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Abstract. Recently, attention based encoder-decoder methods have
been widely used in online handwritten mathematical expression recog-
nition, which achieve significant improvements compared to traditional
methods. The encoder-decoder methods usually employ string decoders
to generate the recognition result, which are not well matched for tree-
structured languages like math expression. A novel sequential relation
decoder (SRD) was introduced to recognize the online mathematical
expression as a math tree, which can be decomposed into a subtree
sequence and each subtree consists of a relation node and two symbol
nodes (related symbol node and primary symbol node). However, the
alignments between these two symbol nodes were implemented by spatial
attention probabilities, leading to incorrect recognition if spatial atten-
tion is not accurate. In this paper, we propose a memory relation decoder
(MRD), equipped with a memory based attention model to determine the
correspondence between two symbol nodes. Specifically, at each decoding
step, this memory based attention finds the corresponding primary sym-
bol node in the memory and treats it as the related symbol node, which
actually achieves the alignments between two symbol nodes in an explicit
manner. Besides, we propose to introduce global visual information while
calculating attention probabilities to help alleviate the ambiguous prob-
lems in online handwritten mathematical expression recognition. Evalu-
ated on a benchmark published by CROHME competition, the proposed
approach can substantially outperform previous encoder-decoder meth-
ods.
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1 Introduction

Handwritten mathematical expression recognition (HMER) plays an essential
role in electronic technology documents, machine scoring and many other appli-
cations. As mathematical expression is a complicated two-dimensional structure
(inherent tree structure) [3,6,15], HMER usually meets more challenges than
Chinese text recognition or other sequence recognition problems, which are usu-
ally written in one direction and the alignments between input and output are
monotonic, i.e., the correspondence between the input and output shares the
same order.

The main problems of HMER can be roughly divided into two branches [7],
namely symbol recognition and structural analysis. Symbol recognition denotes
grouping strokes which belong to the same symbol and then determines the class
of each symbol. Structural analysis denotes generating the most likely math
tree based on the symbol recognition. Traditional methods usually solve these
two problems separately or jointly, namely sequential or global methods. While
contextual information is not fully utilized and symbol recognition errors will be
inherited afterwards to structural analysis in sequential methods [1,22], global
methods [2,4] seem to be more suitable as they optimize symbol recognition
and structural analysis concurrently, but previous sequential methods usually
outperform traditional global methods.

Recently, several researches [20,23,26] proposed a global way to recognize
a mathematical expression as a LaTeX string instead of a math tree since the
LaTeX string and the math tree are actually one to one correspondence and can
be converted into each other equivalently. As deep learning came into promi-
nence, attention based encoder-decoder methods were widely used in sequence
to sequence learning, such as machine translation [11,13,18], speech recogni-
tion [5,8] and so on. Online handwritten mathematical expression recognition
can also be treated as a sequence to sequence problem and attention based
encoder-decoder methods [19,23] can be employed to generate a LaTeX string
as the recognition result. These encoder-decoder methods can usually achieve
better performance than traditional methods due to their powerful modeling
capabilities and free of pre-defined grammar or symbol segmentation.

However, using LaTeX strings as the recognition results of handwritten math-
ematical expressions will meet several problems [24,25]. Therefore, [24] proposed
a sequential relation decoder (SRD), which obtained recognition results in math
tree formats using encoder-decoder methods and can be trained in an end-to-
end manner. Specifically, SRD decomposed the complete math tree into a sub-
tree sequence. At each step, SRD can generate a subtree, containing a relation
node and two symbol nodes (first generated a primary symbol node and then a
related symbol node based on the obtained primary symbol node). Besides, SRD
employed spatial attention probabilities to acquire alignments between primary
symbol nodes and related symbol nodes. [25] proposed a tree decoder, which
employed a memory based attention model to achieve the alignments between
primary symbol nodes and related symbol nodes instead.
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Fig. 1. An example of handwritten mathematical expression, which can be represented
as a LaTeX string or a subtree sequence.

