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a b s t r a c t 

Recently, the hybrid convolutional neural network hidden Markov model (CNN-HMM) has been intro- 

duced for offline handwritten Chinese text recognition (HCTR) and has achieved state-of-the-art perfor- 

mance. However, modeling each of the large vocabulary of Chinese characters with a uniform and fixed 

number of hidden states requires high memory and computational costs and makes the tens of thousands 

of HMM state classes confusing. Another key issue of CNN-HMM for HCTR is the diversified writing style, 

which leads to model strain and a significant performance decline for specific writers. To address these 

issues, we propose a writer-aware CNN based on parsimonious HMM (WCNN-PHMM). First, PHMM is 

designed using a data-driven state-tying algorithm to greatly reduce the total number of HMM states, 

which not only yields a compact CNN by state sharing of the same or similar radicals among different 

Chinese characters but also improves the recognition accuracy due to the more accurate modeling of 

tied states and the lower confusion among them. Second, WCNN integrates each convolutional layer with 

one adaptive layer fed by a writer-dependent vector, namely, the writer code, to extract the irrelevant 

variability in writer information to improve recognition performance. The parameters of writer-adaptive 

layers are jointly optimized with other network parameters in the training stage, while a multiple-pass 

decoding strategy is adopted to learn the writer code and generate recognition results. Validated on the 

ICDAR 2013 competition of CASIA-HWDB database, the more compact WCNN-PHMM of a 7360-class vo- 

cabulary can achieve a relative character error rate (CER) reduction of 16.6% over the conventional CNN- 

HMM without considering language modeling. By adopting a powerful hybrid language model (N-gram 

language model and recurrent neural network language model), the CER of WCNN-PHMM is reduced to 

3.17%. Moreover, the state-tying results of PHMM explicitly show the information sharing among similar 

characters and the confusion reduction of tied state classes. Finally, we visualize the learned writer codes 

and demonstrate the strong relationship with the writing styles of different writers. To the best of our 

knowledge, WCNN-PHMM yields the best results on the ICDAR 2013 competition set, demonstrating its 

power when enlarging the size of the character vocabulary. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

The robust recognition of handwritten text lines in an uncon-

trained writing style plays an important role in many applications,

uch as machine scoring, express sorting and document recogni-

ion. Specifically, handwritten Chinese text recognition (HCTR) has

een intensively studied as a popular research topic for many years

1,2] . However, it remains a challenging problem due to the large

ocabulary and the diversity of writing styles. Moreover, offline
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CTR, which is the focus of this study, is more difficult than on-

ine HCTR [3,4] , as the ink trajectory information is missing. 

In general, the research effort s f or offline HCTR can be di-

ided into two categories: oversegmentation-based approaches and

egmentation-free approaches. The former approaches [5–8] often

uild several modules by first including character oversegmenta-

ion, character classification, and modeling the linguistic and geo-

etric contexts, and then incorporating them to calculate the score

or path search. The recent work in [8] , with the neural network

anguage model, adopted three different CNN models to replace

he conventional character classifier, segmentation and geomet-

ic models to achieve the best performance of oversegmentation-

ased methods on the ICDAR 2013 competition dataset [9] . By con-
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trast, segmentation-free approaches do not need to explicitly seg-

ment text lines. One early approach to text line modeling [10] used

the Gaussian mixture model hidden Markov model (GMM-HMM).

Another recent approach [11] utilized multidimensional long short-

term memory recurrent neural network (MDLSTM-RNN), which

was inspired by well-verified LSTM-RNN approaches [12] for the

recognition of handwritten western languages with a small set of

character classes. The MDLSTM-RNN approach is quite flexible due

to the connectionist temporal classification (CTC) technique [13] ,

which avoids explicit segmentation. In [14] , the authors employed

a CNN and an LSTM neural network under the HMM framework to

obtain a significant improvement over the LSTM-HMM model. In

[15] , the authors used separable MDL STM-RNN (SMDL STM-RNN)

with CTC loss, instead of the traditional LSTM-CTC method. More

recently, the authors in [16] proposed a novel aggregation cross-

entropy loss for sequence recognition, which was shown to ex-

hibit competitive performance for offline HCTR. In [17] , we veri-

fied that combining hybrid deep CNN-HMM (DCNN-HMM) with a

powerful language model could achieve the best reported results of

the segmentation-free approaches on the ICDAR 2013 competition

dataset. 

