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Abstract—We propose an unsupervised speech separation
framework for mixtures of two unseen speakers in a single-
channel setting based on deep neural networks (DNNs). We rely on
a key assumption that two speakers could be well segregated if they
are not too similar to each other. A dissimilarity measure between
two speakers is first proposed to characterize the separation
ability between competing speakers. We then show that speakers
with the same or different genders can often be separated if two
speaker clusters, with large enough distances between them, for
each gender group could be established, resulting in four speaker
clusters. Next, a DNN-based gender mixture detection algorithm is
proposed to determine whether the two speakers in the mixture are
females, males, or from different genders. This detector is based on
a newly proposed DNN architecture with four outputs, two of them
representing the female speaker clusters and the other two char-
acterizing the male groups. Finally, we propose to construct three
independent speech separation DNN systems, one for each of the
female–female, male–male, and female–male mixture situations.
Each DNN gives dual outputs, one representing the target speaker
group and the other characterizing the interfering speaker cluster.
Trained and tested on the speech separation challenge corpus,
our experimental results indicate that the proposed DNN-based
approach achieves large performance gains over the state-of-the-
art unsupervised techniques without using any specific knowledge
about the mixed target and interfering speakers being segregated.

Index Terms—Unsupervised speech separation, speaker clus-
tering, gender mixture detection, deep neural network, speaker
dissimilarity measure.

I. INTRODUCTION

CO-CHANNEL speech separation [1], referring to sepa-
rating a speech component of interest from noisy speaker

mixtures, has a variety of important applications, e.g., automatic
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speech recognition (ASR) [2] in the recent Speech Separation
Challenge (SSC) [3]. We often formulate the problem with two
mixing speakers as follows:

xm = xt + xi (1)

where xm is the mixed speech signal while xt and xi refer
to speech of the target and interfering speakers, respectively.
Model-based approaches are widely used for speech separation
in a supervised mode which generally build speaker-dependent
models assuming the identities of the target and interfering
speakers are known. Many approaches to model the speakers
have been investigated. For instance, Roweis [4] employs the
factorial hidden Markov model (FHMM) to learn the informa-
tion of a speaker and then separates the speech mixture through
computing a mask function and refiltering. Another probabilistic
model named as factorial-max vector quantization (MAXVQ) is
introduced in [5]. Moreover, 2-D Viterbi algorithms and loopy
belief approximation have been adopted to conduct the inference
in FHMM based approaches [6]. The layered FHMM incorpo-
rating temporal and grammar dynamics [7] performs quite well
in monaural speech separation and recognition challenge. The
Gaussian mixture model (GMM) [8] is also used in [9], [10] via
minimum mean-square error (MMSE) estimation to resynthe-
size the speech signals. An iterative GMM-based approach is
proposed in [11] based on a maximum a posteriori (MAP) es-
timator to overcome possible mismatches between the training
and test conditions. Another popular approach is non-negative
matrix factorization (NMF) [12], [13] which decomposes the
signal into sets of bases and weight matrices. Recently a non-
negative back-propagation algorithm is proposed in [14] to build
a deep network with non-negative parameters.

The aforementioned supervised methods could achieve a sat-
isfactory performance. However, they are not always applicable
to practical scenarios due to a lack of prior knowledge of speak-
ers. On the other hand in an unsupervised mode, computational
auditory scene analysis (CASA) [15] is widely adopted in co-
channel speech separation tasks. It is inspired by the ability of
human auditory perception to recover signals of interest from
background distractions. For example, in [16] pitch and ampli-
tude modulation are employed to obtain the voiced components
of co-channel speech through grouping estimated pitches. In
[17] onset/offset-based segmentation and model-based group-
ing are introduced to deal with unvoiced portions. Unsuper-
vised clustering for sequential grouping is adopted to convert
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simultaneous streams to two clusters in [18] by maximizing the
ratio of between-cluster and within-cluster distances. In general,
there are two main stages in CASA approaches: segmentation
and grouping [15]. Segmentation decomposes mixed speech
into time-frequency (T-F) segments assumed to derive from
the corresponding sound source. A simultaneous and sequential
grouping assembles the T-F segments to generate independent
streams. Moreover, a data-driven approach is proven to be ef-
fective which matches each mixed speech segment against a
composite training segment to separate the underlying clean
speech segments in [19]. In addition, a Bayesian NMF model
[20] is proposed to separate tonal and percussive components
from an audio signal in an unsupervised manner without any
prior training.

Nowadays a deep learning framework called deep clustering
is also proposed in [21] to assign contrastive embedding vec-
tors to each T-F region of the spectrogram in order to predict
the segmentation label of the target spectrogram from the input
mixtures. In some other recent work [22]–[24], deep learning
techniques, namely deep neural network (DNN) or recurrent
neural network (RNN), have been adopted to model the highly
non-linear mapping relationship from mixed speech to the target
and interfering signals in a supervised or semi-supervised mode.
More recently, a deep ensemble method named multicontext
networks is presented in [25] to leverage contextual information
sufficiently. In this work, we extend the DNN regression frame-
work [23] to unsupervised speech separation of two speakers
based upon the assumption that the larger the distance between
competing speakers the better the mixed speakers could be sep-
arated. Intuitively, there is a distinct discrepancy between two
speakers based on different pronunciation mechanisms, such as
vocal tracts, fundamental frequency contours, dynamic ranges
and speaking styles. These factors result in dissimilarities be-
tween speakers which might be characterized by certain distance
measures. By adopting the i-vector technique [26] to represent
each speaker, the distances among speakers of different genders
are first visualized with a large margin to ensure a good sep-
aration. Furthermore, for the speakers within the same gender,
if two groups can be divided in terms of maximizing the group
distance, the segregation of two speakers from each group is
also possible.

