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Speech Enhancement Based on Teacher—Student
Deep Learning Using Improved Speech Presence
Probability for Noise-Robust Speech Recognition

Yan-Hui Tu"”’, Jun Du

Abstract— In this paper, we propose a novel teacher-student
learning framework for the preprocessing of a speech recognizer,
leveraging the online noise tracking capabilities of improved min-
ima controlled recursive averaging (IMCRA) and deep learning of
nonlinear interactions between speech and noise. First, a teacher
model with deep architectures is built to learn the target of ideal ra-
tio masks (IRMs) using simulated training pairs of clean and noisy
speech data. Next, a student model is trained to learn an improved
speech presence probability by incorporating the estimated IRMs
from the teacher model into the IMCRA approach. The student
model can be compactly designed in a causal processing mode
having no latency with the guidance of a complex and noncausal
teacher model. Moreover, the clean speech requirement, which is
difficult to meet in real-world adverse environments, can be relaxed
for training the student model, implying that noisy speech data
can be directly used to adapt the regression-based enhancement
model to further improve speech recognition accuracies for noisy
speech collected in such conditions. Experiments on the CHIME-4
challenge task show that our best student model with bidirectional
gated recurrent units (BGRUs) can achieve a relative word error
rate (WER) reduction of 18.85 % for the real test set when compared
to unprocessed system without acoustic model retraining. However,
the traditional teacher model degrades the performance of the
unprocessed system in this case. In addition, the student model with
a deep neural network (DNN) in causal mode having no latency
yields a relative WER reduction of 7.94% over the unprocessed
system with 670 times less computing cycles when compared to the
BGRU-equipped student model. Finally, the conventional speech
enhancement and IRM-based deep learning method destroyed the
ASR performance when the recognition system became more pow-
erful. While our proposed approach could still improve the ASR
performance even in the more powerful recognition system.

Index Terms—Teacher-student learning, improved minima
controlled recursive averaging, improved speech presence
probability, deep learning based speech enhancement, noise-robust
speech recognition.
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I. INTRODUCTION

INGLE-CHANNEL speech enhancement (SE) [1] aims to
S suppress the background noise and interference from the
observed noisy speech based on a single microphone setting,
which is helpful to improve speech quality and the performance
of automatic speech recognition (ASR) [2]. The classic noise
suppressor is based on statistical signal processing and typically
works in the frequency domain. The input signal is broken into
overlapping frames and weighted and converted to the frequency
domain, a process denoted as short-time Fourier transform
(STFT). The noise suppressor applies a time-varying real-valued
suppression gain to each frequency bin, based on the estimated
presence of speech signal—close to zero if there is mostly noise
and close to one if there is mostly speech. To estimate the sup-
pression gain, most approaches assume that the noise changes
slower than the speech signal and that Gaussian distributions
for the noise and speech signal magnitudes. They build a noise
model with noise variances for each frequency bin, typically
using voice activity detector (VAD). The suppression rule is a
function of the a priori and a posterior signal-to-noise ratios
(SNRs). The oldest and still most commonly used rule is the
Wiener suppression rule [3], which is optimal in the mean square
error sense. Other frequently used suppression rules are the spec-
tral magnitude estimator [4], maximum likelihood amplitude
estimator [5], short-term minimum mean square error (MMSE)
estimator [6] and the log-spectral minimum mean square error
(log-MMSE) estimator [7]. These conventional techniques adapt
to the noise level and perform well with quasi-stationary noises,
but impulse nonspeech signals cannot be well suppressed. In [8],
minima controlled recursive averaging (MCRA) was introduced
by a noise estimation approach that combines the robustness of
minimum tracking with the simplicity of recursive averaging.
In [9], improved minima controlled recursive averaging (IM-
CRA) was proposed. The first iteration provides rough voice
activity detection in each frequency band. Then, smoothing in
the second iteration excludes relatively strong speech compo-
nents, which makes minimum tracking during speech activity
robust. This facilitates larger smoothing windows and thus a
decreased variance of the minima values. The above mentioned
methods are considered as unsupervised techniques that have
been studied extensively in the past several decades.
However, recent advances in computational auditory scene
analysis (CASA) [10], [11] and machine learning have inspired
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new approaches, e.g., support vector machine (SVM) [12],
nonnegative matrix factorization (NMF) [13]-[18] and deep
neural network (DNN) [19]-[24]-based techniques, aiming at
estimating either a clean speech feature at each time-frequency
(T-F) bin directly or a T-F mask that is applied to the T-F bin
of noisy speech to recover clean speech. For several potential
future applications, e.g., DNN-based SE algorithms for hearing
aids or mobile communications, the range of possible acous-
tic situations that can realistically occur is virtually endless.
Specifically, in [20], [23], DNN was proposed as a nonlinear
spectral regression model to map the log-power spectra (LPS)
features of noisy speech [25] to those of clean speech. In [19],
DNN was adopted to estimate the ideal masks including the
ideal binary mask (IBM) [26] of one T-F bin and the ideal ratio
mask (IRM) [22] of one T-F bin. [22] also demonstrated that
IRM as the learning target led to better speech enhancement
performance than that of IBM. The above mentioned methods
are based on the DNN model, where the relationship between
the neighboring frames is not explicitly modeled. Recurrent
neural networks (RNNs) [27] may solve this problem using
recursive structures between the previous frame and the current
frame to capture the long-term contextual information and make
better predictions. In [28], [29], a long short-term memory re-
current neural network (LSTM-RNN) was proposed for speech
enhancement compared to DNN-based speech enhancement,
yielding superior noise reduction performance at low SNRs.

