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ABSTRACT
The recent criteria of a preferable linear sparse array for

a robust direction of arrival (DOA) estimation are the closed-
form expression for its sensor locations, the large central uni-
form linear array (ULA) segment in its resulting co-array and
the fewer sensor pairs with small separations in its configu-
ration. This paper aims to introduce a new proposed sparse
array that takes into account all these considerations. The
new sparse array configuration is proposed based on utiliz-
ing the two coordinates of a linear axis (TCLA) to situate its
sub-arrays. Compared to the (super) nested array having the
same sensor number, the TCLA array owns the same num-
ber of uniform degrees of freedom (DOFs) but possesses less
mutual coupling effects. These properties are quantitatively
covered, and numerical simulations are included to demon-
strate the superior performance of the proposed array.

Index Terms—
Super nested arrays, TCLA arrays, difference co-arrays,

mutual coupling, DOA estimation

1. INTRODUCTION

In array processing, the problem of detecting more signals
than the number of physical sensors being used still remains
at the very heart of various applications [1]-[3]. Compared
to uniform linear arrays (ULAs), minimum redundancy ar-
rays (MRAs) [4], [5], and minimum hole arrays (MHAs) [6],
grouped under the umbrella of traditional linear sparse ar-
rays, could achieve a higher number of degrees-of-freedom
(DOFs) in their virtual difference co-array, thereby detecting
more sources than the number of actual sensors. However,
they have no closed-form expressions for their sensor loca-
tions, nor for their obtainable DOFs.

Recently, new sparse arrays such as co-prime arrays
(CPAs) [7], [8] and nested arrays (NAs) [9] have resurrected
the interest in this field and have invited researchers to revisit
this topic, since they feature a systematic development for
their sensor locations and the achievable DOFs. As a result,
many developed arrays out of these two basic array configura-
tions have shown up, including but not limited to, generalized
co-prime arrays [10], thinned co-prime arrays (TCAs) [11],

optimized co-prime arrays (OpCAs) [12], improved nested
arrays [13] and augmented nested arrays [14].

In practice, with considering mutual coupling [15], [16],
these recent sparse arrays - as they adopt nonuniform inter-
sensor spacings - have also come as one of state-of-the-art
solutions to alleviate it compared to ULAs. However, they
still have their own shortcomings, e.g., co-prime-array-based
arrays have a smaller ULA part, U, in the co-array domain, D,
in comparison with nested-array-based arrays, while these lat-
ter arrays, in contrast, have dense ULA sections in their phys-
ical configuration, resulting in higher mutual coupling than in
those former. Thus, to tackle these problems, a super nested
array (SNA) [17], [18], has been proposed to possess the same
uniform capacity as does its parent nested array, and at the
same time to achieve less mutual coupling in comparison.

Motivated by building a new sparse array configuration
which has a considerable uniform capacity and much less se-
vere mutual coupling effects compared to the existing sparse
arrays, this paper aims to introduce such a new array geom-
etry constructed based on exploiting the two coordinates of a
linear axis (TCLA) to locate its constituent sub-arrays. Gen-
erally, The TCLA array configuration is composed of three
sub-arrays. The first sub-array is arranged along the nega-
tive coordinate while the other two are placed on the positive
one. With such an arrangement, TCLA arrays yield a virtual
co-array having the same ULA part as the nested and super
nested arrays do, but has smaller weight functions, thereby
having less severe mutual coupling effects than in both.

The reminder of this paper is organized as follows. Sec-
tion 2 reviews sparse array processing and mutual coupling
models. TCLA arrays are then introduced in Section 3. In
Section 4, we highlight the properties of the co-array of the
TCLA array. The improved performance of TCLA arrays un-
der mutual coupling will be demonstrated in Section 5.