Inspired by this, we first divide the speakers into female
and male groups and then further cluster each group into
two sub-groups (F1/F2 as two female groups and M1/M2 as
two male groups), to handle all gender-mixing cases in co-
channel speech separation, namely male-male, female-female
and female-male mixtures. Accordingly, we propose a two-stage
detection/separation framework in an unsupervised setting. In
the first stage, we adopt a DNN with four outputs, each repre-
senting the corresponding four speaker groupings (F1/F2 and
M1/M2), to detect the gender combination and select the cor-
responding separator. In the second stage, the DNN with dual
outputs representing two speaker groups, choosing from three
gender-combination dependent separators, is applied to obtain
two segregated results.

In contrast to the CASA approach, the main advantages of our
approach are: 1) CASA uses the locally designed features as the

psychoacoustic cues for the mid-level representation and scene
organization while our approach adopts the most informative
log-power spectra (LPS) features as the global representation; 2)
we use a deep model for the detection/separation corresponding
to the segmentation/grouping in CASA. The experiments on
the SSC corpus further confirm that the proposed method can
achieve a significantly better separation performance than the
state-of-the-art CASA approach.

The rest of the paper is organized as follows. A character-
ization of the speaker dissimilarity is presented in Section II.
The proposed DNN framework with a gender mixture detector
followed by a speech separator is described in Section III. Train-
ing and testing data setup which is critical by considering the
limited 34 speakers of SSC corpus is highlighted in Section IV.
All experimental results are analyzed in Section V. Finally we
summarize our findings in Section VI.

II. CHARACTERIZATION OF SPEAKER DISTANCES

As we aim at adopting speaker-independent DNN models to
perform single-channel speech separation of two unseen speak-
ers, in principle the prior information of the speaker separability
should be leveraged in an unsupervised setting. Accordingly,
the preliminary experiments on speaker dissimilarity measures
were designed in the following subsections, which are used as
evidences of the propose framework in the Section III.

A. I-Vector Based Measures

We adopt the recently emerged i-vector based speaker rep-
resentation [26], [27] to measure the speaker dissimilarity. The
core idea of i-vector extraction is that the speaker-independent
and channel-independent supervector s can be formulated as:

s = m + Tw (2)

where m is the mean supervector of LPS features for univer-
sal background model (UBM) [26], w is a latent variable with
a standard normal distribution and the low-rank matrix T re-
ferred as the total variability matrix contains both speaker and
channel variabilities. An i-vector v for the speech utterances
which represents the speaker and channel information in a low-
dimensional space is then obtained as the maximum a posterior
point estimate of the latent variable w.

Suppose we have N (N = 34) speakers, then a distance
matrix D of N × N dimensions can be generated with each
element dij representing the Euclidean distance between the
i-vectors of the ith and jth speakers:

dij =‖ vi − vj ‖2 (3)

where vi and vj are K-dimension (K = 100) i-vectors of two
speakers trained with the utterances of each speaker to be de-
scribed in Section IV.

B. Visualization of Speaker Distances

To visualize the similarity between two individual objects (the
speakers in this work) in a low-dimensional space, each object
to be studied can be represented by a point and the points are
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Fig. 1. MDS graph of the male and female speaker groups.

elaborately arranged in order to approximate the distances be-
tween pairs of objects. We use multidimensional scaling (MDS)
[28], [29] to graphically describe the relationship conveyed by
the aforementioned distance measures. MDS is a statistical tech-
nique to visualize the data through translating a table of dissim-
ilarities between pairs of objects into a map where distances
between the points match the dissimilarities as close as possi-
ble. Here the goal of MDS is to find an appropriate matrix P of
N × L dimensions in which L is the target space dimension to
be specified by the user (L = 2 in our experiments). And dMDS

ij ,
the distance between the ith and jth row vectors of P (pi and
pj ), should satisfy the condition:

dMDS
ij = ‖ pi − pj ‖2 ≈ dij , i, j = 1, 2, ..., N. (4)

Then we adopt a widely used nonlinear mapping criterion,
namely the Sammon’s mapping [30] to conduct MDS as follows:

σ2
sammon(P ) =

1
∑

j<i dij

N∑

i=2

i−1∑

j=1

(
dij − dMDS

ij

)2

dij
(5)

where the distance errors are normalized by the distance in the
original space.

The MDS graph for all 34 speakers of the SSC corpus is
shown in Fig. 1. The blue-dot and red-cross marks represent the
male and female speakers with the corresponding index num-
bers. We can observe that each speaker is surrounded by a group
of neighboring speakers. Therefore a particular speaker could
be characterized by such a group of neighboring speakers in
an unsupervised manner. This figure also shows that the female
and the male groups could be well separated with a large mar-
gin. Even within the same-gender group, the large distances
between quite a few pairs of speakers demonstrate the feasi-
bility of segregation. This is the motivation for the design of
speaker groups in Section II-C and the proposed detection and
separation framework in Section III. Furthermore, the cosine
distance between i-vectors is also investigated. We can obtain
similar visualization results to Fig. 1 and the same clustering
results as discussed next in Section II-C.

Fig. 2. MDS graph of male speaker groups after k-means clustering.

Fig. 3. MDS graph of female speaker groups after k-means clustering.

C. Speaker Grouping

In terms of the gender combination, a mixture of two speakers
generally belongs to three cases, namely mixing of male-female
(M-F), male-male (M-M), and female-female (F-F) speaker
groups. So even the specific information of two unseen speakers
could not be provided, unsupervised separation between them
could still degenerate to the problem of conducting separation
for two speaker groups if each group can well represent one mix-
ing speaker. In Fig. 1, it is illustrated that the speakers could be
well clustered by the different gender information, correspond-
ing to the M-F mixture case. Interestingly, if k-means clustering
[31] is applied to the MDS graph of 34 speakers, the generated
clusters are exactly the same as the two gender groups in Fig. 1.