Based on the above introduction, unsupervised and deep
learning based single-channel speech enhancement approaches
have demonstrated different strengths and weaknesses. For un-
supervised method, e.g., IMCRA-based approach, it is an online
adaptive algorithm of a few parameters to the test conditions,
while a tradeoff in reducing speech distortion and residual noise
needs to be made due to the sophisticated statistical properties of
the interactions between speech and noise signals. Most of these
unsupervised methods are based on either the additive nature of
the background noise or the statistical properties of speech and
noise. However, they often fail to track nonstationary noises
for real-world scenarios in unexpected acoustic conditions.
On the other hand, for deep learning methods, nonstationary
background noise maybe handled well, with a large amount
of training data simulated by different noise levels and types.
However, when a mismatch exists between the training and
test conditions, the quality of the estimated speech is usually
degraded. Recently, [30] presented a novel architecture in which
the general structure of a conventional noise suppressor was
preserved, but the subtasks (VAD, noise variance estimation,
and IRM estimation) were independently learned and carried out
by separate neural networks. In [31], a student-teacher learning
paradigm for single-channel speech enhancement was proposed.
The teacher network is adopted to estimate the T-F masks from
the beamformed speech obtained by multichannel enhancement.
Then, the estimated masks are employed as the learning target
of a student network with only single-channel input. Although
experiments on the single-channel track of the CHiME-4 chal-
lenge showed some ASR performance improvements, the train-
ing data for the student-teacher model must come from multi-
channel recordings.
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In this study, a novel teacher-student learning framework
is proposed, which utilizes the advantages of both IMCRA
with a well-designed online noise tracking procedure and deep
learning approaches, providing strong prior information of the
interactions between speech and noise. First, a teacher model
with deep architectures is built to learn the target of IRMs using
the simulated training pairs of clean and noisy speech data. Next,
a better learning target, namely, the improved speech presence
probability (ISPP), is designed by incorporating the estimated
IRMs from the teacher model into the procedure of IMCRA
approach. Then, the student model with deep architectures is
trained to estimate the ISPP. Using the teacher-student learning
framework, the student model can be compactly designed in the
causal processing mode having no latency with the guidance of
a complex and noncausal teacher model, which better meets the
run-time requirements of realistic applications. Moreover, the
stereo-data constraint requiring target clean speech is relaxed for
student model training, implying that the realistic noisy speech
data without the underlying clean speech can be directly used
to further improve the recognition accuracy by adapting the
enhancement model to potentially adverse environments.

In our proposed teacher-student learning framework, the
IRMs accurately estimated by the teacher model have a great
influence on the performance of the student model. Therefore,
powerful neural networks with a large amount of training data
pairs are necessary. However, in terms of recognition accuracy
of ASR systems, speech enhancement based on the traditional
teacher model using bidirectional LSTM (BLSTM) could not
improve ASR performances, as shown in [31], [32]. This result
is because, in highly mismatched testing conditions, IRMs esti-
mated from the teacher model might misclassify the T-F regions
dominated by nonspeech and noise. Meanwhile, IMCRA-based
mask estimation can alleviate this problem by conservative noise
reduction, but the estimation still cannot lead to significant ASR
performance gains due to a large amount of residue noises. The
ISPP-based student model simultaneously performs aggressive
noise reductions and less speech distortions with the collabora-
tion between deep learning-based IRM estimation and IMCRA-
based mask estimation. Experiments on the CHiME-4 challenge
task show that our best student model with bidirectional gated
recurrent units (BGRUs) [33] can achieve a relative word error
rate (WER) reduction of 18.85% on the real test set when
compared to an unprocessed system without acoustic model
restraint; however, the conventional teacher model degrades the
unprocessed system performance in this case. In addition, the
student model with a compact DNN in causal mode having
no latency yields a relative WER reduction of 7.94% over the
unprocessed system, with 670 times less computing cycles when
compared to the BGRU-equipped student model.

This study is comprehensively extended from our previous
work in [34], [35] with the following contributions. First, ISPP
is adopted as a new learning target of deep models at the training
stage, while ISPP in [34] is generated at the recognition stage
requiring complex and time consuming computation. Second,
the clean speech requirement is relaxed for the student model
training, which can utilize a large amount of real-world noisy
speech to fine-tune the enhancement model. Third, the proposed
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learning framework facilitates a compact student model design.
Finally, more experiments are designed with more detailed result
analysis.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the conventional IMCRA ap-
proach as preliminaries. In Section III, we present an overview
of the proposed teacher-student learning framework and give
a detailed description of teacher and student model training.
Section IV discusses the experiments on the CHiME-4 chal-
lenge. Finally, we summarize our findings in Section V.

II. PRIOR ART: IMPROVED MINIMA CONTROLLED
RECURSIVE AVERAGING

In this section, the key principle of the IMCRA approach is
briefly introduced as the preliminaries of calculating ISPP in
Section III-B. First, we consider the problem of recovering a
desired signal s(n), when the observed signal z(n) is its noisy
version corrupted by additive background noise, i.e.,

xz(n) = s(n) + d(n), (1)

where n is a discrete-time index. The desired signal and back-
ground noise are assumed to be zero mean and mutually uncor-
related. The observed signal z(n) is divided into overlapping
frames by the application of a window function and analyzed
using STFT. Specifically,

X (k1) = S(k, 1)+ D(k,1), )

where k denotes the frequency bin index, and [ denotes the frame
index. S(k, 1), D(k,l) and X (k,[) denote the STFT of desired
clean speech, noise and noisy speech signals, respectively. To
obtain an estimation of the desired clean signal, a specific gain
function was applied to each spectral component of the noisy
speech signal as follows:

~

X(k, 1) = Gk, DX (K, 1), 3)
ek 1> et

G4 = L+ &(k, 1) o (2 /u(k,z) tdt> 7 @
s Yk DEK, D)

where G(k, 1) is the gain function. y(k, ) and £(k, 1) denote the
aposterior SNR and a priori SNR, respectively. The log-spectral
amplitude (LSA) estimator [7] is utilized among many speech
enhancement methods due to its superiority in reducing musical
noise. Clearly, the key point here is an accurate estimation of
the a priori and a posterior SNRs. To achieve this, IMCRA is
based on two hypotheses, Hy(k, 1) and H; (k, 1), which indicate,
respectively, speech absence and speech presence in the k-th
frequency bin of the [-th frame as follows:

Ho(k,1) : X(k,l) = D(k,1),
Ho(ky1) : X(k, 1) = S(k, 1) + D(k, 1). ©)
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Accordingly, the a priori SNR &(k,l) and a posterior SNR
~(k, 1) can be defined as follows:

JUDE iﬁ;g ™
vk, 1) = m ()
where A (k1) = E[|S(k,1)[*|H1(k,1)] and  Aq(k,l) =

E[|D(k,1)|?] denote the variances of desired speech and
noise, respectively. For estimating a posterior SNR, only the
noise is necessary to be estimated, by initializing A,4(k,[) at
the first frame with A4(k,0) = | X (k,0)|%. Then, Aq(k,l + 1)
is calculated by a recursive averaging between Aq4(k,!) and
| X (k,1)|?. The corresponding smoothing factor is estimated
using the minima controlled algorithm, which is related to
&(k, 1) and y(k, ). The a priori SNR is estimated as follows:

£k, = aG? (k1 —1)y(k,1 — 1)
+ (1 — o) max{vy(k,l —1) — 1,0} 9

where « is a weighting factor that controls the tradeoff between
noise reduction and speech distortion [6], [36]. More details can
be found in [9].

III. OVERALL TEACHER-STUDENT LEARNING

The proposed teacher-student learning framework is illus-
trated in Fig. 1, consisting of two stages, namely, the teacher
model training and the student model training, shown respec-
tively in the left and right of the vertical dashed line in the
middle of the figure. The dotted lines represent the process
of obtaining the learning targets of the teacher and student
models, while the solid lines denote the training process for
teacher and student models. In the training stage of the teacher
model, as shown in the left part of Fig. 1, a deep model (e.g.,
DNN, BLSTM, or BGRU) is employed to learn the mapping
relationship between the simulated noisy training data and the
IRM calculated by the training data pairs. The role of the teacher
model is to calculate the ISPP target for student model training
by incorporating with the IMCRA process. As shown in the
right part of Fig. 1, only the noisy speech data are necessary
to train the student model with the help of the teacher model,
which relaxes the needs for clean speech data. The details of
training the teacher and student models and their corresponding
motivations are elaborated in the following.

In Section II, the estimation of the gain function at the current
T-F bin is only based on the statistics of history frames, which
is an online adaptive algorithm to testing environments. How-
ever, due to the strong model assumptions of speech and noise
signals, IMCRA is not always robust in adverse environments,
particularly when there are nonstationary noises. Therefore, a
deep learning-based approach is a strong complementarity of the
IMCRA approach. Following the framework in Fig. 1, the details
of proposed teacher and student model training are elaborated
in the following sections.
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A. Teacher Model Training

The teacher model adopts the neural network with deep archi-
tectures to estimate widely used IRMs from the noisy log-power
spectra (LPS) features. Acoustic context information along both
the time axis (with multiple neighboring frames) and the fre-
quency axis (with full frequency bins) can be fully exploited
by the neural network to obtain a good mask estimate in ad-
verse environments, which is strongly complementary with the
conventional IMCRA-based approach to retaining robustness.
The estimated IRMs are restricted to be in the range between
zero and one, which can be directly used to represent the speech
presence probability at each T-F bin. The IRM as the learning
target is defined as follows:

Mget(k, 1) = Sps(k, 1)/ [Sps(k, 1) + Des(k,1)] (10)

where Sps(k, 1) and Dps(k,1) are power spectral features of
clean speech and noise at the T-F unit (k,[). Training of the
teacher model requires a large amount of time-synchronized
stereo-data; thus, the simulation data are often synthesized by
adding different types of noises to the clean speech utterances
with different SNR levels. Note that the specified SNR levels in
the training stage are expected to address the problem of SNR
variation in the test stage with realistic speech data. To train
the teacher model with a random initialization, supervised fine-
tuning is used to minimize the mean squared error between the
output of teacher neural network MTeNN(k:, 1) and the reference
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Illustration of the proposed teacher-student learning framework.

IRM Mpget(k, 1), defined as follows:

Ereny = Z (Mrenn (b, 1) — Myet(k, 1))
Kl

(11)

A Adam-based backpropagation method [37] can then be
adopted to update the parameters of a neural network in a
mini-batch mode. Each mini-batch is one training utterance. At
the test stage, the teacher model is directly utilized for decoding
and generating the enhanced speech.

B. Improved Speech Presence Probability (ISPP)

Before introducing student model training, the proposed ISPP
as the new learning target is elaborated. In IMCRA, the tradeoff
in reducing speech distortion and residual noise is made due
to the sophisticated statistical properties of the interactions
between speech and noise signals. Most of these unsupervised
methods such as IMCRA are based on either the additive nature
of the background noise or the statistical model assumptions of
speech and noise signals. They often fail to track nonstationary
noises in real-world scenarios with unexpected acoustic condi-
tions. For the deep learning method, it can often well handle the
nonstationary background noise based on the prior knowledge
learned from a large amount of training data simulated by
different noise types and levels. However, when there exists
a high mismatch between training data and test data, large
speech distortion is usually generated with an aggressive noise
reduction. Accordingly, ISPP aims to fully utilize the advantages
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of the gain function in the IMCRA approach and the IRM in deep
learning-based LPS regression.