2. SPARSE ARRAY SIGNAL PROCESSING

2.1. The Mathematical Model

Throughout this section, (·)>, (·)∗ and (·)H denote the trans-
pose, complex conjugate and conjugate transpose operators,
respectively. � and⊗ imply the Khatri-Rao product and Kro-
necker product, respectively. vec(·) refers to the vectorization
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operator.
Assume that the number of incoming signals, K, with

their corresponding complex amplitudes, written as sk, k =
1, ...,K, and their angles of arrivals, denoted as [θ1, θ2, ..., θK ]
in the range [−π/2, π/2], are being intercepted by a sparse
array of N actual sensors. These sensors are located accord-
ing to specific closed-from expressions at these positions ρid,
where ρi belongs to some integer set P and d, representing the
minimum distance between sensors, is half of the wavelength
of the received signal, d = λ/2. Then, the measurement
vector zP, made by these sensors, at a time instant, t, is:

zP(t) =

K∑
k=1

a(θk)sk(t) + nP(t) = As(t) + nP(t), (1)

where a(θk) = {ej2πρiθ̄k , ρi ∈ P, i = 1, .., N} is the ar-
ray steering vector corresponding to the k-th signal direction,
θk, whereas θ̄k = (d/λ) sin θk is this direction normalized
value, A = [a(θ1), ...,a(θK)] is the array steering matrix,
and s(t) = [s1(t), ..., sK(t)] is the source vector of size
(K×1) with every sk distributed as CN (0, σ2

k) and is consid-
ered uncorrelated from the other. The entries of of the noise
vector nP(t) are assumed to be (i.i.d.) random variables fol-
lowing the complex Gaussian distribution CN (0, σ2), as well.

Thus, as such, the covariance matrix of data vector zP with
suppressing the time dependence in Eq. (1) to simplify the
notation is obtained as

Rzz = E[zPz
H
P ] = ARssA

H + Rnn =

K∑
k=1

σ2
ka(θk)aH(θk) + σ2In, (2)

where Rss = E[ssH ] = diag([σ2
1 , ..., σ

2
K ]) is the source co-

variance matrix, with σ2
k denoting the power of the source

k-th and Rnn = E[nPn
H
P ] is the noise covariance matrix. In

practice, the covariance matrix is estimated using the avail-
able T samples, i.e.,

R̂zz =
1

T

T∑
t=1

zP(t)zHP (t). (3)

Vectorizing Rzz yields an (N2 × 1) column vector that
can be expressed as:

zvec = vec(Rzz) = Ã(θ1, θ2, · · · , θK)s̃k + σ2Ĩn, (4)

where A � AH = Ã = [ã(θ1), ..., ã(θK)] = [a(θ1) ⊗
a(θ1)∗, ..., a(θK) ⊗ a(θK)∗], s̃k is the source vector, and
Ĩn = vec[In] = [e>1 , e

>
2 , · · · , e>N ]> with ei referring to a

vector of all zeros except for the corresponding main diago-
nal element, i-th, of In, which equals one. Comparing Eq.
(1) with Eq. (4), we see that zvec behaves like a measurement
vector that is made by a virtual array whose steering vector
is ã(θk) for virtual sensors located at ρ̃id, where ρ̃i ∈ D,

i = 1, ..., N2 and D is the virtual counterpart of P. The data
vector zU corresponding to the central set of the adjacent sen-
sors, U, of D and bounded by ±ρ̃U is subsequently extracted
as follows:

zU =
1

w(ρ̃)

ρ̃U∑
ρ̃=−ρ̃U

zvec(ρ̃), (5)

where the weight function of the virtual sensor ρ̃, w(ρ̃), is
defined as the number of actual sensor pairs that lead to it and
can be found as w (ρ̃) = {(ρi, ρj) ∈ P2 | ρi − ρj = ρ̃}.