To handle the same-gender mixture cases (M-M or F-F),
more speaker groups should be further designed, as illustrated in
Figs. 2 and 3, redrawing the MDS graphs of the 18 male speak-
ers and 16 female speakers, respectively. Clear margins between
the two sub-groups (M1/M2 or F1/F2) within the same-gender
group after applying k-means clustering can also be observed
similar to that in Fig. 1. However, in terms of the separation
difficulty, the same-gender mixtures could be further divided
into two cases. The first case is that the two mixing speakers are
from different sub-groups (denoted as M-M-D or F-F-D), e.g.,
one speaker from the M1 group and the other speaker from the
M2 group. The second case is more challenging with the two
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Algorithm 1: Procedure of speaker grouping based on k-
means clustering.

Step 1: I-vector extraction
Extracting the 100-dimension i-vector v which

represents the speaker characteristics with the
corresponding utterances of each speaker.
Step 2: Euclidean distance matrix generation

Calculating the Euclidean distance matrix based on the
i-vectors of all the speakers.
Step 3: MDS dimension reduction

Conducting the MDS algorithm under the Sammon’s
mapping criterion.
Step 4: k-means clustering

Running k-means clustering 50 times and picking the
clustering results corresponding to the optimal objective
value via the similar way as in [32] to alleviate local
minima problems of k-means clustering.

TABLE I
THE AVERAGE DISTANCE BASED ON THE MATRIX D ACROSS ALL SPEAKER

PAIRS FOR EACH OF 5 GENDER COMBINATIONS

Combination M-F M-M F-F

Distance 17.73 M-M-D M-M-S F-F-D F-F-S
17.27 16.36 16.55 15.65

mixing speakers from the same sub-groups (denoted as M-M-S
or F-F-S). As mentioned above, the speaker grouping procedure
can be summarized as follows:

Table I gives the averaged distances based on the matrix D
across all speaker pairs for each of the five gender combina-
tions corresponding to five input mixture cases. First, the M-F
combination yields the largest distance which implies that the
different-gender mixtures should have a better separability than
the same-gender mixtures. Second, for the same-gender mix-
ture, the case of the mixing speakers from different sub-groups
(M-M-D or F-F-D) has a larger distance than the correspond-
ing cases of the mixing speakers from the same sub-groups
(M-M-S or F-F-S). Finally, the F-F combination seems to be
more challenging to distinguish than the M-M combination. All
these observations are in accordance with the criterion for set-
ting those groups. More importantly, from the analysis of the
subsequent experiments, the distance measure in Table I can
well predict the difficulty of speech separation.

III. DNN-BASED UNSUPERVISED SPEECH SEPARATION

A. System Architecture

Fig. 4 presents the proposed system architecture based on
DNNs for unsupervised co-channel speech separation. We first
construct four speaker clusters as described in Section II-C, de-
noted as M1, M2, F1 and F2, with the training speaker data of
from each of the four groups. Then the gender mixture detec-
tor is implemented by a DNN with four outputs corresponding
to the four corresponding speaker groups. Finally the speech

Fig. 4. The proposed unsupervised speech separation system.

mixtures of different combinations are adopted to train the set of
DNN-based separators. Specifically, three DNN separators are
designed, including the M-M, F-F and M-F separators, to cover
all possible gender combinations. In the separation stage, after
feature extraction, the mixed speech is first processed by a gen-
der mixture detector to determine the type of gender combina-
tion. Then speech separation is conducted with the correspond-
ing DNN separator obtained in the training stage. Compared
with the conventional CASA system in [15], the outputs of the
first several hidden layers in the DNN separator are similar to the
mid-level representation of acoustic features while the segrega-
tion based on the last several layers of DNN is analogous to the
scene organization. One advantage of the DNN-based approach
is that the design of handcraft features as the psychoacoustic
cues in CASA is not necessary as the deep feature representa-
tions can be automatically learned. In the following subsections,
the DNN-based detector and separators are elaborated.

B. Gender Mixture Detection

To show the importance of the gender mixture detector and the
effectiveness of the DNN-based approach, we first introduce a
Gaussian mixture model - universal background model (GMM-
UBM) method widely used in the speaker recognition commu-
nity [33], [34] as a comparison in experiments. With a UBM for
the alternative speaker representation and a form of Bayesian
adaptation to derive the speaker models from the UBM, two
GMMs representing male speakers and female speakers are
trained and then used to determine the gender identities of mixed
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Fig. 5. A DNN-based frontend for the proposed gender mixture detector.

speech as follows:

lM − lF

⎧
⎪⎪⎨

⎪⎪⎩

> α M-M

< −α F-F

∈ [−α, α] M-F

(6)

where lM and lF are log-likelihoods of the speech mixture ut-
terance given the male and female GMMs, respectively. α is
a threshold to balance the accuracy among different gender
combinations.

The GMM-UBM model often cannot well distinguish the
gender information in mixed speech. Accordingly, we first adopt
a classification DNN (CDNN) detector to make a decision on
which combination (M-M, F-F, or M-F) the input speech utter-
ance belongs to. The CDNN is a frame-level classifier with 4
softmax nodes representing silence, male speech (single-male
or male-male mixed speech), female speech (single-female or
female-female mixed speech), and male-female mixed speech,
respectively. In the training stage, with the two mixing utter-
ances with utterance-level gender information and frame-level
speech/non-speech information via a simple energy-based ap-
proach, all the input frames of mixed speech can be assigned to
one of these four classes. In the detection stage, the following
rule is adopted for the decision of gender combination through
comparing the probabilities of different gender combinations
across all frames of current utterance as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
T

∑T

t=1

(
P M

t + 0.5 ∗ P MF
t

)
> λ M-M

1
T

∑T

t=1

(
P F

t + 0.5 ∗ P MF
t

)
> λ F-F

else M-F

(7)

where P M
t , P F

t and P MF
t denote the softmax outputs of CDNN

for tth frame, respectively. λ is a threshold closed to 0.64 which
will be discussed in the experiments. The second item 0.5 ∗
P MF

t in (7) can reduce the misclassifications of the same-gender
combination utterances to M-F utterances.