In this work, we propose a memory relation decoder (MRD) for online hand-
written mathematical expression recognition, which also recognizes the mathe-
matical expression as a tree structure. As shown in Fig. 1, the complete math
tree can be decomposed into a subtree sequence and MRD can generate a sub-
tree at each decoding step and finally all the subtrees can be utilized to compose
the complete tree. More specifically, MRD first generates a related symbol node
using a predicted related GRU, a related GRU and a related attention model.
Then a primary symbol node, following depth-first order, is generated by a pre-
dicted primary GRU, a primary GRU and a primary attention model. Moreover,
we propose to insert a global visual feature into original features to help alleviate
ambiguous problems in online handwritten mathematical expression recognition.
Based on two obtained symbol nodes, a relation node can be predicted, indicat-
ing the attribute between related and primary symbol nodes. Unlike SRD, we
employ an improved version of memory based attention model [25] to achieve
alignments between related symbol nodes and primary symbol nodes, which
additionally exploits related and primary context vectors. This memory based
attention model actually determines which primary symbol node that the related
symbol node should be corresponded to at each decoding step in an explicit
manner. Furthermore, two attention guiders, namely related attention guider
and primary attention guider are employed to help guide the learning of related
attention and primary attention.

The main contributions of this paper can be summarized as:

– A memory relation decoder (MRD) is proposed for online handwritten mathe-
matical expression recognition, which significantly outperforms both previous
string decoders and tree-structured decoders.

– We introduce global visual information inserted in attention models to help
alleviate the ambiguous problems.
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– We demonstrate the effectiveness of memory based attention and global visual
information through complete experimental analysis.

2 The Proposed Approach

In this section, we elaborate the overall system for online handwritten mathemat-
ical expression recognition, which consists of an encoder and a memory relation
decoder (MRD). The encoder employs a stacked RNNs to extract high-level fea-
tures from handwriting traces. Then, the memory relation decoder is introduced
to generate a subtree at each decoding step t, including a related symbol node, a
primary symbol node and a relation node. The two symbol nodes are determined
by related decoder and primary decoder, respectively. Then the relation node
can be determined by both related symbol node and primary symbol node. We
employ a memory based attention model to implement the alignments between
related symbol nodes and primary symbol nodes in an explicit manner, which
is necessary to reconstruct the complete tree by the generated subtree sequence.
Besides, we introduce a global visual feature to alleviate ambiguous problems
and two attention guiders to help guide the learning of related attention and
primary attention.

2.1 Encoder

The raw data of online handwritten mathematical expression recognition is hand-
writing traces collected during the writing procedure. Following [20], we first
normalize the traces and then obtain an 8-dimensional feature vector for each
point i as follows:

xi =[xi, yi,Δxi,Δyi,Δ
′xi,Δ

′yi, strokeFlag1, strokeFlag2] (1)

where Δxi = xi+1 − xi, Δyi = yi+1 − yi, Δ′xi = xi+2 − xi, Δ′yi = yi+2 − yi.
The last two terms indicate the pen status, which record whether the point is
the last one of a stroke, i.e., [1, 0] means pen-down while [0, 1] means pen-up.
Then, this sequence of 8-dimensional feature vectors is considered as the input
of the encoder.

As shown in Fig. 2, to capture contextual information from input, we employ
a stack of recurrent neural networks (RNN) with gated recurrent units (GRU).
Besides, we actually adopt bidirectional GRU instead of unidirectional GRU
as both past and future contextual information are useful for recognition. The
bidirectional GRU will scan the input forwards and backwards with two separate
GRU layers and concatenate their hidden states. The final output of stacked
GRUs is an annotation sequence of variable length, which is referred as A =
{a1,a2, · · · ,aL} and ai ∈ R

D1 .
Besides, we believe that the attention models can benefit from global visual

information as it can help alleviate ambiguous problems in online handwritten
mathematical expression recognition. Therefore, we first convert handwriting
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Fig. 2. The architecture of the encoder.

traces into a static image [20] and then employ an additional convolution neural
networks (CNN) with dense blocks [12] to extract visual features, which is a
tensor with size H × W × D2. A global average pooling layer is built on top
of CNN to obtain the global visual feature, fea ∈ R

D2 . We combine this global
visual feature with each hidden state as follows:

B = {b1,b1, · · · ,bL} bi = Concat (ai, fea) (2)

where bi ∈ R
D and D = D1+D2. Overall, the encoder can extract an annotation

sequence A used to compute context vectors and an annotation sequence B used
in attention models. The implementation details of the encoder can be seen in
Sect. 3.1.

2.2 Memory Relation Decoder

As shown in Fig. 1, the target of memory relation decoder (MRD) is to generate
a complete math tree for recognition, which can be decomposed into a variable
length subtree sequence:

Y = {(yr
1,y

p
1 ,yre

1 ) , (yr
2,y

p
2 ,yre

2 ) , · · · , (yr
T ,yp

T ,yre
T )} (3)

where T denotes the total number of subtrees and each subtree t contains a
related symbol node yr

t, a primary symbol node yp
t and a relation node yre

t .
These subtrees can be generated by several unidirectional GRUs step by step,
using two annotation sequences A and B extracted from the encoder.