2.2. Mutual Coupling

The observation vector in Eq. (1) is based on some strict as-
sumptions, among which the exclusion of the mutual coupling
effect. In practice, the mutual coupling is observed to exist in
between the array sensors. Therefore, the mutual coupling is
inevitably incorporated into Eq. (1) as

zP(t) = CAs(t) + nP(t), (6)

where C is the (N ×N) mutual coupling matrix that can be
modeled in terms of many factors, among which the distance
between the array sensors. According to [16], [19]-[21], C can
be approximated by aB-banded symmetric Toeplitz matrix in
the ULA configuration as follows:

C(ρ̃) =

{
c|ρ̃|, |ρ̃| ≤ B,

0, otherwise,
(7)

where its entry cρ̃ is considered as a function of only the sen-
sor separation, ρ̃, and is empirically found to be inversely pro-
portional to this separation in the way that 1 = c0 > |cρ̃=1| >
|c2| > · · · > |cρ̃=B | > |cB+1 | = 0 [19]. Thus, the cou-
pling coefficients used in [17] are as follows: c1 = cejπ/3,
and ci = c1e

−j(ρ̃−1)π/8/ρ̃, where the parameter c can take a
value in the range [0.1 : 1].

3. SENSOR LOCATIONS IN TCLA ARRAYS

In this section, we introduce the TCLA array geometry using
Definition 1, and then we illustrate its design process with the
aid of Fig. 1, which, in accordance with Definition 1, depicts
the prospective of employing the two parts of a linear axis to
locate its sub-arrays.

Definition 1 (TCLA Array Configuration): Assume that
No is obtained from the nested array optimal parameter N1

as in Table 1, and N t and Ne are afterwards determined as
No − 1, and N − 2No + 1 in sequential, TCAL arrays are,
then, specified by the integer set P, defined by

P = {P1 ∪ P2 ∪ P3},

where

P1 = {ρoi , 1 ≤ i ≤ No} = {−(1 + 2`o) |0 ≤ `o ≤ No − 1},
P2 = {ρei , 1 ≤ i ≤ Ne} = {(`NP `e) |0 ≤ `e ≤ Ne − 1},
P3 = {ρti, 1 ≤ i ≤ N t} = {`NP (Ne − 1) + 2`t |1 ≤ `t ≤ N t}.
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Table 1: General closed-form expressions for distributing N
into optimal N1, N2 for nested arrays and optimal No for
TCLA arrays.

NA TCLA array
N N1 N2 No

even N/2 (odd) N/2 (N1 + 1)/2
even N/2 (even) N/2 N1/2
odd (N − 1)/2 (odd) (N + 1)/2 (N1 + 1)/2
odd (N − 1)/2 (even) (N + 1)/2 (N1 + 2)/2

`NP is fixed equal to 2No, and the sets P1, P2 and P3 repre-
sent the positions of sensors in the 1st, 2nd and 3rd sub-arrays,
respectively, which constitute the TCLA array configuration.

As an example, let’s consider the TCLA array configura-
tion with N = 8 (number of actual sensors), which, accord-
ing to the second row of Table 1, is distributed into No =
N1/2 = 4/2 = 2, and consequentlyN t = No−1 = 2−1 =
1 and Ne = N − 2No + 1 = 5. Setting No = 2 in Definition
1 closed-form expression {−(1 + 2`o)d | 0 ≤ `o ≤ No − 1}
yields P1 = {−3,−1} while setting Ne = 5 with `NP = 4
and N t = 1 in their corresponding expressions in Definition
1 gives P2 = {0, 4, 8, 12, 16} and P3 = {18}, respectively.
Having the union of these sub-arrays (as in Definition 1) leads
to the TCLA array configuration shown in the top of Fig. 1.

 

Fig. 1: The physical geometry and difference co-array of a
TCLA array with No = 2, N t = 1 and Ne = 5, where
black/blue bullets denote actual/virtual sensors, and crosses
indicate holes (or equivalently “missing virtual sensors”).

4. CO-ARRAY PROPERTIES

The importance of TCLA arrays arises from two properties
given below in Proposition 1 and Eq. (8).