Moreover we propose a regression DNN (RDNN) detector
with 4 outputs to predict the gender mixture of the two mixing
speakers. As shown in Fig. 5, the inputs are the LPS features of

mixed speech with neighboring frames generated by speakers
from the four different groups while the four outputs are the LPS
features of the corresponding target and interfering speakers that
belonging to two of the four groups, namely M1, M2, F1, and F2.
In training, the DNN parameters are randomly initialized and
then optimized by jointly minimizing the mean square errors
between the DNN outputs and the target LPS features:

E1 =
1
T

T∑

t=1

(∥
∥x̂M1

t − xM1
t

∥
∥2

2 +
∥
∥x̂M2

t − xM2
t

∥
∥2

2

+
∥
∥x̂F1

t − xF1
t

∥
∥2

2 +
∥
∥x̂F2

t − xF2
t

∥
∥2

2

)
(8)

where xM1
t , xM2

t , xF1
t and xF2

t are the target LPS features while
x̂M1

t , x̂M2
t , x̂F1

t and x̂F2
t denote the estimated LPS features for

each group at the tth frame. This objective function is optimized
via the back-propagation algorithm in a mini-batch mode with
T sample frames. Among the references of the four outputs,
only two are activated by the underlying two speakers of each
input mixture while the other two are set with white Gaussian
noises at a 40 dB signal-to-noise-ratio (SNR). Here, due to
the logarithm operation to generate LPS features, 40 dB white
Gaussian noises were adopted just as a low energy floor to
replace the absolute silence to make the training process more
stable. In the separation stage, the gender combination of each
utterance can be determined using the following rule:

EM1+M2
t

EF1+F2
t

⎧
⎪⎪⎨

⎪⎪⎩

> β M-M

< 1/β F-F

∈ [1/β, β] M-F

(9)

where EM1+M2
t and EF1+F2

t refer to the total energy in the time
domain of the utterance level reconstructed from the detector
DNN outputs of two male groups and two female groups, re-
spectively. This rule is inspired by the fact that the energy ratio
should be extremely high or low for the same-gender mixture
and can be confined to a certain SNR range for the different-
gender mixture with the SNR threshold β (β > 1).

C. DNN-Based Speech Separation

In a recent work for speech enhancement [35], DNN was
adopted as a regression model to learn the relationship be-
tween noisy and clean speech. More recently, a similar archi-
tecture was applied to speech separation in supervised or semi-
supervised modes [22], [23]. In this paper, we propose a novel
gender-combination dependent DNN architecture for unsuper-
vised speech separation as illustrated in Fig. 6. The inputs to
DNN are the LPS features of mixed speech with some acous-
tic context (multiple neighboring frames). The main difference
of the proposed framework from the previous efforts [22], [23]
is that each output of the DNN is extended to a speaker group
rather than a specific speaker. This implies that an unseen
speaker could be represented by a speaker group, which is
motivated by the analysis in Section II. Furthermore, the use
of speaker grouping can alleviate the diversified data collec-
tion problem for a target speaker to develop speaker-dependent
models [22], [23].
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Fig. 6. A DNN-based speech separator, with three of them in total.

Following gender mixture detection, three corresponding
DNN separators are designed, one for each decision made in (9).
Each DNN separator, illustrated in Fig. 6, adopts dual outputs
corresponding to the two speaker groups. The DNN parameters
are first initialized randomly and then optimized via minimiz-
ing mean squared errors between the DNN outputs and the LPS
features of the target and interfering speakers:

E2 =
1
T

T∑

t=1

(‖ x̂A
t − xA

t ‖2
2 + ‖ x̂B

t − xB
t ‖2

2
)

(10)

where x̂A
t and x̂B

t are the estimated LPS features of the two
speaker groups, A and B, at the tth frame while xA

t and xB
t are

the target LPS features. The speaker group combination (A,B)
denotes one of three combinations, namely (M,F), (M,M), and
(F,F). The implementation detail is similar to (8).

In the separation stage in this study, we only focus on the case
that the two mixing speakers are unseen in the training set, which
means the segregation is conducted in an unsupervised manner
without any information of the underlying speakers. By linking
to the discussion in Section II-C, the input mixture could be
divided into five categories: M-F, M-M-D, M-M-S, F-F-D, and
F-F-S. If the mixing speakers belong to two different groups of
(M1, M2, F1, F2), including M-F, M-M-D and F-F-D mixtures,
it is reasonable to conduct unsupervised separation using our
proposed framework in Fig. 4. However, for the M-M-S and
F-F-S mixtures, which are not used for training the detector
and separator, the separation performance is unpredictable. This
is understandable as separation of the speech mixture with a
smaller distance between the two mixing speakers should be
more challenging. Our experimental results in Section V provide
evidences for these discussions and our approach consistently
outperforms the state-of-the-art CASA approach for all input
mixture situations.