However, the impressive results reported in recently pro-

posed oversegmentation-based and segmentation-free approaches

[8,16,17] highly depend on the use of strong language models (LMs)

built with a large number of text corpora, which partially masks

the weakness of character models and makes the comparison of

character models unfair. Actually, the large vocabulary of Chinese

characters and the diversified writing styles of text lines still limit

the performance of deep learning methods based on character

modeling. For example, in our DCNN-HMM work [17] , the number

of output nodes in DCNN, i.e., the total state class number, was

19,900 by modeling 3980 characters with a 5-state HMM for each.

Obviously, a further increase of the vocabulary size could poten-

tially lead to a data sparsity problem and high computation and

memory costs, which makes the training of CNNs become diffi-

cult. Moreover, similar radicals among different Chinese characters

should be shared by the same states to reduce ambiguity in the

decoding stage. Another key issue is that free-style writing usually

causes a mismatch between the distributions of the training and

testing datasets, which significantly degrades the recognition accu-

racy of certain writers. 

To address these two main problems, we propose a novel

writer-aware CNN based on parsimonious HMM (WCNN-PHMM).

First, PHMM is designed using a data-driven state-tying algorithm

to freely compress the total number of HMM states. The binary

decision tree with a data-driven question set is adopted to rep-

resent one fixed-position HMM state of all character classes. In

this way, it can not only yield a compact CNN by state sharing

of the same or similar radicals among different Chinese charac-

ters but also improve the recognition accuracy due to the more

accurate modeling of tied states and the lower confusion among

them. Second, WCNN embeds one linear adaptive layer fed by a

writer-dependent vector (namely, the writer code) into each con-

volutional layer, which extracts the irrelevant variability of writer

information to improve recognition performance. In the training

stage, all writer codes and the parameters of the adaptation lay-

ers are initialized randomly and then jointly optimized with other

network parameters using the writer-specific data. In the recogni-

tion stage, with the initial recognition results from the first-pass

decoding with the writer-independent CNN-PHMM model, an un-

supervised adaptation is performed to generate the writer code for

the subsequent decoding of WCNN-PHMM. Furthermore, in order

to overcome the data sparseness problem of traditional N-gram LM

(NLM) [18] , similar to Wu et al. [8] , we introduce a recurrent neu-

ral network LM (RNNLM) [19] to form a hybrid LM (HLM). 
p  
The main contributions of this study can be summarized as fol-

ows: 

• The new structure WCNN-PHMM is presented to tackle two key

issues for offline HCTR: the large vocabulary and the diversity

of writing styles. 

• A general adaptive training approach is proposed to integrate

with any type of CNNs to create writer-aware models. To the

best of our knowledge, this paper is the first study of writer

adaptation for offline HCTR. 

• The fast and compact design of PHMM via state tying improves

the recognition accuracy. More importantly, compared with

other segmentation-free approaches, PHMM can yield even bet-

ter recognition accuracy when enlarging the size of the charac-

ter vocabulary by fully leveraging more training data and class

information sharing. 

• The effectiveness of WCNN-PHMM is visually illustrated by the

analyses of the state-tying results and the learned writer codes.

• The proposed WCNN-PHMM demonstrates the best reported

character error rate (CER) (8.42%) for a 7360-class vocabulary

on the ICDAR 2013 competition set without using language

models. By adopting a powerful HLM, the CER of WCNN-PHMM

can be further reduced to 3.17%. 

The remainder of this paper is organized as follows.

ection 2 introduces related work. Section 3 gives an overview

f the proposed framework. Section 4 elaborates on the details

f WCNN-PHMM. Section 5 reports the experimental results and

nalyses. Finally, Section 6 concludes. 

. Related work 

In this section, we describe related work, including the basic

rinciples for mainstream approaches of offline HCTR, model com-

ression and writer adaptation. 