Proposition 1: The TCLA array features a difference
co-array, D, that has a central ULA part, U, in the range
[−(2NeNo−1), 2NeNo−1], where 2NeNo−1 represents
its one-side number of uniform DOFs, ρ̃U.

Proof: The proof is available in Section 7.
Concretely, for the TCLA array with N = 8 while being

distributed, by Table 1, into No = 2, N t = 1 and Ne = 5,
its uniform capacity, U, in accordance with Proposition 1 is
in the range [−19, 19], where 19 is its ρ̃U, as it can be seen
from the bottom of Fig. 1. For comparison, the super nested

array (SNA) has the same co-array as its parent nested array,
and as their equal ρ̃U is expressed as N2(N1 + 1) − 1, with
the distribution N1 = N2 = 4 of N = 8 (as in Table 1),
we see that the three arrays do enjoy the same exact uniform
capacity.

However, in terms of the weight function w(ρ̃), which
matters most for mutual coupling effects, especially at small
spacings w(1), w(2) and w(3), which empirically have a ma-
jor impact on the mutual coupling of an array, the TCLA array
sets itself apart from those two arrays. More specifically, ac-
cording to the definition of the weight function and the TCLA
array configuration stated in Definition 1, the numbers of sen-
sors with separations 1, 2, and 3 are the weight functionw(1),
w(2) and w(3), respectively. Therefore, for a TCLA array, its
weight function w(ρ̃) at ρ̃ = 1, 2, 3 is

w(1) = 1, w(2) = No +N t − 1, w(3) = 1, (8)

and contrast this with NA and SNA whose first three weight
functions are as follows:

Nested Array:

w(1) = N1, w(2) = N1 − 1, w(3) = N1 − 2. (9)

Super Nested Array:

w(1) =

{
2, if N1 is even
1, if N1 is odd,

(10)

w(2) =

{
N1 − 3, if N1 is even
N1 − 1, if N1 is odd,

(11)

w(3) =

 3, if N1 = 4, 6
4, if N1 is even,
1, if N1 is odd,

(12)

where N1, N2 are for both nested and super nested arrays. It
can be seen that, unlike the NA (whose first weights increase
asN1 increases) and SNA,w(1) andw(3) for the TCLA array
are always one regardless of the value of N .

More illustratively, with N = 8, the first three weight
functions for the nested array, super nested array and TCLA
array (in accordance with Eq. (9), Eqs. (10-12), Eq. (8)) are
(4, 3, 2); (2, 1, 3); and (1, 2, 1), respectively. Therefore, it can
be readily observed that the proposed TCLA array in com-
parison with the other two tested arrays has smaller weights,
implying the existence of fewer sensor pairs with small sepa-
rations; thereby, the less mutual coupling effect it is expected
to experience - as it will be shown next.

5. NUMERICAL RESULTS

In this section, we compare the direction of arrival estimation
performance in the presence of mutual coupling among nested
arrays, super nested arrays, and TCLA arrays. The number of
sensors is 12 for each array. The sensor locations for NA,
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(a) Nested (b) SNA (c) TCLA
{1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 35, 42} {1, 3, 5, 6, 9, 11, 14, 24, 28, 35, 41, 42} {−5,−3,−1, 0, 6, 12, 18, 24, 30, 36, 38, 40}
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RMSE 0.0368 0.0075 0.0013
L 0.3313 0.2284 0.1944

Fig. 2: Comparison among (a) nested array, (b) super nested array, and (c) TCLA array in the presence of mutual coupling. The
MUSIC spectra P (θ̄) are computed under 0 dB SNR, 1000 snapshots, 12 sensors, and K = 16 sources, as indicated by red
vertical lines. The mutual coupling model (7) has c1 = 0.3ejπ/3, ci = c1e

−j(i−1)π/8/i, and B = 50.

SNA, and TCLA array are listed in the first row of Fig. 2,
respectively.

