2 is that the interfering speaker
can also be separated. Fig. 12 lists a PESQ comparison of the
original input mixture, GMM-enhanced and the DNN-2 ap-
proaches for male (M) or female (F) interferers on the same
data set as in Fig. 11. The PESQ performance was averaged
across the interferers with the same gender. First we could
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Fig. 13. Illustration of spectrograms for (a) input mixture with a female target
and a female interferer at 0 dB SNR, (b) the female target, (c) the female
interference, (d) DNN-1 separated female target, (e) DNN-2 separated female
target, (f) DNN-2 separated female interferer.

observe that the GMM approach only outperformed the input
mixture without separation at high SNR levels, e.g., 6 dB. Mean-
while, DNN-2 approach yielded very significant improvements
over both the unprocessed input mixture and the supervised
GMM approach which implied that the unseen interferers could
also be well separated from the mixture. The performance gaps
among different input SNRs of DNN-2 were much smaller than
those in the GMM approach, which indicates that the DNN-2
approach was more effective under lower SNRs. For example,
the PESQ improvement from 0.87 to 2.28 was observed for the
male interferers at SNR = −6dB while the increment was from
2.36 to 2.97 at SNR = 6 dB. More interestingly, by a compari-
son of the PESQ performance in Figs. 11 and 12 with the same
gender using the DNN-2 approach, there was only a small gap
between the target speakers and the interferers. By consider-
ing that no information was provided for the unseen interferer,
those results were quite encouraging and further confirmed the
powerful predicting capability of DNN-based source separation.

Finally, the spectrograms of an utterance example are illus-
trated in Fig. 13. Fig. 13(a) is the spectrogram of mixed utterance
with a female target and a female interferer at 0 dB. Fig. 13(b)
is the spectrogram of the female target while Fig. 13(c) corre-
sponds to the female interferer. Fig. 13(d) is the spectrogram
of DNN-1 separated female target. Fig. 13(e) and (f) are the
spectrograms of DNN-2 separated female target and female
interference, respectively. For speech separation of the target
speaker, DNN-2 generated good separation results which were
close to the reference, and also outperformed DNN-1 , e.g., a
better interference removal in the green rectangle regions shown

in the beginning parts of the spectrograms in Fig. 13(d) and (e).
Another interesting observation was that although there was no
information about the interferer, we could still obtain a relatively
good separation result of the unseen interferer in Fig. 13(f),
especially in this confusing combination case of two female
speakers, which further confirmed that our proposed DNN was
effective in predicting unseen interferers by using multiple inter-
fering speakers in training. Furthermore, DNN-2 demonstrated
the potential of separating the target speaker from the interferer
even the mixed speech signals were corrupted with background
noises which was quite common in many real applications [60].

Table I gives the computational complexity of GMM, DNN-
1 and DNN-2 approaches. Our experiments were conducted
on a machine using Intel Xeon E5-2670 CPU with a clock
rate of 2600 MHz. The training of DNN-1 and DNN-2 was
accelerated by the Tesla K20 GPU. Obviously, both the model
size and training time of DNN-1 and DNN-2 were comparable
which were significantly larger than those in GMM model. This
implies that the discriminative model (DNN) for the separation
can make better use of model size to accommodate the scalable
training data than the generative model (GMM). Meanwhile, the
more computational complexity of DNN-based approach can
also yield much better performance than GMM-based approach.

Based on the above experimental analysis, the DNN-2 archi-
tecture is used for all the following experiments in Sections V-C,
V-D and V-E.

C. Comparison With GSN Approach

To further demonstrate the effectiveness of our DNN ap-
proach, we design a set of experiments to make a comparison
with the GSN approaches [43], [44]. To conduct a fair compar-
ison, we use the same data configurations on the GRID corpus
as in [44] which is listed in Table II. The experiments on both
supervised and semi-supervised (SD and SI in [44]) modes were
investigated. Two female and male target speakers were selected
for all tasks. In the supervised experiment, we totally trained 12
models with 3 models (corresponding to the remained 3 inter-
ferers) for each target speaker. For each model, the amount of
training utterances were 2400 (randomly selected 400 utterances
for each SNR level) while 50 testing utterances were used for
each SNR level. In the semi-supervised experiment, 4 models
were trained with each model using all interferers and mixing
SNRs.