.1. Basic principles for offline HCTR 

Offline HCTR can be formulated as the Bayesian decision prob-

em: 

ˆ 
 = arg max 

C 
p(C | X ) 

= arg max 
C 

p(X | C ) p(C ) (1)

here X is the feature sequence of a given text line image

nd C = { C 1 , C 2 , . . . , C n } is the underlying n -character sequence. In

versegmentation-based approaches [6] , the posterior probabil-

ty p ( C | X ) can be computed by searching the optimal segmen-

ation path and the corresponding posterior probability of the

haracter sequence by combining the character classifier, the seg-

entation model and the geometric/language model. Regarding

egmentation-free approaches, the CTC-based and HMM-based ap-

roaches are two mainstream frameworks. In the CTC-based ap-

roach [15] , a special character blank class and a defined many-to-

ne mapping function are introduced to directly compute p ( C | X )

ith the forward-backward algorithm [13] . For the HMM-based ap-

roach [17] , p ( C | X ) can be reformulated as the conditional proba-

ility p ( X | C ) and the prior probability p ( C ). More details will be

rovided in Section 3 . 

.2. Model compression 

The state tying can be regarded as belonging to a more gen-

ral field, i.e., model compression [20] . With the emergence of

eep learning [21] , many studies have focused on building com-

act and fast CNNs for practicability. Regarding the reduction in
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Fig. 1. Handwritten examples of different writers with the same transcript. 
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he number of parameters and the computation complexity of con-

olutional layers, research efforts can be divided roughly into low-

ank decomposition [22] , pruning [23] , quantization [24] and com-

act network design [25] . Aside from these methods, a key issue

ith CNN-HMM-based offline HCTR [17] is the large vocabulary

roblem, which leads to tens of thousands of output nodes (cor-

esponding to HMM states) in CNN architecture. This heavy over-

ead in the output layer of the CNN not only requires high mem-

ry and computation costs but also yields more confusion among

tate classes and CNN training difficulties. To handle this problem,

nspired by the early work in speech recognition [26,27] , we in-

roduce state tying via decision trees to freely compress the out-

ut layer of the CNN model. Considering the particularity of HCTR

nd the difficulty of defining an effective question set for the Chi-

ese language, in our previous work [30] , we successfully invented

 data-driven state-tying approach for a huge set of HMMs rep-

esenting Chinese characters and achieved promising recognition

erformance. It should be noted that, if we simply reduce the state

umber for each character, the recognition accuracy will decline

ramatically due to the lack of resolution for text line modeling

17] . 

.3. Writer adaptation 

Writer adaptation is similar to other topics, such as transfer

earning [32] and speaker adaptation [31] , where the distribution

f test data is different from that of training data [34] . In of-

ine HCTR, as shown in Fig. 1 , the writing styles could be quite

ifferent, which makes the recognition accuracy of unseen writ-

rs unpredictable. In comparison to handwritten Chinese charac-

er recognition (HCCR), aside from the morphological variations

ithin characters, writing orientation and ligatures make HCTR

uch more challenging. In general, there are two mainstream

ethodologies to achieve writer adaptation. The one type is to

dopt writer-specific data to guide writer-independent classifier to-

ard the new distribution of the particular writer, the other is

o extract writer-independent features for classifier. More specif-

cally, this process might be supervised, semisupervised or unsu-

ervised, depending on whether the adaptation writer-specific data

re labeled. Usually, unsupervised adaptation needs to reuse the

est data. Besides, it depends on adequate writer data. In some ap-

lications such as the machine scoring of essays [33] , the recog-

ition rate is the most important factor to be considered and

here are enough specific writer data available to adopt adapta-

ion techniques for improving the recognition rate. Moreover, the

esearch on writer adaptation could be divided into feature-space

nd model-space approaches based on the part on which the adap-

ation parameters are working [35] . To the best of our knowledge,

or Chinese handwriting recognition, almost all effort s of writer

daptation focus on the HCCR task. One such method uses a lin-

ar feature transformation to adapt the writing styles via discrimi-

ative linear regression (DLR) [36,37] , which is verified to be ef-

ective when incorporated with a prototype-based classifier and

n NN-based classifier. Another representative method introduces

tyle transfer mapping (STM) [34] for learning a linear transfor-

ation to project writer-specific data onto a style-free space. As
 flexible adaptation method, STM can work on the outputs of

oth fully connected layers [38,39] and convolutional layers [54] .