Note that there are three rules to confirm that the predicted subtree sequence
can reconstruct the complete tree: (i) the subtree sequence is serialized by
traversing the complete tree following a depth-first order. (ii) every primary
symbol node must have a corresponding related symbol node and only occur
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once. (iii) each related symbol node must be selected from existing primary
symbol nodes.

Related Decoder. As shown in Fig. 3, to decode the related symbol node,
we employ two GRUs, namely predicted related GRU and related GRU with a
related attention model, which can be represented as follows:

ŝrt = PRGRU
(
yp

t−1, s
p
t−1

)
(4)

crt = fratt (̂srt,A,B) (5)
srt = RGRU(crt, ŝ

r
t) (6)

where PRGRU and RGRU denote predicted related GRU and related GRU,
respectively. fratt denotes related attention model, considering handwriting infor-
mation and global visual information at the same time, which is designed as:

Fr = Qr ∗
∑t−1

τ=1
αr

τ (7)

ertj = νT
r tanh

(
Wr

attŝ
r
t + Ur

attbj + Ur
Ff

r
j

)
(8)

αr
tj =

exp
(
ertj

)

∑
k exp (ertk)

(9)

crt =
∑L

j=1
αr

tjaj (10)

where ∗ denotes a convolution layer and f rj denotes the j-th element of F , which is
utilized as a coverage vector to help alleviate the lack of coverage in the standard
attention model. αr

tj denotes the related attention probability of j-th element at
decoding step t while crt denotes related context vector at decoding step t. aj and
bj are j-th elements of A and B, respectively. Note that we employ B to compute
attention probabilities as global visual information can help solve ambiguous
problems in online handwritten mathematical expression recognition. Instead, we
only adopt original features A to compute related context vector because these
features are enough when accurate trace points are selected by attention model.
Another reason is that global visual information is unsuitable to be considered
at each decoding step t as only local visual information corresponded to current
predicted symbol is needed.

Primary Decoder. After obtaining related symbol node yr
t and related decoder

hidden state srt, we can generate primary context vector cpt and primary decoder
hidden state spt . As shown in Fig. 3, the architecture of primary decoder is similar
with related decoder, which consists of predicted primary GRU and primary
GRU:

ŝpt = PPGRU (yr
t, s

r
t) (11)

cpt = fpatt (̂spt ,A,B) (12)
spt = PGRU (cpt , ŝpt ) (13)
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Fig. 3. The architecture of the decoder, which consists of a related decoder and a
primary decoder. The right part illustrates the prediction of relation node and the
memory based attention model.

where PPGRU and PGRU denote predicted primary GRU and primary GRU,
respectively. fpatt has the same structure with fratt but the parameters are not
shared. Besides, different from related decoder, we will additionally compute the
probability of each primary symbol node yp

t by feeding the concatenation of
related symbol node yr

t, primary decoder hidden state spt and primary context
vector cpt into a fully connected layer with a softmax activation function:

p (yp
t ) = softmax (Wp

out (yr
t, s

p
t , cpt )) (14)

Then the classification loss of primary symbol node, namely the training loss of
primary decoder part is defined as:

Lp = −∑
t log p (wp

t ) (15)

where wp
t denotes the ground-truth primary symbol node at decoding step t.

In addition, to generate a subtree at each decoding step t, we still need to
compute the relation node, which describes the attribute between related symbol
node and primary symbol node, such as right, above, superscript and so on. This
relation node is computed by feeding the concatenation of related context vector
crt and primary context vector cpt into a fully connected layer with a softmax
activation function:

pre (yre
t ) = softmax (Wre

out (crt, c
p
t )) (16)
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Then we define the training loss of the relation part as:

Lre = −∑
t log p (vt) (17)

where vt denotes the ground-truth relation node at decoding step t.