First, the PESQ performance of our DNN approach with dif-
ferent configurations is listed in Table III. As for the number
of input frames as the acoustic context, 7 was a best choice
across all SNRs in our experiments. And the DNN system with
3 hidden layers outperformed that with 2 hidden layers. In the
following experiments of this section, the best configuration (7,
3) will be used by default. In the GSN approach [44], the setup
to achieve the best performance was similar to our configuration
(7, 2) in terms of model size.

Tables IV and V show the PESQ comparison of the DNN
and GSN approaches for the semi-supervised (SI) and super-
vised (SD) tasks, respectively. As for the GSN approach, the
results in [43], [44] were cited. The reason why our baseline
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TABLE I
THE COMPUTATIONAL COMPLEXITY OF DIFFERENT APPROACHES FOR EACH SPEAKER MODEL

Model configuration Size (in MB) Training data (in hour) Training time (in hour)

GMM 128 dimensions, 256 mixtures 0.25 0.2 0.1
DNN-1 1799(257 ∗ 7)-2048-2048-2048-257 48 90 48
DNN-2 1799(257 ∗ 7)-2048-2048-2048-514(257 ∗ 2) 50 90 48

TABLE II
THE SAME DATA CONFIGURATIONS AS IN [43], [44]

# of utterances per case

Task Target IDs Interferer IDs Train Validation Test Mixing SNRs (dB)

Supervised(SD) 1, 2, 18, 20 1, 2, 18, 20 400 50 50 −6, −3, 0, 3, 6, 9
Semi-supervised(SI) 1, 2, 18, 20 3, 4, 5, 6, 7, 8, 9, 10, 11, 15 50 5 5 −6,−3,0,3,6,9

TABLE III
THE PESQ COMPARISON OF THE DNN APPROACHES WITH DIFFERENT

CONFIGURATIONS (NF IS THE NUMBER OF INPUT FRAMES AND NL IS THE

NUMBER OF HIDDEN LAYERS) FOR THE SEMI-SUPERVISED (SI) TASK

(NF , NL ) −6 dB −3 dB 0 dB 3 dB 6 dB 9 dB

(5, 3) 1.67 1.90 2.13 2.35 2.55 2.73
(7, 3) 1.76 1.99 2.21 2.43 2.63 2.81
(9, 3) 1.66 1.89 2.12 2.35 2.55 2.74
(7, 2) 1.73 1.94 2.15 2.35 2.53 2.70

TABLE IV
THE PESQ COMPARISON OF THE DNN AND GSN APPROACHES

FOR THE SEMI-SUPERVISED (SI) TASK

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB

The PESQ results in [43], [44]

Baseline 1.37 1.65 1.81 2.07 2.38 2.59
GSN 1.62 1.87 2.06 2.29 2.55 2.75

Our results

Baseline 1.34 1.56 1.80 2.03 2.26 2.47
DNN 1.76 1.99 2.21 2.43 2.63 2.81
DNN(20-fold) 2.05 2.28 2.51 2.73 2.93 3.10

TABLE V
THE PESQ COMPARISON OF THE DNN AND GSN APPROACHES

FOR THE SUPERVISED (SD) TASK

−6 dB −3 dB 0 dB 3 dB 6 dB 9 dB

The PESQ results in [43], [44]

Baseline 1.60 1.85 2.08 2.32 2.56 2.77
GSN 2.09 2.30 2.53 2.75 2.94 3.14

Our results

Baseline 1.55 1.84 2.11 2.33 2.52 2.68
DNN 2.51 2.69 2.84 2.99 3.13 3.26
DNN(20-fold) 2.81 2.97 3.12 3.28 3.41 3.53

TABLE VI
THE PESQ COMPARISON OF THE DNN APPROACHES USING 60-FOLD

TRAINING DATA BY INCREASING THE MODEL COMPLEXITY (NU IS THE

NUMBER OF HIDDEN UNITS AND NL IS THE NUMBER OF HIDDEN LAYERS)

(NU , NL ) −6 dB −3 dB 0 dB 3 dB 6 dB 9 dB

(2048, 3) 2.48 2.67 2.84 2.99 3.12 3.24
(2048, 4) 2.41 2.60 2.77 2.92 3.05 3.17
(3072, 3) 2.40 2.59 2.75 2.9 3.02 3.14

performance was slightly different from that in [43], [44] was
due to the randomly selected training utterances. Based on those
results, several observations could be made. First, our DNN ap-
proach could significantly outperform GSN approach using the
best configurations across all the SNRs for both SI and SD
tasks. Second, even using the configuration (7, 2) as in Table III
with the similar model size to GSN but not optimal, the corre-
sponding results were still better than those of GSN in the SI
task, especially for the low SNR cases. Finally, one of the most
important issues, which was not emphasized by the previous
work in [41], [44], was the increased amount of training data
could bring very significant improvements of separation perfor-
mance. DNN(20-fold) which used 20-fold synthesized training
data compared with DNN and GSN was a good demonstration.