IV. EXPERIMENTAL SETUP

Our experiments were conducted on the SSC corpus [3]
with the down-sampled 16 kHz waveforms. The frame length
and shift are 512 samples (32 msec) and 256 samples (16
msec), respectively. A short-time Fourier transform [36] was
adopted to compute the discrete Fourier transform (DFT) of each

TABLE II
THE SPEAKERS USED FOR DETECTOR AND SEPARATOR TRAINING

Model Speaker IDs

DNN Separators M-M M1 1 2 5 10 19 (in blue “◦”)
M2 8 9 14 28 32 (in blue “∗”)

F-F F1 18 21 22 23 25 (in red “×”)
F2 11 16 20 31 33 (in red “�”)

M-F M M1 + M2
F F1 + F2

DNN Detector M M1 M2
F F1 F2

overlapping windowed frame. The 257-dimensional LPS fea-
tures were then used to train DNNs. For waveform reconstruc-
tion, the original phase of mixed speech was used with the
separated LPS features [37]. Both the detector and separator
DNNs consisted of 257*7 = 1799 input nodes (a stack of the
center frame plus 6 neighbouring frames) and 3 hidden layers
with 2048 sigmoidal nodes per layer. The output layer had 514
nodes (dual outputs) for the separator DNNs and 1028 nodes
(four outputs) for the detector DNN. The learning rate was set
to 0.1 for the first 10 epochs and decreased at a rate of 90%
in the next 40 epochs. The mini-batch size T is 128. A global
mean and variance normalization scheme to both input and out-
put LPS features was also applied [37]. Moreover, the CDNN
consists of 3 hidden layers with 2048 nodes and the output layer
with 4 nodes. For the training of CDNN, cross validation set was
employed and early-stopping criterion was provided. The sepa-
ration performance was evaluated using multiple measures, in-
cluding output SNR [11], sources-to-artifacts ratio (SAR) [38],
short-time objective intelligibility (STOI) [39] believed to be
highly correlated to speech intelligibility, and perceptual eval-
uation of speech quality (PESQ) [40] known to have a high
correlation with subjective listening scores.

A. Training Data Generation

Since there were 16 female and 18 male speakers in total
in the SSC corpus, we can only pick small subsets to train
the gender mixture detector and speech separators as shown in
Figs. 5 and 6. Five speakers were randomly chosen from each
of the four groups (M1,M2,F1,F2) as shown in Figs. 2 and 3.
The speaker IDs were listed in Table II. The speakers in the M1
and M2 groups were adopted to train M-M separator while the
F1 and F2 speakers were used for F-F separator training. The
M-F separator was learned with the M1+M2 male group and F1
+ F2 female group. All those combinations were finally used to
train the gender mixture detector.

Specifically, the input mixture utterances of the training set
were generated by randomly adding speaker segments from
one group to speaker utterances from another group at SNR
levels ranging from −10 dB to 10 dB with an increment of
2 dB. As in this procedure, one speaker utterance should be
selected as the fixed reference while other speaker segments
are normalized to achieve a specific SNR. The two speakers
were exchanged to synthesize the training data in a symmetric
manner. For three separators, each DNN was built with 200
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TABLE III
THE SPEAKERS USED IN THE TEST SET

Combination Speaker IDs

M-M M1 12 27 30 (in blue “◦”)
M2 3 6 26 (in blue “∗”)

F-F F1 4 7 15 (in red “×”)
F2 24 29 34 (in red “�”)

M-F M M1 + M2
F F1 + F2

Fig. 7. Performance of GMM-UBM detector.

hours of training data pairs consisting of the input mixture and
the underlying speakers. And the gender mixture detector was
trained with 100 hours of training data pairs. In this study, the
experimental comparisons of different configurations, including
the size of training set and SNR coverage, already discussed in
[22], [23], were not performed.

B. Testing Data Generation

For the test set, only 3 unseen speakers in the small training
set were selected to form each of the four groups, as detailed
in Table III. The SNR levels of the test utterances were from
−9 dB to 6 dB with an increment of 3 dB. At each SNR level, 300
mixture utterances were synthesized, including 100 M-M, 100
F-F and 100 M-F mixtures. Among the same-gender mixtures
(M-M or F-F), one half of the mixing speakers was from different
speaker groups (M-M-D or F-F-D) and another half was from
the same speaker group (M-M-S or F-F-S).

V. EXPERIMENTS AND RESULT ANALYSIS

A. Experiments on Gender Mixture Detection

To evaluate the performance of the gender mixture detector, a
development set similar to the test set, including 40 M-F, 40 M-
M and 40 F-F mixtures, was generated for tuning the threshold
parameters. The detection accuracies of the development set
for the GMM-UBM, CDNN and RDNN detectors were plot-
ted in Figs. 7, 8 and 9, respectively. By searching α ∈ [0.1,
0.9], λ ∈ [0.59,0.69] and β ∈ [8, 16], optimal values existed
for the three techniques to balance the accuracies among differ-
ent gender combinations. The RDNN detector yielded the best
accuracy of 94.86% on the development set, which was signif-
icantly better than that of GMM-UBM detector (79.44%) and

Fig. 8. Performance of CDNN detector.

Fig. 9. Performance of RDNN detector.

TABLE IV
THE CONFUSION MATRIX OF THE 600 TESTING UTTERANCES FOR RDNN,

CDNN AND GMM-UBM DETECTORS ACROSS ALL SNR LEVELS

Combination Detector M-M F-F M-F

M-F RDNN 27 3 570
CDNN 44 13 543

GMM-UBM 178 67 355
M-M-D RDNN 296 0 4

CDNN 287 0 13
GMM-UBM 297 3 0

M-M-S RDNN 291 0 9
CDNN 280 0 20

GMM-UBM 298 2 0
F-F-D RDNN 0 280 20

CDNN 0 274 26
GMM-UBM 61 239 0

F-F-S RDNN 0 271 29
CDNN 0 256 44

GMM-UBM 61 239 0

that of CDNN detector (91.5%). Moreover, a similar observa-
tion on the test set could be made from these figures. With the
thresholds tuned from the development set, the RDNN detector
again achieved the best accuracy of 94.89% while the accuracies
of the GMM-UBM and CDNN detector were only 79.33% and
91.11%, respectively.