 recent study [49] uses adversarial learning [40] to transform

riter-dependent features into writer-independent features under 

he guidance of printed data. However, there are very few stud-

es for the writer adaptation of the more challenging HCTR prob-

em. Inspired by [41,42] , in [43] we propose an unsupervised writer

daptation strategy for DNN-HMM-based HCTR. 

This study is comprehensively extended from our previous con-

erence papers [30,43] with the following new contributions: (1)

he proposed PHMM is introduced with more technical details and

erified for a more promising CNN-HMM, rather than the DNN-

MM in [30] ; (2) we present a novel unsupervised adaptation

trategy with writer codes and adaptation layers to guide the con-

olutional layers in CNN-HMM, rather than using the fully con-

ected layers in DNN-HMM [43] ; (3) WCNN-PHMM perfectly com-

ines the two techniques to yield a compact and high-performance

odel; (4) instead of the NLM, the HLM is used to further improve

erformance; and (5) all experiments are redesigned to verify the

ffectiveness of WCNN-PHMM, and detailed analyses are described

o give the readers a deep understanding of our approach. 

. System overview 

Our system follows the basic HMM framework [17] in which the

andwritten text line is modeled by a series of cascading HMMs,

ach representing one character, as illustrated in Fig. 2 . The math-

matic principle of HMM can be represented by rewriting the for-

ula p ( X | C ) p ( C ) in Eq. (1) : 

p(X | C ) p(C ) = 

∑ 

S 

[ 

π(s 0 ) 
T ∏ 

t=1 

a s t−1 s t 

T ∏ 

t=0 

p(x t | s t ) 
] 

n ∏ 

i =1 

p(C i | C i −1 , C i −2 , . . . , C 1 ) (2) 

 

∑ 

S 

[ 

π(s 0 ) 
T ∏ 

t=1 

a s t−1 s t 

T ∏ 

t=0 

p(s t | x t ) p(x t ) 

p(s t ) 

] 

n ∏ 

i =1 

p(C i | C i −1 , C i −2 , . . . , C 1 ) (3)

here X = { x 0 , x 1 , x 2 , . . . , x T } is a (T + 1) -frame observation se-

uence of one text line image. p ( X | C ), which can be called the

haracter model, is the conditional probability of X given C cor-

esponding to a sequence of HMMs with the corresponding hid-

en state sequence S = { s 0 , s 1 , s 2 , . . . , s T } . Each HMM with a set of

tates represents one character class. With HMMs, the p ( X | C ) can

e decomposed in the frame level: π ( s 0 ) is the initial state proba-

ility, a s t−1 s t is the state transition probability from frame t − 1 to

, p ( x t | s t ) is the output probability of x t given s t , p ( s t ) is the prior

robability of state s t estimated from the training set, p ( s t | x t ) is

he posterior probability of state s t given x t , and p ( x t ) is indepen-

ent of the character sequence. As mentioned in [17] , GMM can

e used to calculate p ( x t | s t ) in Eq. (2) for the GMM-HMM system,

hile DNN/CNN can be adopted to compute p ( s t | x t ) in Eq. (3) for

he DNN-HMM/CNN-HMM system. 

Meanwhile, p ( C ), namely the language model, is the probability

f an n -character sequence C = { C 1 , C 2 , . . . , C n } and can be decom-

osed as 
∏ n 

i =1 p(C i | C i −1 , C i −2 , . . . , C 1 ) . However, as the number of

hese values V 

i for even a moderate vocabulary size V is too large

o be accurately estimated. The so-called N-gram LM can not real-

stically depend on all i − 1 conditioning histories C 1 , C 2 , . . . , C i −1 to

ompute the term p(C i | C i −1 , C i −2 , . . . , C 1 ) . Obviously, a higher order

 leads to a more powerful language model which can significantly

mprove the recognition accuracy. In this work, the SRILM toolkit

44] is employed to generate a 5-gram LM. To further enhance the 

bility of the LM, we linearly interpolate a standard NLM with an

NNLM to form an HLM. 
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Fig. 2. Illustration of text line modeled by cascading character HMMs. 