From Eq. (4), the gain function G(k, ) mainly relies on the
a posterior SNR ~(k,1) and a priori SNR &(k,1). According
to description of Section II, (%, [) is related to y(k,l — 1) and
&(k,1— 1), while &(k, 1) depends on G(k,l — 1) and v(k,l —
1). Therefore, the gain function, a priori SNR, and a posterior
SNR are recursively coupled between consecutive frames. To
improve the accuracy of these three estimations in adverse envi-
ronments, we incorporate neural network-based mask estimation
Mrenn(k, 1 — 1) to define an intermediate item G/(k, 1 — 1):

G(k,1—1) = 6 Mren(k, 1 — 1) + (1 — 6)Gispp(k, L — 1),

(12)
where Gispp(k, ! — 1) denotes ISPP-based gain function at T-F
bin (k,l — 1) and ¢ is a weighting factor empirically set to 0.9 in
our experiments. For the [-th frame, we first compute the noise
estimation using the same algorithm as in IMCRA [9] with the
statistics of previous frames, namely, ISPP-based a posterior
SNR ~ispp(k, 1 — 1) and a priori SNR &spp(k, 1 — 1). Then, we
compute ispp(k, 1) using Eq. (8). Next, &spp(k, 1) is calculated
by modifying Eq. (9):

Gispp(k,1) = G (k, 1 = )yspp(k, 1 — 1)

+ (1 — o) max{mspp(k,l — 1) — 1,0}. (13)

Finally, the new gain function, namely, improved speech pres-
ence probability, at the [-th frame is computed according to
Egs. (14) and (15) as follows:

&iseo(, 1) 1 /°°
ey~ sisee(k D) - —dt
Ghsep(k, 1) 1+ &spp(k, 1) xPp 2 Josm(ka) t ’

(14)

Yisep (K, 1)&sep (K, 1)
1+ f[spp(k7 l)

The procedure of ISPP estimation is presented as Algorithm 1.
Obviously, the calculation of ISPP is a recursive process, which
simultaneously possesses a strong online tracking/adaption ca-
pability and an accurate estimation capability for related statis-
tics by incorporating the strong prior information of the speech
and noise signals from the teacher model. By comparing Eqs. (4),
(10) and (14), although G(k, 1), Mget(k, 1), and Gispp(k, 1) have
different definitions, their values are all in the range of [0, 1].

vispp(k, 1) = (15)

C. Student Model Training

Based on the above analysis, the main problem of the con-
ventional teacher model using IRM as the learning target is
that the large speech distortions might be generated in the
enhanced speech when there is a high mismatch between the
training and test data, especially in realistic applications. [38]
demonstrated that the direct mapping from the noisy speech
features to clean speech features using DNN regression model
led to the performance degradation in low SNR cases. Even
though the regression BLSTM model is used to estimate the
IRM, it cannot improve the ASR performance on realistic test
data as reported in [31], [32]. To alleviate this problem, ISPP is
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Algorithm 1: The Procedure of ISPP Estimation.
Input: One noisy speech utterance and the teacher model.
Output: ISPP estimation, denoted as Gispp (%, 1).

1: Initialize the statistics at the first frame for all
frequency bins: &spp(k, 0) = 0; yspp(k,0) = 1;
Gispp(k,0) = 1.

2: for all time frames [ do

3: for all frequency bins k£ do

4: Compute the mask estimation ]VITeNN(k, 1-1)

using the teacher model of Section III-A with the
input of noisy LPS features centered at T-F bin

(k,1—1).

5: Compute G(k,I — 1) by combining
MTeNN(k,l — 1) and Gispp(k, 1 — 1) according to
Eq. (12).

6: Compute the a posterior SNR ~ispp(k, 1) according

to Eq. (8) by using the noise estimation algorithm
in [9] with ’ylspp(k,l — 1) and &spp(k@l — 1)

7: Compute the a priori SNR &spp(k, 1) with
G(k,1 —1) and vispp(k, I — 1) according to
Eq. (13).

8: Compute the gain function or ISPP Gispp (&, [)
with yispp(k, 1) and &ispp(k, 1) according to
Eq. (14).

9: end for

10: end for

designed as a better learning target for the student model, which
is elaborated in Section III-B.

As illustrated in the right part of Fig. 1, the dotted line
represents the process of obtaining ISPP, namely, the training
target of the student model. The input to the student model is the
same as that of the teacher model, namely, noisy LPS features. To
train the student model with a random initialization, supervised
fine-tuning is used to minimize the mean squared error between
the student model output CAT'SlNN(k7 [) and the estimated ISPP
Gispp(k, 1) from Algorithm 1, defined as:

Bsan = Y (Gsaw(k, 1) — Gisep(k, 1))
ol

(16)

The Adam-based backpropagation method is adopted to update
the parameters of neural networks in mini-batch mode. Each
training utterance is treated as one mini-batch. At the test stage,
the student model is directly utilized for decoding and generating
enhanced speech according to Eq. (3).

One advantage of our teacher-student learning is that the
stereo-data constraint is relaxed for student model training. For
the conventional IRM-based teacher model, only the simulation
training data can be used due to this constraint, which is one main
reason leading to the mismatch with the test data of realistic
applications. However, for the student model, as the learning
target ISPP is calculated via the input noisy speech spectra
and the teacher model, the underlying clean speech signals are
not necessary. Accordingly, both simulated and realistic noisy
speech data could be adopted for training the student model.
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Algorithm 2: The Procedure of Student Model Training.

Input: Simulated/realistic training data and the teacher
model.

Output: The parameter set of student model.

1:  Randomly initialize the parameters of the student

model.
2:  for each mini-batch do
3: Compute noisy speech spectra features and LPS

features for all T-F bins in this mini-batch.

4: Compute the learning target Gispp(k;, 1) for all T-F
bins in this mini-batch using the teacher model and
noisy speech spectra features according to
Algorithm 1.

5: Accumulate gradients using noisy speech LPS
features and Gispp(k, 1) in this mini-batch via
Eq. (16).

6: Update the parameters of the student model using
Adam.

7: _end for

This is quite valuable because the realistic noisy speech data
can potentially reduce the mismatch between the training and
test data. More discussion will be presented in Section IV-E. Our
proposed procedure of student model training is summarized in
Algorithm 2.

Another advantage of our teacher-student learning is that
the student model can be compactly designed. The IMCRA
approach is performed efficiently and inherently in causal mode
having no latency; thus, it is also crucial to design a compact
student model to work in causal mode having no latency for
the applications with a high demand of run-time efficiency. In
the proposed framework, the neural network architecture of the
student model is not necessarily the same as that of the teacher
model. We can use a complicated teacher model such as BGRU
to guarantee a decent performance of a simple student model
such as DNN in a causal mode. We will discuss this topic more
in Section IV-F.