Memory Based Attention. In the above sections, we have introduced how
to compute the probability of primary symbol node yp

t at each decoding step t,
which can be used to determine yp

t during the testing stage. Nevertheless, we do
not determine related symbol nodes in this way as there is no explicit order for
related symbol nodes while primary symbol nodes always follow the depth-first
order. In contrast, we adopt a memory based attention model to help determine
related symbol node yr

t at each decoding step t.
Specifically, we can get the related decoder hidden state srt, related context

vector crt, primary decoder hidden state spt , primary context vector cpt and pri-
mary symbol node yp

t at each decoding step t. During decoding, we append the
concatenation of primary decoder state spt and primary context vector cpt into
the key memory and append the primary symbol node yp

t into the value memory.
To determine the related symbol node at decoding step t, as shown in Fig. 3,

we employ a memory based attention using the concatenation of related decoder
hidden state srt and related context vector crt as query and the concatenation of
primary decoder hidden state spt and primary context vector cpt as key. Then,
the attention probabilities can be computed as:

Gmem
tj = σ

(
νT
mem

(
tanh

(
Wmemzrt + Umemzmem

j

)))
(18)

where zrt denotes the concatenation of the related decoder state srt and related
context vector crt, z

mem
j denotes the j-th element in the key memory.

In the training stage, we define the training loss of related decoder part as a
binary classification loss:

Lr = −∑
t

∑
j

[
Ḡmem

tj log
(
Gmem

tj

)
+

(
1 − Ḡmem

tj

)
log

(
1 − Gmem

tj

)]
(19)

where Ḡmem
tj denotes the ground-truth of the alignment between related symbol

node yr
t and primary symbol node yp

j . In other words, Ḡmem
tj is 1 when t-th

related symbol node is aligned to the j-th element of the memory, otherwise 0.
In the testing stage, we choose yp

ĵ
, ĵ = argmax

(
Gmem

tj

)
in the value memory

as the related symbol node at decoding step t.

Symbol Node Attention Guider. The alignment accuracy between input
and output provided by attention models are important for recognition. How-
ever, how to train attention properly remains challenging. Therefore, we employ
two symbol node attention guiders, namely related attention guider and primary
attention guider, to help guide the learning of related attention and primary
attention models. These two guiders can be implemented as the oracle align-
ment information can be acquired in the training stage in online handwritten
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mathematical expression recognition, namely which annotation features should
be aligned when decoding each related symbol node yr

t and each primary symbol
node yp

t . We design these two symbol node attention guiders as:

Lrali = −∑
t

∑
j

[
ᾱr

tj log
(
αr

tj

)
+

(
1 − ᾱr

tj

)
log

(
1 − αr

tj

)]
(20)

Lpali = −∑
t

∑
j

[
ᾱp

tj log
(
αp

tj

)
+

(
1 − ᾱp

tj

)
log

(
1 − αp

tj

)]
(21)

where ᾱr
tj and ᾱp

tj denote the ground-truth alignments of related attention and
primary attention models. These two guiders will be regarded as additional losses
of the total training loss, namely related alignment loss and primary alignment
loss, respectively.

3 Experiments

In this section, we design a set of experiments to evaluate the effectiveness of the
proposed method on CROHME benchmark [14,17], which is currently the most
widely used dataset for online handwritten mathematical expression recognition.
We use CROHME 2014 training set as our training set, which consists of 8836
handwritten mathematical expressions and CROHME 2014 testing set as our
testing set, which has 986 handwritten mathematical expressions. There are
totally 101 math symbol classes and 6 math relations (above, below, right, inside,
superscript (sup), subscript (sub)). To prove the generalization and robustness,
we also evaluate our proposed method on CROHME 2016 and CROHME 2019
testing sets, which consist of 1147 expressions and 1199 expressions, respectively.

3.1 Training and Testing Details

Training. The overall model can be trained in an end-to-end manner and the
training target is to minimize the weighted summation of the related decoder loss,
primary decoder loss, relation loss, related alignment loss and primary alignment
loss, which can be represented as follows:

O = λ1Lr + λ2Lp + λ3Lre + λ4Lrali + λ5Lpali (22)

We set λ1 = λ2 = λ3 = 1 as we believe that the prediction of the related symbol
node, primary symbol node and relation node are equally important. Besides, we
set λ4 = λ5 = 0.1 for alignment losses, which can be regarded as the regulariza-
tion losses. For encoder, we employ 4 stacked GRU layers to extract high-level
features. Each GRU layer is bidirectional and has 256 forward and 256 backward
GRU units. There are two pooling layers of factor 2 on the top 2 GRU layers.
Besides, the CNN is the same as DenseNet-99 in [19], which consists of three
dense blocks and each block has 16 3 × 3 and 16 1 × 1 convolution layers. As
for decoder, PRGRU, RGRU, PPGRU, PGRU are all unidirectional GRU layers
and each layer has 256 GRU units. The attention dimension of related attention
and primary attention models are both 512. The kernel size of coverage model is
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7 × 1 and the number of output channel is 256. The embedding dimension is set
to 256. We train our model by AdaDelta algorithm and the corresponding hyper-
parameters are set as ρ = 0.95, ε = 10−8. All the experiments are implemented
with Pytorch and on a single NVIDIA Tesla 1080Ti 11G GPU.