Table 1 

Acronym description. 

Acronym Description 

CNN Convolutional neural network 

WCNN Writer-aware convolutional neural network 

TCNN Tied-state convolutional neural netwotk 

HMM Hidden Markov model 

PHMM Parsimonious hidden Markov model 

CER Character error rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

o  

u  

t  

c  

s  

f  

c  

t  

i  

t  

a  

n  

t  

l

O  

w  

a  

t  

p  

a  

t  

i  

s  

v  

i

4

 

t  

c  

d  

a  

a  

e  

t  

o  

d  

s  

w  

s  

l

�  

w  

i  

B  

m  
In the training stage, we first build the conventional GMM-

HMM system as in [17] . Then, the state-tying GMM-HMM system

(GMM-PHMM) can be generated using the proposed decision-tree

algorithm to greatly reduce the total number of states, i.e., the di-

mension of the CNN output layer. Meanwhile, state-level forced-

alignment is conducted to obtain frame-level labels for the subse-

quent CNN cross-entropy training. After the conventional CNN is

trained, a series of adaptation layers with the writer codes as the

input are appended in parallel to form the WCNN. With writer-

specific training data, the writer codes and the parameters of the

adaptation layers for WCNN are jointly optimized. 

In the testing stage, with the initial recognition results from

the first-pass decoding using CNN-PHMM, the codes of unknown

writers are learned from random initialization via WCNN for the

second-pass decoding. This process could be iteratively conducted

for multipass decoding to refine the recognition results and the

writer codes. 

4. WCNN-PHMM 

Fig. 3 illustrates two main innovations of our proposed WCNN-

PHMM architecture over the conventional CNN-HMM in [17] ,

namely, the compact design of the output layer and writer-aware

convolutional layers. In the following subsections, we elaborate

three basic components of WCNN-PHMM: convolutional neural

network, state tying for PHMM, and writer code-based adaptive

training for WCNN. In order to help readers understand clearly, in

Table 1 , we first describe acronyms that are frequently used in this

paper. For example, according to Table 1 , the system WCNN-PHMM

means characters are modeled by the PHMM where the WCNN is

used to compute the posterior probabilities of tied-states. 

4.1. Convolutional neural network 

As shown in Fig. 3 , CNN [45] successively consists of stacked

convolutional layers (Conv) optionally followed by spatial pooling,

one or more fully connected layer (FC) and a softmax layer. For the

convolutional and pooling layers, each layer is a three-dimensional

tensor organized by a set of planes called feature maps, while

the fully connected layer and the softmax layer are the same as
hose in the conventional DNN. Inspired by the locally sensitive,

rientation-selective neurons in the visual system of cats [46] , each

nit in a feature map is constrained to connect a local region in

he previous layer, which is called the local receptive field. Two

ontiguous local receptive fields are usually s pixels (referred as

tride) shifted in a certain direction. Usually, all units in the same

eature map of a convolutional layer share a set of weights, each

omputing a dot product between its weights and the local recep-

ive field in the previous layer and then followed by batch normal-

zation (BN) [47] and a nonlinear activation function. Meanwhile,

he units in a pooling layer perform a spatial average or max oper-

tion for their local receptive field to reduce spatial resolution and

oise interference. Accordingly, the key information for identifying

he pattern is retained. We formalize operations in a convolutional

ayer as: 

 i, j,k = f ( BN ( 
∑ 

m,n,l 

I (i −1) ×s + m, ( j−1) ×s + n,l W m,n,k,l + B k )) (4)

here I i,j,k is the value of the input unit in feature map k at row i

nd column j while O i,j,k corresponds to the output unit, W m,n,k,l is

he connection weight between a unit in feature map k of the out-

ut and a unit in channel l of the input, with an offset of m rows

nd n columns between the output unit and the input unit. B k is

he k th value of bias vector B for all units in the feature map k . BN

s used to handle the change of the distribution in each layer by

imply normalizing the input of layers [47] , which can yield an ob-

ious improvement in the HCTR task [17] . f is a nonlinear function,

.e., ReLU [48] , used in this study. 