To further illustrate the motivation of the proposed ISPP-
based student model, Fig. 2 gives an utterance example from the
real test set of CHiME-4. Fig. 2(a) and (b) plot the spectrograms
from Channel O (the close-talking microphone to record the
reference “clean” speech) and one corresponding channel with
noisy speech. Fig. 2(c) plots the mask or gain function estimated
by IMCRA, while Fig. 2(d) plots IRM from the teacher model
with DNN. We observed that the estimated IRM by the teacher
model might misclassify the T-F regions dominated by speech to
nonspeech/noise, while the IMCRA method could alleviate this
problem by generating the estimated mask with much higher val-
ues in the black rectangle. The masks estimated by the IMCRA
method were often noncontinuous among consecutive speech
frames. Clearly, there exists a strong complementarity between
these two types of methods. In Fig. 2(e), the mask or ISPP
estimated by the student model with DNN could fully utilize
the complementarity IMCRA approach and IRM-based deep

b g R ey

am (Channel 0)

i BEO

spectrogr

-

= | -

(e) Mask estimated by the student model

Fig. 2. The comparison of estimated masks of different approaches for an
utterance from the real test set of CHIME-4.

learning approach, achieving both better speech preservation
and speech continuity.

IV. EXPERIMENTAL EVALUATION
A. Data Corpus

We present the experimental evaluation of our framework in
the CHiME-4 speech recognition task [39], which was designed
to study real-world ASR scenarios where a person is talking to a
mobile tablet device equipped with 6 microphones in a variety of
adverse environments. Four conditions were selected as follows:
café (CAF), street junction (STR), public transport (BUS), and
pedestrian area (PED). For each case, two types of noisy speech
data were provided as follows: RealData and SimData. RealData
were collected from talkers reading the same sentences from
the WSJO corpus [40] in the four conditions. SimData, on
the other hand, were constructed by mixing clean utterances
with environmental noise recordings using the techniques de-
scribed in [41]. The CHiME-4 offered three tasks including
single-channel (1-channel) and multi-channel (2-channel, and
6-channel) tasks, and this study focused on the single-channel
speech enhancement. So we used the 1-channel task to evaluate
our algorithm. The readers can refer to [39] for more detailed
information regarding CHiME-4.
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B. Implementation Details

For front-end configurations, speech waveform is sampled at
16 kHz, and the corresponding frame length is set to 512 samples
(or 32 msec) with a frame shift of 128 samples. The STFT anal-
ysis is used to compute the DFT of each overlapping windowed
frame. To train the regression model, the 257-dimensional fea-
ture vector was used for IRM and ISPP targets. PyTorch was
used for neural network training [42]. The learning rate for
the first 5 epochs was initialized as 0.25 and then decreased
by 90% after each epoch, and the number of epochs was 10. The
CHiME-4 challenge [43] training set was used as our training
data. Specifically, we used simulated training data from Channel
1, Channel 3 and Channel 5 with 7138 utterances (about 12
hours) for each channel to train the teacher and student models.

The default configurations of different neural network archi-
tectures are as follows. DNN was fixed at 3 hidden layers, 2048
units for each hidden layer, and 1799-dimensional input LPS
feature vector with 7-frame expansion. LSTM, BLSTM and
BGRU were fixed at 2 hidden layers, 1024 units for each hidden
layer, and 257-dimensional input with no frame expansion. For
the IMCRA and ISPP approaches, all the tuning parameters in
Algorithm 1 were set according to [9].

The ASR system officially provided in [39] was adopted to
evaluate the recognition performance of different enhancement
methods. The acoustic model is a DNN-HMM (hybrid hidden
Markov model with DNN to estimate state posterior probability)
discriminatively trained with the sSMBR criterion [44]. The input
of the DNN-HMM is a 440-dimensional feature vector extracted
from Channel 5, consisting of a 40-dimensional fMLLR [45]
with an 11-frame expansion. The language models are 5-gram
with Kneser-Ney (KN) smoothing [46] for the first-pass decod-
ing and the simple RNN-based language model [47] for rescor-
ing. The model is trained according to the scripts downloaded
from the official GitHub website' using Kaldi toolkit [48]. Note
that all enhancement methods are only applied to the utterances
in the recognition stage without retraining the acoustic model.

C. Motivation Experiments

First, we would provide one set of the recognition experiments
to show the main motivation of our proposed approach. Table I
shows a WER(%) comparison of the conventional IMCRA
approach, IRM-based deep learning approaches using different
neural network architectures and proposed ISPP approach for
single-channel enhancement on the real test set. “Noisy” de-
notes the recognition of original noisy speech randomly selected
from Channels 1-6 (except Channel 2), namely, 1-channel case.
“IMCRA” denotes the recognition of enhanced speech obtained
by IMCRA-based enhancement. “DNN-IRM,” “LSTM-IRM,”
“BLSTM-IRM” and “BGRU-IRM” denote the recognition of
enhanced speech obtained by the IRM-based teacher models us-
ing the DNN, LSTM, BLSTM and BGRU architectures, respec-
tively. We observed that the IMCRA method slightly improved
the ASR performance with an average WER reduced from
23.56% to 23.12%. Additionally, mixed results of the IMCRA

Thttps://github.com/kaldi-ast/kaldi/tree/master/egs/chime4
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TABLE I
WER (%) COMPARISON OF CONVENTIONAL IMCRA APPROACH, IRM-BASED
DEEP LEARNING APPROACH USING DIFFERENT NEURAL NETWORK
ARCHITECTURES AND PROPOSED ISPP APPROACH FOR SINGLE-CHANNEL
SPEECH ENHANCEMENT ON THE REAL TEST SET

Enhancement ‘ BUS CAF PED STR AVG
Noisy 36.10 2445 19.39 1429 2356
IMCRA 32,59 2596 2091 13.02  23.12
DNN-IRM 40.53  29.27 2098 15.65 26.61
LSTM-IRM 42.18 2652 19.21 15.15 2576
BLSTM-IRM | 39.86 2426 18.07 14.14 24.08
BGRU-IRM 39.37 2386 17.35 13.78 23.59
ISPP \ 2834 2206 17.17 11.52 19.77
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Fig. 3. Learning curves of the student and teacher models using BGRU

architecture on the simulated development set.

method were demonstrated for different environments, e.g.,
effective for BUS and STR but ineffective for CAF and PED.
Meanwhile, all IRM-based deep learning approaches degraded
the ASR performances, e.g., an average WER of 26.61% for
“DNN-IRM”. Furthermore, more powerful deep architectures
led to better recognition results. “BGRU-IRM” achieved the
best results among all deep models with an average WER of
23.59%, which is used as the default teacher model in the
following experiments. Finally, for our proposed ISPP method
by combining BGRU-IRM and IMCRA, it can directly improve
the performance, e.g., an average WER reduced from 23.56%
to 19.77% comparing to “Noisy”. In the following experiments,
the ISPP is utilized as the learning target of student model.