Testing. In the testing stage, we expect to obtain the most likely subtree
sequence. As we do not have the ground-truth related symbol nodes and pri-
mary symbol nodes during testing, we employ a hierarchical version of beam
search algorithm [9] of beam size 3. Specifically, at each decoding step, 3 most
likely previous primary symbol nodes (i.e., 3 hypotheses) are maintained to com-
pute the current related symbol nodes. Then each hypothesis is expanded with
3 most likely current related symbol nodes and these current related symbol
nodes are utilized to compute the current primary symbol nodes. In total, we
have 3 × 3 = 9 hypotheses kept and then choose 3 beams according to the com-
bined likelihood of related symbol node and primary symbol node, which are
used for the next step decoding.

3.2 Recognition Performance

Table 1. Performance Comparison on CROHME 2014 testing set (in %). ExpRate
denotes the percentage of predicted mathematical expressions matching the ground
truth. ≤1 s. error and ≤2 s. error denote the expression recognition accuracies with at
most one and two errors. StruRate only focuses on whether the structure is correctly
recognized and ignores symbol recognition errors.

System ExpRate ≤1 s. error ≤2 s. error StruRate

I 37.2 44.2 47.3 –

II 25.7 33.2 35.9 –

III 26.1 33.9 38.5 –

WYGIWYS [10] 35.9 – – –

PAL [21] 39.7 – – –

WAP [26] 48.4 66.1 70.2 70.1

TAP [23] 48.5 63.3 67.3 67.2

TAP + WAP + LM [23] 61.2 75.5 77.7 –

SRD [24] 50.6 57.9 62.1 –

TD [25] 49.1 64.2 67.8 68.6

MRD1 55.2 70.0 73.4 73.3

MRD2 55.8 72.0 75.3 75.3

In this section, we first compare the proposed MRD based encoder-decoder sys-
tem with other state-of-the-arts, including traditional methods, string decoder
based encoder-decoder methods and tree-structured decoder based encoder-
decoder methods on CROHME 2014 testing set. As shown in Table 1, we list
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the best 3 systems in CROHME 2014 competition [16], which only used offi-
cial datasets. We also list the recognition performance of 5 string decoder based
encoder-decoder systems and the details can be seen in [10,21,23,26]. SRD and
TD are tree-structured decoder based encoder-decoder systems [24,25]. MRD1
denotes the MRD based encoder-decoder system without global visual feature
while MRD2 uses global visual feature. Note that although TAP + WAP +
LM can achieve a high result, it actually ensembled three TAP, three WAP
and three GRU-based language models, which is not fairly comparable. Apart
from expression recognition rate (ExpRate), we also adopt those with at most
one, two object-level errors (≤1 s. error, ≤2 s. error) and structural recognition
rate (StruRate) as additional metrics to further conduct the effectiveness of the
proposed methods.

It is obvious that tree-structured decoder based encoder-decoder systems
can outperform string decoder based encoder-decoder systems. Furthermore,
MRD1 can achieve a significant improvement compared with SRD/TD and the
ExpRate improvement is more than 5%, which demonstrates that our memory
based attention model can implement more accurate alignments between related
symbol nodes and primary symbol nodes and accordingly improve performance.
Besides, MRD2 can still improve the performance compared with MRD1, prov-
ing the necessary of the global visual information. The improvements for ≤1 s.
error, ≤2 s. error and StruRate are more significant and further conduct the
effectiveness of the proposed MRD.

Table 2. Performance comparison on CROHME 2016 and CROHME 2019 testing sets
(in %).