Finally, we investigate whether the separation performance
can be further improved by using more parameters with more
hidden units and layers in one single DNN. Based on Table VI,
it was observed that more than 2048 hidden units or 3 hidden
layers could not boost the system performances. The main rea-
son might be the regression structure of DNN and the limitation
of the SGD algorithm (at local optima).

D. Separation Experiments on SND-DNNs

1) SNR Estimation with a Single General DNN: The sepa-
ration performance using SND-DNNs depends highly on how
accurate the estimated SNR values of the mixture utterances are.
However, the SNR estimation is a well studied problem [61],
[62]. In this work, we adopt the Eq. (4) to estimate the SNR.
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Fig. 14. Distributions of estimated SNR of input mixtures with various SNRs.

Fig. 14 shows the distributions of the estimated SNRs of the
test data with different input SNRs. Several observations can
be made. First, for all the testing cases except at an input SNR
of 0 dB, our SNR estimation based on the separation results of
the general DNN could give accurate decisions on most positive
SNR and negative SNR cases. As for the 0 dB cases, there was no
significant influence in the final decision because the 0 dB data
set was included for training both positive and negative DNNs.
Second, all distributions in Fig. 14 were unimodal. When the
input SNR was above −3 dB, the distributions were centered
exactly at the same input SNR values which indicated that a
good SNR estimation was obtained by our approach. But for in-
put SNR below −3 dB, e.g., in Fig. 14(a) and (b), the separation
performance was degraded which led to the center shift to the
right indicating over-estimated SNR values. Furthermore larger
variances in the two distributions were obtained when com-
pared with the other four higher SNR situations. Nonetheless,
our proposed SNR estimation approach was accurate enough to
make correct subsequent decisions because only one of the two
SND-DNNs needed to be chosen.

Fig. 15. STOI comparison of different approaches averaged across all 34
testing target speakers.

Fig. 16. Speaker recognition module designed for separation and ASR.

2) Separation Performance With Two SND-DNNs: Fig. 15
lists an STOI comparison of different approaches averaged
across all 34 target speakers on the test set. The number of
interfering speakers in the training stage was set to 10, which
resulted in about 100 hours of mixed speech for each target
speaker. A total of 34 general DNNs and 68 SND-DNNs were
trained for all target speakers. Based on those results, the general
DNN approach yielded very significant improvements of STOI
performance over the unprocessed input mixtures. Meanwhile,
our proposed SND-DNNs approach consistently outperformed
the general DNN approach especially for low SNR cases and
the lower the input SNR level the more the STOI improvement
was observed, except in the difficult case when the input SNR
level was at -9 dB. For example at SNR = −6 dB, the STOI was
improved from 0.86 to 0.92, while the STOI was only improved
from 0.96 to 0.98 when the input SNR was at 3 dB.

E. ASR Experiments After Speech Separation

Finally, the effectiveness of the proposed DNN based sepa-
ration approach as an acoustic pre-processing module is further
verified for robust speech recognition in SSC [49]. In [51], a
speaker recognition module with more than 98% accuracy was
implemented. However, our approach is originally designed for
the scenarios which aim to separate a target speaker (already
known) from the unknown mixture, so the speaker recognition
is not necessary. But as a comprehensive study in general, we
still propose a novel speaker recognition algorithm in Fig. 16
which is described as:
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TABLE VII
THE RECOGNITION ACCURACY (IN %) OF OUR PROPOSED MULTI-PASS

SPEAKER RECOGNITION ALGORITHM ON THE TEST SET

6 dB 3 dB 0 dB −3 dB −6 dB −9 dB

A or B (first-pass) 99.83 99.50 99.17 99.67 99.67 100
A or B (second-pass) 100 100 100 100 100 100
A and B (third-pass) 100 100 100 100 100 100

Step 1: Building models of all K speakers for both speaker
recognition and speech separation modules
For the speaker recognition, use 39-dimensional
perceptual linear prediction (PLP) features of all
speakers to train a GMM as the universal back-
ground model [64], which is then adopted to initialize
speaker dependent GMMs via MAP estimation [63].
For the speech separation module, the DNN-2 mod-
els for all speakers as the targets are built.