D. Experiments on BGRU Teacher/Student Models

In this section, we would show the experiments on teacher-
student learning by using the same BGRU architecture for both
teacher and student models. Fig. 3 illustrates a comparison of
learning curves between the student and teacher models using
the averaged squared errors on the simulated development set.
Clearly, the learning curve of the student models with the ISPP
targets could achieve more stable and better convergence than
those of the teacher model with the IRM targets. More inter-
estingly, the initial point of the learning curve of the student
model was much lower than that of the teacher model, which
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TABLE IT
WER (%) COMPARISON OF THE TEACHER MODELS (BGRU-IRM) AND
STUDENT MODELS (PROPOSED) USING DIFFERENT SETTINGS OF (Np,, Ny)
ON THE REAL TEST SET. N1, AND Ny DENOTED THE NUMBER OF HIDDEN
LAYERS AND HIDDEN UNITS FOR BGRU, RESPECTIVELY

Enhancement | (Np,Ny) | BUS CAF PED STR AVG
(2,200) 4218 2652 1921  15.15  25.76

(2,512) 4112 2408 1779 1422 2430

BGRU-IRM (3,512) 41.04 2413 17.65 1425 2427
(2,1024) 39.37 2386 1735 1378 23.59

(2,200) 2939 2327 17.66 1195  20.57

(2,512) 2933 2234 1740 1180  20.22

Proposed (3,512) 2921 2256 1721  11.69  20.17
(2,1024) 2091 2148 1633 1220  19.98

TeOracle-StBBGRU | (2,1024) | 28.14  21.06 1621 1175  19.29

demonstrated that the ISPP targets were more easily optimized
than the IRM targets.

Table II shows WER (%) comparison of the teacher models
(denoted as “BGRU-IRM”) and the student models (denoted as
“Proposed”) using different settings of (N, Ni/) on the real test
set. N1, and Ny denote the number of hidden layers and hidden
units for BGRU, respectively. There are three blocks in Table IT
for the teacher and student models.

For the first block of Table II, “BGRU-IRM” denotes the
recognition of enhanced speech by the estimated IRM of the
teacher models using different BGRU settings of (Np, Ny).
WERSs of “BGRU-IRM” were deceased by increasing the num-
ber of hidden cells, e.g., a relative WER reduction of 8.42%
from “BGRU-IRM(2,200)” to “BGRU-IRM(2,1024)” on av-
erage. Moreover, the number of hidden layers has no signifi-
cant effect on the recognition performance of “BGRU-IRM,”
e.g., WER from 24.30% of “BGRU-IRM(2,512)” to 24.27%
of “BGRU-IRM(3,512)”. Accordingly, the teacher model was
fixed at “BGRU-IRM(2,1024)” for the subsequent experiments.

For the second block, “Proposed” denotes the recognition of
enhanced speech by the estimated ISPP of the student models
using different BGRU settings of (N, Nyy). We observed that
ISPP estimated by all student models could directly improve the
ASR performances without acoustic model retraining, while the
best teacher model only achieved a comparable performance of
“Noisy” in Table 1. For example, “Proposed(2,1024)” yielded a
relative WER reduction of 15.20% in average, when compared
to “Noisy” in Table I. Second, the performance gaps among the
student models with different architectures were much smaller
than those among different teacher models. For example, WER
was reduced from 25.76% of “BGRU-IRM(2,200)” to 23.59%
of “BGRU-IRM(2,1024),” while only an absolute gain of 0.59%
was generated from “Proposed(2,200)” to “Proposed(2,1024)”.
This also shows that the proposed teacher-student learning
method is easier to optimize and more robust, even with a simple
architecture.

For the third block, “TeOracle-StBGRU” denotes the student
model trained with the oracle ISPP estimated by the combination
of the calculated IRM used to train the teacher model and
IMCRA method. We observed that the student model trained
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TABLE III
WER (%) COMPARISON OF REALISTIC SPEECH DATA AUGMENTATION FOR
STUDENT MODEL TRAINING ON THE REAL TEST SET

Model |  Training Data | BUS CAF  PED  STR  AVG
Student SimData 2991 2148 1633 1220 1998
Student | SimData+RealData | 27.73  21.13 1607 1156  19.12

with the oracle ISPP was better than the proposed model. For ex-
ample, “TeOracle-StBGRU” yielded a relative WER reduction
of 3.45% in average, when compared to “Proposed(2,1024),”
which could be considered as the performance gap due to the
limitations of the teacher model. But the oracle ISPP can’t be
utilized for realistic training data due to the absence of clean
speech, in the following experiments the realistic training data
will be utilized in our learning framework to make up the gap.

E. Experiments on Realistic Training Data

As discussed in Section III-C, real-world noisy speech could
be adopted in our learning framework to train the student model.
Table IIT shows WER (%) comparisons of realistic speech data
augmentation for student model training on the real test set.
The realistic training set was from Channel 1, Channel 3, and
Channel 5 with 1600 utterances for each channel to train the
teacher and student models. By adding the realistic training data,
we achieved consistent and remarkable improvements for all
noisy environments with a relative WER reduction of 4.30% on
average over the best configured student model built with only
simulated training data in Table III. The utilization of realistic
speech data is quite important because an unlimited amount
of speech data can be potentially collected from real-world
applications and used to largely reduce the mismatch between
the training and test environments.