To analyze the detection errors, Table IV presented the con-
fusion matrix of the testing utterances for RDNN, CDNN and
GMM-UBM detectors across all SNR levels. Overall, both
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TABLE V
OUTPUT SNR (IN DB) COMPARISONS AMONG DIFFERENT DETECTORS

Input SNR (dB) −9 −6 −3 0 3 6

M-F Oracle 4.42 5.36 6.32 7.28 8.17 8.97
RDNN 3.31 5.16 6.32 7.28 8.17 8.84
CDNN 2.85 4.66 5.83 6.85 7.61 8.22

GMM-UBM 2.31 3.64 4.56 5.79 5.74 5.64
M-M-D Oracle 0.41 1.72 3.05 4.20 5.05 5.58

RDNN 0.41 1.72 3.05 4.15 5.03 5.55
CDNN 0.37 1.52 3.05 4.11 5.03 5.55

GMM-UBM 0.41 1.72 3.05 4.20 5.05 5.41
M-M-S Oracle −0.27 0.65 1.70 2.75 3.70 4.43

RDNN −0.55 0.55 1.65 2.75 3.69 4.42
CDNN −0.93 0.25 1.65 2.65 3.69 4.42

GMM-UBM −0.27 0.65 1.70 2.72 3.66 4.39
F-F-D Oracle 1.18 1.46 1.98 2.69 3.29 3.76

RDNN 0.90 1.25 1.85 2.53 3.26 3.72
CDNN 0.88 1.25 1.85 2.41 3.02 3.54

GMM-UBM 0.97 1.27 1.82 2.39 2.90 3.27
F-F-S Oracle 0.93 1.21 1.88 2.43 2.92 3.39

RDNN 0.79 1.12 1.80 2.30 2.79 3.07
CDNN 0.79 1.12 1.76 2.20 2.67 2.99

GMM-UBM 0.88 1.13 1.69 2.18 2.56 2.95

RDNN and CDNN detectors significantly outperformed the
GMM-UBM detector especially for the M-F mixtures due to
that the DNN detector was trained in a discriminative manner.
For the GMM-UBM detector, the accuracies of the same-gender
mixtures were much higher than the different-gender mixtures,
which was explained as the likelihood ratio of the same-gender
mixture given the two gender GMMs was more distinguishable
than that of the different-gender mixture. For RDNN and CDNN
detectors, the misclassification cases tended to happen in the F-
F and M-F mixtures, particularly for the segments one speaker
was masked by another speaker. The detection of the M-M mix-
tures was the most accurate for all detectors. More interestingly,
for misclassification of the same-gender mixtures, the results
of both RDNN and CDNN detectors were always poor for the
M-F test mixtures with one speaker gender correctly detected
while the gender information of two mixing speakers was to-
tally wrong using the GMM-UBM detector. Furthermore, the
balances of the errors between the M-F and F-F mixtures for
RDNN and CDNN detectors were determined by setting the
threshold β and λ, respectively.

Finally, we examined the impact of the gender mixture de-
tector on the separation performance. In Table V the output
SNR comparisons among different detectors were given. The
“Oracle” system denoted that the correct detection results were
provided for the separator selection. One thing to note, in [41]
a detector that discriminated all 34 speakers was adopted in
the semi-supervised mode when the target speaker was known.
This could also be another oracle system as a 100% recognition
accuracy on the same SSC corpus of both target and interfer-
ing speakers was achieved. However, this study focused on the
unsupervised mode. We were not aware of speaker identity and
all the speakers in the test set were not included in the training
stage. That was why we were not able to conduct the speaker
recognition procedure here. Moreover, we only needed to know

TABLE VI
STOI AND PESQ COMPARISONS BETWEEN CASA AND THE PROPOSED

DNN-BASED APPROACHES FOR M-F MIXTURES OF THE TEST SET

Input SNR (dB) −9 −6 −3 0 3 6

STOI CASA 0.58 0.64 0.70 0.74 0.78 0.78
DNN 0.73 0.83 0.87 0.89 0.91 0.91

PESQ CASA 0.75 0.93 1.15 1.35 1.54 1.63
DNN 1.87 2.30 2.55 2.72 2.88 2.98

the speaker group IDs rather than the specific speaker IDs, which
was one main motivation of this work.

It was clear that the separation performance gaps between the
RDNN detector and the oracle results were quite small in most
cases, only with the exception at SNR = −9 dB. However, the
performance degradation of GMM-UBM detector from the ora-
cle results was significant, especially for the M-F mixtures, e.g.,
the output SNR decreased from 8.17 dB to 5.47 dB at 3 dB input
SNR. The overall results of CDNN were between GMM-UBM
and RDNN. CDNN could achieve quite close output SNRs to
RDNN for M-M mixtures. However for M-F mixtures, CDNN
detector led to a performance degradation especially for high
SNR levels, e.g., with output SNR dropping from 8.84 to 8.22
under 6 dB. This implied that the detector played an impor-
tant role in the subsequent separation and the proposed RDNN
detector was quite effective. At −9 dB input SNR, the GMM-
UBM detector could achieve an output SNR gain (less than
0.3 dB) over the RDNN detector, e.g. 0.28 dB SNR gain for the
M-M-S mixtures, due to the lower RDNN detection accuracy in
this case. All those observations could be well explained by the
gender mixture detection results shown in Table IV.

B. Experiments on Speech Separation

In this subsection, we present the speech separation perfor-
mance using the proposed detection/separation framework in
Fig. 4. To elaborate the separation performance of different
input speech mixtures as discussed in Section II-C and III-C,
three sets of experiments were designed accordingly. The CASA
approach [18] in an unsupervised setting was adopted for per-
formance comparisons.

1) Results on M-F Mixtures: In Table VI, STOI and PESQ
comparisons between CASA and the proposed DNN-based ap-
proach for the M-F mixture subset of the test set. For these
mixtures with different genders, the DNN separator could seg-
regate the speakers with large distances as illustrated in Fig. 1.
Although the DNN detector was not perfect, the DNN-based
approach consistently outperformed the CASA method for all
SNR levels in terms of STOI and PESQ, e.g., STOI from 0.64
to 0.83 and PESQ from 0.93 to 2.30 at −6 dB input SNR.