Dataset System ExpRate ≤1 s. error ≤2 s. error StruRate

CROHME16 Tokyo 43.9 50.9 53.7 61.6

São Paulo 33.4 43.5 49.2 57.0

Nantes 13.3 21.0 28.3 21.5

WAP 46.8 64.6 65.5 66.2

TAP 44.8 59.7 62.8 63.1

TAP + WAP + LM 57.0 72.3 75.6 –

SRD 46.6 – – –

TD 48.5 62.3 65.3 65.9

MRD1 51.3 65.9 68.9 69.2

MRD2 52.5 68.4 71.5 71.7

CROHME19 WAP 48.1 63.5 67.2 68.0

TAP 44.2 58.8 62.7 63.6

SRD 45.9 – – –

TD 51.4 66.1 69.1 69.8

MRD1 52.3 67.3 70.2 70.8

MRD2 53.6 68.9 72.1 72.3
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To confirm the generalization of the proposed MRD, we also compare MRD
with competition systems and other state-of-the-art systems on both CROHME
2016 [17] and CROHME 2019 [14] testing sets in Table 2. The systems Tokyo, São
Paulo and Nantes denote the best 3 systems of all submitted systems in CROHME
2016 competition using only official dataset and we do not list the results of sub-
mitted systems in CROHME 2019 competition as they all use additional training
sets or other strategies such as ensemble. It is obvious that MRD1 can still achieve
better performance compared to both string decoder based encoder-decoder sys-
tems and other tree-structured decoder based encoder-decoder systems. Similarly,
MRD2 can further outperform MRD1 and the improvement is larger on these two
testing sets with more ambiguous problems.

3.3 Visualization Analysis

Fig. 4. An example of how MRD generates a complete tree step by step. For each
step, from left to right, we show the attention visualization of related attention and
primary attention, the predicted subtree and the attention visualization of memory
based attention. Memory based attention actually achieves the alignments between
related symbol nodes and primary symbol nodes in an explicit manner, illustrated in
the right part of the figure (Color figure online).
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In Sect. 3.2, we have demonstrated that the proposed MRD can outperform both
previous string decoder and tree-structured decoder. In this section, we further
show how MRD achieves to generate a complete tree as the recognition result
for online handwritten mathematical recognition. As shown in Fig. 4, we show
the attention visualization results of related attention, primary attention and
memory based attention at each decoding step.

Specifically, each line in Fig. 4 denotes a decoding step, which has three parts.
The left part shows the related attention result in green color and the primary
attention result in red color. The middle part shows the corresponding subtree,
including the related symbol node, primary symbol node and relation node. For
example, the related symbol node, primary symbol node and relation node of the
subtree in the second line are “\sqrt”, “2” and “inside”, respectively. Note that
we use “\sqrt 1” instead of “\sqrt”, “2 1” instead of “2” to distinguish other
same symbols in this expression. The right part shows the result of memory
based attention. As described in Sect. 2.2, at each decoding step, memory based
attention is designed to determine which primary symbol node that the related
symbol node should be corresponded to. We take the third line as an example. At
this decoding step, there are already three primary symbol nodes in the memory,
which are appended in the previous steps. Then, the memory based attention will
compute a probability over these symbols, which is represented as the vertical
coordinate. Obviously, the probability of primary symbol node, “\sqrt 1” is the
largest. Therefore, we select “\sqrt 1” as the related symbol node at this step,
indicating both the symbol class and the alignment between the related symbol
node and primary symbol node. This memory based attention is very accurate
and the probability distribution is very close to the ground-truth probability
distribution (the value is nearly 1 or 0).

Fig. 5. Two examples to show the effectiveness of global visual information, which
helps generate more accurate attention results. The incorrect recognition results are
shown in blue color (Color figure online).
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Furthermore, compared with MRD1, MRD2 equipped with global visual
information can acquire more accurate attention results. As shown in Fig. 5, we
show two examples that MRD2 can correctly recognize while MRD1 not. Note
that we only show the primary attention results in red color as related symbol
nodes are actually selected from primary symbol nodes. In the left example,
MRD1 incorrectly recognizes “2 q” as “z” as MRD1 attends both “2” and “q”
simultaneously. Therefore, the redundant parts make MRD1 misidentify “2” as
“z” and the one step attention omission makes MRD1 miss “q”. However, MRD2
can acquire more accurate attention with global visual information and recognize
correctly. The similar observation can be seen in the right example.

4 Conclusion

In this study, we propose a memory relation decoder (MRD) for online handwrit-
ten mathematical expression recognition. To alleviate the ambiguous problems,
we further introduce global visual information, which can help generate more
accurate attention results. The proposed MRD can achieve significant improve-
ments compared to string decoder based encoder-decoder methods and other
tree-structured decoder base encoder-decoder methods on a benchmark pub-
lished by CROHME competition, including CROHME 2014, 2016 and 2019
testing sets. Through attention visualization, we show how the proposed MRD
implements the alignments between related symbol nodes and primary symbol
nodes in an explicit manner and how the global visual information helps achieve
better spatial attention results, which can both improve the recognition perfor-
mance. In the future, we aim to investigate an approach utilizing both string
and tree-structured decoders to further improve the recognition performance.
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