F. Experiments on Compact Student Model

In addition to recognition accuracy, computing cycles and
model size are also crucial for deep learning based speech
enhancement methods in the applications with a high demand of
efficiency. As discussed in Section III-C, our proposed teacher-
student learning framework facilitates a compact model design.
In this section, we conduct an overall comparison of both the
recognition accuracy and practical issues among different neural
network architectures for the teacher and student models.

Table IV shows WER (%) comparisons of the student
models using different settings of (7, Np, Ny) on the real
test set. 7, N1, Ny denotes the number of expansion frames
in the input layer, the number of hidden layers and the
number of hidden units, respectively. “TeBGRU-StDNN” and
“TeBGRU-StBGRU” represent the student models using DNN
and BGRU models guided by the same teacher model, ‘BGRU-
IRM(1,2,2048),” respectively. It is well known that the comput-
ing cycles of DNN is much less than that of BGRU, and the num-
ber of expansion frames 7 determines the latency of deep models.
7 plays an important role in DNN modeling for achieving a
decent performance, as illustrated in Table IV, while 7 =1 is

Authorized licensed use limited to: University of Science and Technology of China. Downloaded on February 29,2020 at 05:48:18 UTC from IEEE Xplore. Restrictions apply.



2088

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 27, NO. 12, DECEMBER 2019

TABLE IV
WER (%) COMPARISON OF THE TEACHER AND STUDENT MODELS USING DIFFERENT SETTINGS OF (7, N1, Nyy) ON THE REAL TEST SET. 7, N1,, Ny DENOTE
THE NUMBER OF EXPANSION FRAMES IN THE INPUT LAYER, THE NUMBER OF HIDDEN LAYERS AND UNITS, RESPECTIVELY. Nj; AND N7 DENOTE THE MODEL
SI1ZE AND COMPUTING CYCLES NORMALIZED BY THOSE OF THE DNN-IRM(1,3,2048) MODEL, RESPECTIVELY

Enhancement | (7,Np,Ny) | BUS CAF PED STR AVG | Ny N
Noisy | T | 3610 2445 1939 1429 2356 | N

(132048) | 4123  30.12 2213 1621 2742 | 1.00 1.00

DNN-IRM (53.2048) | 4097 2989 2143 1597 27.06 | 122 1.3

(732048) | 4053 2927 2098 1565 2661 | 133 134

BGRU-IRM | (1,2,1024) | 3937 23.86 1735 1378 2359 | 289 673

(132048) | 31.62 2417 1794 1304 21.69 | 1..00  1.00

TeBGRU-StDNN (53.2048) | 3143 2396 17.67 1294 2150 | 122 1.13

(732048) | 31.13 2378 1756 12.85 2133 | 133 134

TeBGRU-StBGRU | (1,2,1024) | 27.73 2113 1607 11.56 19.12 | 2.89 673
TABLE V

set for BGRU, as its structure can inherently capture the temporal
constraints. 7 = 1 used only the central frame with no hard delay
from the input, while 7 = 5, 7 employed both 2, 3 history and
future frames. For “BGRU-IRM” with the setting of (1,2,1024),
although it outperformed “DNN-IRM,” e.g., a relative WER
reduction of 13.97% on average from “DNN-IRM(1,3,2048)” to
“BGRU-IRM(1,2,1024),” there existed an utterance delay at the
decoding stage. By using our proposed teacher-student learning
framework, a better tradeoff between recognition accuracy and
computing cycles could be made. For example, based on the
same DNN architecture, a relative WER reduction of 1.66%
in average from “TeBGRU-StDNN(1,3,2048)” to “TeBGRU-
StDNN(7,3,2048)” was less than a relative WER reduction of
2.95% from “DNN-IRM(1,3,2048)” to “DNN-IRM(7,3,2048)”.
This implies that the proposed student model with ISPP target is
easier to be optimized and more robust with small architectures.
Moreover, even “TeBGRU-StDNN(1,3,2048)” with no hard de-
lay (7 = 1) could achieve significant improvements for all noise
environments over best DNN-based and BGRU-based teacher
models (“DNN-IRM(7,3,2048)” and “BGRU-IRM(1,2,1024)”)
with relative WER reductions of 18.49% and 8.05% on average,
respectively.

In Table IV, the practical issues are also compared. N, and
N7 denote the model size and computing cycles normalized by
those of the “DNN-IRM(1,3,2048)” model, respectively. The
model size of “TeBGRU-StDNN(1,3,2048)” is about one-third
of that of “TeBGRU-StBGRU(1,2,1024)”. As for the computing
cycles, “TeBGRU-StDNN(1,3,2048)” is 673 times faster than
“TeBGRU-StBGRU(1,2,1024)”. In summary, the “TeBGRU-
StDNN(1,3,2048)” model could yield a relative WER reduction
of 7.94% over “Noisy” with a much smaller model size and
lower computing cycles than “TeBGRU-StBGRU(1,2,1024)”.

Table V lists average WER (%) comparison of different
teacher and student models for single-channel speech enhance-
ment on the development and test sets across four environ-
ments. First, “IMCRA” and “BGRU-IRM” obtained comparable
performance to “Noisy” for both simulation data (SimData)
and realistic data (RealData) of both development and test
sets, while “DNN-IRM” significantly degraded the recognition

AVERAGE WER (%) COMPARISON OF DIFFERENT TEACHER AND STUDENT
MODELS FOR SINGLE-CHANNEL SPEECH ENHANCEMENT ON THE
DEVELOPMENT AND TEST SETS ACROSS FOUR ENVIRONMENTS