Step 2: First-pass recognition
For the input mixture with speaker A and B, use
the GMM systems in Step1 to perform the first-
pass recognition with the generated top-M (M =
4) speaker ID candidates for A or B fed to the sepa-
ration module.

Step 3: First-pass separation
For each speaker ID candidate, the speech waveform
of target output is separated from the input mixture
using the corresponding DNN-2 model.

Step 4: Second-pass recognition
With the M separated waveforms in Step3 as the
candidates, the second-pass recognition is conducted
to select the top-1 speaker ID for A or B.

Step 5: Second-pass separation
Using the DNN-2 model of the speaker ID provided
by Step4, we conduct the second-pass separation for
the input mixture to obtain the dual outputs, namely
the target speech and interferer speech.

Step 6: Third-pass recognition
With the dual outputs in Step5, the third-pass recog-
nition can finally identify both speaker A and B in
the mixture.

Through this procedure, the speaker recognition results of the
multi-pass recognition can be achieved as in Table VII. Obvi-
ously, after the first-pass recognition (Step2), the recognition
accuracy of one speaker (A or B) was not perfect, especially
at 0 dB as this was the most confusing case. But the top-4 re-
sults can guarantee that at least one speaker of the mixture can
be perfectly detected. Then the second-pass recognition (Step4)
can accurately identify one speaker (A or B). Finally both A
and B can be perfectly recognized in the third-pass recognition.
So this multi-pass algorithm with the collaboration of speaker
recognition and speech separation is superior to that in [51].

In Table VIII, we report a performance (word accuracy in %)
comparison of the baseline, the general DNN, and the SND-
DNNs averaged across the mixture data of the test set at six
SNR levels, ranging from −9 dB to +6 dB, for the standard

TABLE VIII
THE PERFORMANCE (WORD ACCURACY IN %) COMPARISON OF THE

BASELINE, THE GENERAL DNN AND THE SND-DNNS APPROACH,
AVERAGED ACROSS THE MIXTURE DATA WITH THE SAME

GENDER AND DIFFERENT GENDER OF THE TEST SET

6 dB 3 dB 0 dB −3 dB −6 dB −9 dB Avg.

16 kHz waveform, SD acoustic models

Baseline 49.1 34.2 22.9 13.7 10.2 8.0 23.0
DNN 92.6 89.7 86.7 81.3 75.1 69.9 82.6
SND-DNNs 93.1 90.9 89.3 87.6 84.7 75.9 86.9

25 kHz waveform, SI acoustic models

Baseline 63.3 47.5 35.2 24.0 17.0 12.0 33.2
SND-DNNs 94.9 93.6 92.4 90.6 87.0 81.9 90.1

25 kHz waveform, SD(SI + MAP) acoustic models

Baseline 66.9 51.2 36.8 24.1 15.4 10.2 34.1
SND-DNNs 95.8 94.4 93.7 91.7 88.5 83.6 91.3

The best results in [50]

SSC 93.0 92.5 91.5 89.5 87.0 79.0 88.8

16 kHz waveforms. To make a fair comparison with the com-
petition results using original waveforms, we also tested the
recognition performance of our proposed SND-DNNs for the
25 kHz waveforms. Note that for ASR acoustic models used
in the first two baseline systems, speaker-dependent models di-
rectly trained from the data of each speaker (SD) were used
in the 16 kHz cases while speaker-independent (SI) models
were adopted in the 25 kHz case with no retraining, i.e., the
GMM-HMMs for ASR were officially provided by SSC to
demonstrate the effectiveness of our proposed separation based
acoustic pre-processing. Furthermore, another type of speaker-
dependent models by using MAP adaptation on the provided
speaker-independent models for each speaker [63] (SI + MAP)
was also tested for the 25 kHz cases. For 25 kHz cases, the frame
length and shift for DNN-based speech separation were set to
20 msec and 10 msec, respectively. This configuration differed
from the setting of 32 msec and 16 msec in 16 kHz cases, re-
spectively. 512-point DFT was used by zero padding to the 500
samples in one frame. Finally the 257-dimensional log-power
spectral features were generated for DNN-based separation in
25 kHz cases with the same dimension as in 16 kHz cases.