The second row in Fig. 2 visually illustrates each array co-
array, together with the associated weight function. It can be
observed that the three arrays have the same uniform capac-
ity, ranging from −41 to 41. In addition, the weight function
w(1) for the nested array, super nested array, and TCLA array
is 6, 2, and 1, respectively, which is also in accordance with
Eq. (9), Eq. (10) and Eq. (8).

The third row of Fig. 2 demonstrates the MUSIC spec-
trum P (θ̄) [22] for various array configurations. For these
spectra, the parameters are 0 dB SNR, 1000 snapshots, and
K = 16 uncorrelated sources (> number of sensors, 12), lo-
cated at θ̄i = −0.4 + 0.8(i − 1)/(K − 1) for 1 ≤ i ≤ K.
The mutual coupling model is based on Eq. (7) with c1 =
0.3ejπ/3, B = 50 and ci = c1e

−j(i−1)π/8/i for 2 ≤ i ≤ B.
The spatial smoothing algorithm [23] or its alternative in [24],
is evaluated directly from zU in Eq. (5) without using any
decoupling algorithms.

From the third row of Fig. 2, it can be seen that the
nested array has false peaks and some of the targets are almost
missed, and that the SNA is struggling to exhibit all sources
correctly. The TCLA array, by contrast, robustly displays 16
true peaks. Moreover, in terms of the estimation accuracy
reflected by the root-mean-squared error (RMSE), which is
defined as RMSE = (

∑K
i=1(ˆ̄θk − θ̄k)2/K)1/2, where ˆ̄θk

is the estimated normalized DOA of the k-th source calcu-
lated from the root MUSIC algorithm [25], and θ̄k is the true
normalized DOA, it can be observed that the RMSE for the
TCLA array (RMSE = 0.0013) is way less than that of the
nested and super nested arrays. This can be attributed to its
less mutual coupling deduced from its less mutual coupling
leakage (shown in the fifth row of Fig. 2), which is found as
L = ||C− diag(C)||F /||C||F , where || · ||F is the Frobenius
norm of the mutual coupling matrix C [17].

6. CONCLUDING REMARKS

A new sparse array, that considered the most desirable fea-
tures of the recently proposed sparse arrays, has been intro-
duced. The proposed perspective of situating its sub-arrays
ensured that its co-array has a considerable number of uni-
form DOFs, and its configuration is sparser in the sense that
it has fewer sensor pairs with small separations.

7. APPENDIX: PROOF OF PROPOSITION 1

Proof : The statement that the TCLA D has U in the range
[−(2NeNo − 1), 2NeNo − 1] is equivalent to the following
argument: for ρ̃ in the range [−(2NeNo − 1), 2NeNo − 1],
there is at least one pair of sensors leads to it, and as it is
pretty known that D is a symmetric set, then finding 0 ≤ ρ̃ ≤
2NoNe − 1 is an enough condition.

Therefore, for the odd numbers of ρ̃ starting from 1 to
2NeNo − 1, it can be verified that they can be collected by
diff(P2,P1) = ({`NP `e|0 ≤ `e ≤ Ne − 1} − {−(1 +
2`o)|0 ≤ `o ≤ No − 1}) = {1 + 2`|0 ≤ ` ≤ NeNo −
1} = {ρ̃21

i , 1 ≤ i ≤ NeNo}, while for the even num-
bers of ρ̃ starting from 0 to 2NeNo − 2, they can be in-
cluded by diff(P2,P2) ∪ diff(P3,P2) = {ρ̃22

i , 1 ≤ i ≤
Ne} ∪ {ρ̃32

i , 1 ≤ i ≤ NeN t} = {`NP `e|0 ≤ `e ≤ Ne −
1}∪{(2+2`t)+`NP `e|0 ≤ `t ≤ N t−1, 0 ≤ `e ≤ Ne−1}.
Consequently, the union of diff(P2,P1) and diff(P2,P2)∪
diff(P3,P2) covers all the consecutive integers from 0 to
2NeNo − 1.
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