2) Results on M-M Mixtures: The M-M mixtures, includ-
ing M-M-D and M-M-S cases, were more challenging to be
segregated than the M-F mixtures due to the smaller distance
between speakers. Figs. 10 and 11 plot the STOI and PESQ
comparisons between CASA and the proposed DNN-based
approaches for the M-M mixture subset of the test set. For
the DNN-based approach, both the STOI and PESQ of the
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Fig. 10. STOI comparisons between CASA and the proposed DNN-based
approaches for M-M mixtures of the test set.

Fig. 11. PESQ comparisons between CASA and the proposed DNN-based
approaches for M-M mixtures of the test set.

M-M-D mixtures were consistently better than those of the M-
M-S mixtures and yielded stable performance gains across all
SNR levels, e.g., STOI from 0.67 to 0.74 at −3 dB input SNR.
In contrast, the CASA approach did not clearly differentiate the
M-M-D and M-M-S, giving mixed results, especially for PESQ
performance. This implied that the DNN-based approach could
be more aware of the speaker dissimilarity by learning from the
data. Meanwhile, for both the M-M-D and M-M-S mixtures, the
DNN-based approach achieved good performance gains over the
CASA method for all SNR levels, e.g., at about a PESQ gain of
1 at 6 dB for the M-M-D mixtures. Even both STOI and PESQ
performances for the more difficult M-M-S mixtures using the
DNN-based approach could be remarkably better than those of
the easier M-M-D mixtures using the CASA technique across
all SNR levels.

3) Results on F-F Mixtures: The STOI and PESQ compar-
isons between CASA and the proposed DNN-based approach
for the F-F mixture subset of the test set were displayed in
Figs. 12 and 13. By comparing the results of the F-F-D mix-
tures with F-F-S mixtures, the performance gaps of the DNN-
based approach were reduced with the decreased input SNR
levels while the results of CASA approach were totally mixed.
This could be partially explained as the F-F mixtures were the
most challenging cases in comparison to the M-F and M-M
mixtures as illustrated in Table I, and the differences between
the F-F-D and F-F-S mixtures were not as significant as those
between the M-M-D and M-M-S mixtures. In terms of the
PESQ performance, the DNN-based approach still consistently

Fig. 12. STOI comparisons between CASA and the proposed DNN-based
approaches for F-F mixtures of the test set.

Fig. 13. PESQ comparisons between CASA and the proposed DNN-based
approaches for F-F mixtures of the test set.

TABLE VII
STOI COMPARISONS BETWEEN CASA AND DNN-BASED APPROACHES WITH

CORRECT DETECTION RESULTS FOR F-F MIXTURES OF THE TEST SET

Input SNR (dB) −9 −6 −3 0 3 6

F-F-D CASA 0.47 0.52 0.54 0.62 0.65 0.72
DNN 0.59 0.61 0.63 0.66 0.69 0.72

F-F-S CASA 0.45 0.54 0.59 0.60 0.67 0.69
DNN 0.58 0.58 0.61 0.65 0.67 0.71

outperformed the CASA method for both F-F-D and F-F-S mix-
tures. However, for the STOI performance, there were two ex-
ceptions at 3 dB and 6 dB SNR levels. Based on the experimental
analyses, one possible reason was that the detection accuracy of
the F-F mixtures was much lower than that of the M-M mixtures
as shown in Table IV, leading to the degradation of the STOI
performance. If all the detection results were correct, the DNN-
based approach could achieve a consistently better (at least the
same) STOI performance than the CASA method as shown in
Table VII.

Based on the above experiments and analyses, the proposed
DNN framework outperformed the CASA approach for most
cases of the same-gender mixtures, in terms of both speech
quality (PESQ) and intelligibility (STOI) measures. For the
DNN-based approach, the M-F mixtures could be well han-
dled while the F-F mixtures were the most challenging cases.
This observation was in line with the discussion in Section II-
C, i.e., the speaker distances in Table I could well predict the
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TABLE VIII
THE OVERALL PERFORMANCE COMPARISONS OF THE CASA, SDNN

APPROACH AND THE PROPOSED 2-STAGE DNN-BASED APPROACH AND

AVERAGED ACROSS ALL MIXTURE COMBINATIONS OF THE TEST SET AT

DIFFERENT SNR LEVELS

Input SNR (dB) −9 −6 −3 0 3 6

Output SNR CASA 0.18 1.07 2.19 3.41 4.35 5.34
2-stage DNN 1.36 2.49 3.50 4.38 5.18 5.74

SDNN 1.15 1.65 1.73 2.05 2.71 3.54
STOI CASA 0.52 0.58 0.63 0.67 0.71 0.73

2-stage DNN 0.64 0.69 0.73 0.76 0.79 0.81
SDNN 0.62 0.63 0.64 0.64 0.69 0.76

PESQ CASA 0.67 0.81 0.97 1.12 1.31 1.45
2-stage DNN 1.47 1.66 1.83 2.00 2.16 2.30

SDNN 1.29 1.37 1.40 1.48 1.71 2.01
SAR CASA −0.92 0.54 1.97 3.42 4.79 5.77

2-stage DNN 2.18 3.04 3.92 4.82 5.55 6.11
SDNN 1.75 2.34 2.46 2.59 3.13 3.96

separability between speakers. The performance of the DNN-
based approach on the challenging F-F mixtures was even com-
parable to that of the CASA approach on the M-M mixtures. In
summary, the DNN-based approach was not only quite effective
for M-F/M-M-D/F-F-D mixtures, but also generated good per-
formances on the M-M-S and F-F-S mixtures which were never
involved in training the DNN-based detector and separators.