The general DNN achieved 82.6% on the average over six
SNR levels, representing significant performance improvements
over the baseline system which was only at 23.0% without
speech separation. It is noted that the accuracy rate increases
were observed at all SNR levels, showing a good speech sepa-
ration indeed alleviates some difficulty in dealing with residual
noise after separation. On top of the general DNN, SND-DNNs
consistently yielded additional performance gains for all testing
cases, especially at low SNRs, e.g., at −3 dB, a relative word
error rate (WER) reduction of 33.7% (from a WER of 18.7% to
12.4%) was observed. In average, the WER was decreased from
17.4% to 13.1%, with an absolute 4.3% WER reduction.

Furthermore using the 25 kHz waveforms, our proposed
SND-DNNs approach with a single set of speaker-independent
GMM-HMMs, under all SNRs, consistently outperformed the
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best results in the competition [50] (the average recognition ac-
curacy of the same gender and different gender cases without
the same talker cases). For example, relative WER reductions
of 27.1% and 13.8% were observed at SNR levels of 6 dB and
−9 dB, respectively. Moreover an overall relative WER reduc-
tion of 11.6% averaged across the whole test set was achieved.
By considering that the best system [50] used both speech sepa-
ration in the front-end and a complicated joint decoding frame-
work of the target and interferer in the back-end with multiple
sets of SD GMM-HMMs [51], our purely front-end approach
based on SND-DNNs with a single set of SI GMM-HMMs is
quite effective in terms of recognition accuracy, efficiency, and
model compactness. And we expect additional post-processing
could further increase the word accuracy. Finally, the improved
SI + MAP GMM-HMMs with the SND-DNNs approach on the
25 kHz waveforms gave the best recognition performance, with
the overall relative WER reductions of 12.1% and 22.3% over
the SND-DNNs approach with SI GMM-HMMs and the best
system in [50], respectively.

To further examine the significance of improvements over the
other conventional approaches in our separation and recognition
experiments, here we adopt a “matched pair test” in [65], [66]
for significance test, which is a two-tailed test with the null hy-
pothesis that there is no performance difference between the two
systems. We use a minimum value of p to indicate a significance
difference at the level of p in the statistical significance tests.
We found that p value was always less than 0.001 for all cases
indicating the improvement significance of our approach.

VI. CONCLUSION AND DISCUSSIONS

We have proposed a novel framework of speech separation
based on DNN. The effectiveness is demonstrated in both super-
vised and semi-supervised modes. With more training speech
data from interfering speakers, the performance in the semi-
supervised mode can even surpass that of the GMM approach in
the supervised mode. With the additional requirements of pre-
dicting the speech feature of the interesting speaker we believe
the DNN architecture with dual outputs is more powerful than
the architecture with the single output. In the semi-supervised
mode, it demonstrates a better generalization capacity for sep-
arating the target speaker while the separated interference can
be used for developing other algorithms and applications. To
achieve high model resolutions, two SND-DNNs, namely pos-
itive and negative DNNs, demonstrate to be more effective
than the general DNN approach on speech separation and ro-
bust speech recognition for all testing cases. Furthermore, our
purely front-end processing method is easier to implement and
achieves a better recognition performance than the best system
in the competition where a complicated joint decoding frame-
work needs to be implemented in the back-end. Our future work
includes further improving the separation performance at low
SNRs by using more detailed SND-DNNs and even gender-
dependent DNNs, and also adopting deep learning approaches
for the back-end of the ASR system.

Due to the limited availability of the 25 kHz waveforms in
the SSC corpus, we were able to conduct ASR experiments at a

higher sampling rates than the conventionally-adopted 16 kHz
rates commonly used in the speech community for almost
50 years. It seems a high sampling rate for speech might be
needed when we research into new challenging problems, such
as speech separation in low SNRs, speech separation of same
gender mixing, speech de-reverberation, and automatic speech
and speaker recognition of distorted signals. We believe our en-
couraging ASR results for the 25 kHz speech signals could bring
out an awareness for the research communities to again address
signal processing issues that was very active in the 1960s and
1970s.
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