Enhancement Development Set Test Set
SimData  RealData | SimData  RealData

Noisy 12.98 11.57 20.84 23.56
IMCRA 13.04 11.91 21.10 23.12
DNN-IRM 15.06 13.78 23.98 27.42
BGRU-IRM 12.53 11.86 20.49 23.59
TeBGRU-StBGRU 11.08 10.40 18.29 19.12
TeDNN-StDNN 12.67 11.23 20.35 22.31
TeBGRU-StDNN 12.34 10.83 19.95 21.69

performance. Second, the proposed student model with ISPP as
the learning targets could consistently improve the recognition
accuracy compared with the conventional teacher model with
IRM as the learning targets, e.g, a relative WER reduction
of 20.90% from the “DNN-IRM” to “TeBGRU-StDNN,” both
with the setting (1,3,2048) in Table IV and a relative WER
reduction of 18.95% from the “BGRU-IRM” to “TeBGRU-
StBGRU” on RealData of the test set. Third, by comparing
“TeBGRU-StDNN” and “TeDNN-StDNN” with the same DNN
structure for the student model, we could observe that the more
powerful teacher model led to a better performance of the student
model due to more accurate estimation of IRM to calculate
ISPP. Finally, the improvements in the proposed student model
on the real set were larger than those on the simulation set,
e.g., relative WER reductions of 7.94% and 4.27% from the
“TeBGRU-StDNN” to “Noisy” on real and simulation test sets,
respectively. Additionally, performance gains on the test set were
more significant than those on the development set. This result
demonstrates that our proposed approach is more effective on
realistic data under adverse environments. In real applications,
we can select the student model according to different priorities.
For example, the compact “TeBGRU-StDNN” model could
be adopted for the scenario with high demand of efficiency,
while “TeBGRU-StBGRU” could be adopted for the application
requiring a high recognition accuracy.
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TABLE VI
AVERAGE WER (%) ON DIFFERENT ENHANCEMENTS USING TDNN-BASED ACOUSTIC MODEL AND LSTM-BASED LANGUAGE MODEL ON THE DEVELOPMENT
AND TEST SETS ACROSS FOUR ENVIRONMENTS

Acoustic Model Language Model Enhancement Development Set Test Set

(Training Data) SimData  RealData | SimData  RealData

Noisy 12.98 11.57 20.84 23.56

DNN RNN IMCRA 13.04 11.91 21.10 23.12

(Channel 5) BGRU-IRM 12.53 11.86 20.49 23.59

TeBGRU-StBGRU 11.08 10.40 18.29 19.12

Noisy 8.06 6.64 14.42 13.85

TDNN RNN IMCRA 11.60 8.80 16.53 17.49

(Channel 1-6) BGRU-IRM 10.76 6.90 19.60 13.67

TeBGRU-StBGRU 7.30 5.86 12.53 11.56

Noisy 6.55 5.29 12.50 12.14

TDNN LSTM IMCRA 9.47 7.22 14.21 15.26

(Channel 1-6) BGRU-IRM 9.18 5.53 17.39 11.97

TeBGRU-StBGRU 5.78 4.47 10.66 9.81

G. Experiments on Powerful Back-End

In this section, we will explore the ASR performance of our
proposed enhancement with more powerful back-end system,
including TDNN-based acoustic model and LSTM-based lan-
guage model. For the acoustic model, the TDNN with LF-MMI
training [49] instead of DNN with sMBR-based discriminative
training [44]. The architecture of TDNN is similar to those
described in [50]. For the language model, the LSTM model
is trained by Kaldi-RNNLM [51] tools, and n-best re-scoring is
utilized to improve the performance.

Table VI lists average WER (%) on different enhancements
using TDNN-based acoustic model and LSTM-based language
model on the development and test sets across four environ-
ments. First, comparing the first line of the three blocks of
Table VI, more powerful back-end system using TDNN-based
acoustic model and LSTM-based language model can directly
improve the ASR performance for both simulation data and
realistic data of both development and test sets, e.g., a relative
WER reduction of 41.21% from the “Noisy” in the first block
of Table VI to the “Noisy” in the second block on RealData of
the test set. Second, “IMCRA” and “BGRU-IRM” destroyed the
ASR performance comparing to “Noisy” when the recognition
system became more powerful using TDNN-based acoustic
model and LSTM-based language model showed in the sec-
ond and third blocks of Table VI, while they could obtain the
comparable performance to “Noisy” when the acoustic model
was DNN-HMM shown in the first block of Table VI. Third, our
proposed “TeBGRU-StBGRU” model could still consistently
improve the ASR performance even in more powerful recogni-
tion system shown in the second and third blocks of Table VI,
e.g., the relative WER reduction of 16.53% and 19.19% from
“Noisy” to “TeBGRU-StBGRU” in second and third blocks of
Table VI on RealData of test set.

V. CONCLUSION

In this study, a novel teacher-student learning framework is
proposed, which combines unsupervised speech enhancement,
e.g., IMCRA, and deep learning techniques at the training

stage. The trained student model can be directly utilized for
speech enhancement as the preprocessor of ASR systems in
the recognition stage. By experimental analysis, we find that
the regression model cannot perform well by learning the non-
linear relationship between the noisy LPS features and target
IRM under adverse environments, where it cannot improve the
ASR performance comparing to unprocessed noisy speech data.
Conversely, the proposed student model with the ISPP as the
new learning target, which is calculated with the help of the
teacher model with IRM as the learning target, can improve the
recognition accuracy. The experimental results on the CHiME-4
challenge show that the proposed approach yields consistent
improvements over both BGRU-IRM and IMCRA-based tech-
niques for ASR performance. In addition, the student model
with DNN in causal mode having no latency achieves a relative
WER reduction of 7.94% on the real test set comparing un-
processed speech with 670 times less computing cycles in pro-
cessing when compared to the best student model with BGRU.
Finally, the conventional speech enhancement and IRM-based
deep learning method destroyed the ASR performance when the
recognition system became more powerful. While our proposed
approach could still improve the ASR performance even in
the more powerful recognition system. For the future work,
we will extend previously proposed iterative mask estimation
(IME)-based multi-channel speech enhancement [52] into joint
optimizing the neural network with conventional multi-channel
speech enhancement algorithm inspired by the proposed single-
channel speech enhancement based on teacher-student learning
framework.
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