C. Overall Separation Performance Comparisons

Table VIII lists the overall performance comparisons of
CASA and the proposed DNN-based approaches averaged
across all mixture combinations of the test set at different SNR
levels. Four objective measures, including output SNR, STOI,
PESQ, and SAR, were adopted in this comprehensive study.
Besides our proposed 2-stage DNN-based approach, one single
DNN separator (SDNN) with the same architecture in Fig 6
was also designed to accommodate all types of training data,
namely M-M, F-F, and M-F mixture utterances. Therefore, the
speakers corresponding to the two outputs could be any of the
20 speakers in the training set, which might be a great chal-
lenge for the DNN to learn two “confused” speaker groups.
So in the separation stage for two unseen mixed speakers, the
performance of SDNN seemed unpredictable. Based on the re-
sults in Table VIII, several observations could be made. First,
2-stage DNN consistently outperformed SDNN for all objective
measures, especially at relatively high SNR levels, e.g., with
STOI from 0.69 to 0.79 at 3 dB. This implied that one single
DNN indeed could not well accommodate all gender combina-
tions. However, SDNN still significantly improved all measures
over CASA at low SNRs, e.g., with PESQ from 0.67 to 1.29
at −9 dB. Second, remarkable improvements were observed
by comparing 2-stage DNN-based approach with the CASA ap-
proach, especially for STOI and PESQ measures across all input
SNR levels, e.g., STOI from 0.67 to 0.76 and PESQ from 1.12
to 2.00 at 0 dB input SNR. This implied that the DNN-based
detection/separation framework could improve both the speech
quality and intelligibility over the CASA approach. For the out-
put SNR and SAR measures, the gains achieved by 2-stage
DNN-based approach over the CASA approach were larger at
low SNRs, e.g., output SNR from 1.07 dB to 2.49 dB and SAR

Fig. 14. Spectrograms for an example of the mixture utterance at −6 dB SNR
with a male target and a female interferer. (a) Mixed (−6 dB, M + F). (b) Target
(M). (c) Unsupervised CASA (M). (d) Unsupervised DNN (M)

Fig. 15. Spectrograms for an example of the mixture utterance at −3 dB SNR
with a male target and a male interferer. (a) Mixed (−3 dB, M + M). (b) Target
(M). (c) Unsupervised CASA (M). (d) Unsupervised DNN (M)

from 0.54 dB to 3.04 dB at −6 dB input SNR. These two
measures showed that the DNN-based approach simultaneously
removed more interferences and generated less artificial signals.
All the results verify the effectiveness of the DNN-based detec-
tion/separation framework and the reasonable assumption that
unseen speakers could be well represented by learning the char-
acteristics of a group of similar speakers. Moreover we believe
that in real applications if more diversified speakers and a large
mount of training data could be leveraged to learn the detector
and separator, more promising performances for unsupervised
speech separation would be expected.

Finally, we illustrate some subtle differences of separation
results using example spectrograms shown in Figs. 14, 15 and
16. Fig. 14(a) was the spectrogram of a mixture utterance with
a male target and female interferer at −6 dB SNR. Fig. 14(b)
illustrates the male target. Fig. 14(c) and 14(d) are the spec-
trograms of separated male target speech using the CASA and
DNN-based approaches, respectively. According to [18], the en-
ergy normalization was applied to Fig. 14(b), 14(c), and 14(d).
Compared with the DNN technique, the CASA approach lost
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Fig. 16. Spectrograms for an example of the mixture utterance at 0 dB
SNR with a female target and a female interferer. (a) Mixed (0 dB, F + F).
(b) Target (F). (c) Unsupervised CASA (F). (d) Unsupervised DNN (F)

more target speech details (e.g., in the green circle areas) and
preserved more interferences (e.g., in the blue circle areas). It
was clear that the separation result of the for the M-F mix-
ture was quite good and close to the reference target speaker.
For the same-gender mixtures shown in Figs. 15 and 16, the
similar problems with the CASA approach could be observed.
Meanwhile, due to the challenge of the same-gender mixtures,
especially for the F-F mixtures, the DNN results were also not
as good in comparison to the different-gender mixtures, e.g.,
the remaining interference (blue circle areas) in Fig. 15(d) and
lost target information (green circle areas) in Fig. 16(d). In
Sections II-C and V-B, a possible reason why the F-F mix-
tures were more challenging than the M-M mixtures has been
discussed. Based on the spectrograms, one factor might be that
there were more spectral details lied in the high-frequency bands
for the female speech which were more difficult for the DNN
detector and separator to learn. Furthermore, the F-F mixture in
Fig. 16(a) was also visually more confusable (e.g., with quite
similar harmonic structures between speakers) than the M-M
mixture in Fig. 15(a). Overall, the DNN-based approach yields
more similar spectrograms to the reference target speaker for all
mixture combinations. More results and demos can be found at
http://home.ustc.edu.cn/˜wyn314/SSC-DNN-USS.html.

VI. CONCLUSION AND FUTURE WORK

We propose a novel DNN-based gender mixture detection
and speech separation framework for unsupervised single-
channel speech separation motivated by the analysis of the
speaker dissimilarities. A comprehensive series of experiments
and analyses, including the importance of DNN-based detector
and the comparisons among different mixture combinations, are
conducted. The proposed DNN framework could consistently
outperform the state-of-the-art CASA approach in terms
of multiple objective measures. This study is a successful
demonstration of applying the deep learning technology to unsu-
pervised speech separation in a single-channel setting which is
still a challenging open problem. In the future, we aim at refining

the proposed framework by designing better speaker grouping
algorithms and improving the performance of both detector and
separators. Moreover, we plan to further develop our system on
larger datasets and even some other languages. The other neural
network structures are also going to be explored in the future,
such as recurrent neural network for our system. Another
interesting direction is to incorporate the dissimilarity measure
with cost-functions for DNN-based detector and separator.
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