.2. State tying for PHMM 

Fig. 4 illustrates the main motivation of our proposed algorithm

o tie HMM states, namely, fully utilizing the partial similarities of

haracters (e.g., radicals). State tying is completed using a binary

ecision tree in which the question for each node of the tree is

utomatically generated by a data-driven algorithm. If each char-

cter is represented by a 5-state HMM, then 5 trees are built, with

ach representing one positioned HMM state to cluster all charac-

er classes. Suppose S is the set of HMM states in one nonleaf node

f a tree and L ( S ) is the log-likelihood of S generating the training

ataset with F frames. Then, by the attached question q , which is

elected from an automatically generated question set, this node

ith S is split into two children nodes, namely, a left node with a

ubset S l and a right node with a subset S r , to maximize the log-

ikelihood increase with respect to q in the current node: 

L = L ( S l ( q ) ) + L ( S r ( q ) ) − L (S ) (5)

here L ( S ), L ( S l ( q )) and L ( S r ( q )), are log-likelihoods of the state set

n the current node, its left node and its right node, respectively.

ased on the assumptions that all tied states in S share a common

ean μ( S ) and variance �( S ), and the tying states does not change
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Fig. 3. Comparison between the conventional CNN-HMM and the proposed WCNN-PHMM. 

Fig. 4. Illustration of tied state design for CNN output layer. 
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he frame/state alignment, a reasonable approximation of L ( S ) via

aussian output distribution N is given by: 

 (S ) = 

F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f ) ln N ( o f ;μ(S ) , �(S )) 

= −1 

2 

F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f )[ D ln (2 π) + ln | �(S) | + D 

2 
M 

( o f )] (6) 

here D M 

( o f ) is the Mahalanobis distance: 

 M 

( o f ) = 

√ 

( o f − μ(S )) � ( �(S )) −1 ( o f − μ(S )) . (7) 

n Eq. (6) , γ s ( o f ) is the posterior probability of the D -dimensional

eature vector o f at the f th frame that is generated by state s . μ( S )
nd �(S) can be estimated as: 

(S ) = 

∑ F 
f=1 

∑ 

s ∈ S γs ( o f ) o f ∑ F 
f=1 

∑ 

s ∈ S γs ( o f ) 
(8) 

(S) = 

∑ F 
f=1 

∑ 

s ∈ S γs ( o f )( o f − μ(S ))( o f − μ(S )) � ∑ F 
f=1 

∑ 

s ∈ S γs ( o f ) 
. (9) 

Using Eq. (9) , we can have the following derivation for the last

tem in Eq. (6) : 

F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f ) D 

2 
M 

( o f ) 

 

F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f ) Tr { ( o f − μ(S )) � ( �(S )) −1 ( o f − μ(S )) } 

 

F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f ) Tr { ( �(S )) −1 ( o f − μ(S ))( o f − μ(S )) � } 

 Tr { ( �(S )) −1 
F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f )( o f − μ(S ))( o f − μ(S )) � } 

 Tr { ( �(S )) −1 �(S ) } 
F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f ) = D 

F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f ) (10) 

here Tr{ · } denotes the trace of a square matrix. If we further

efine the notation: 

(S ) = 

F ∑ 

f=1 

∑ 

s ∈ S 
γs ( o f ) (11) 
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Fig. 5. Fraction of a generated tree for the first state of a 5-state HMM. 

Table 2 

The differences of state tying in HCTR and SR. 

HCTR SR 

Original Signal Two dimension One dimension 

Object The states of characters being in the same position The states of tri-phones with the same central phone 

Motivation Existing similar radicals among characters Data sparseness problem of tri-phone 

Categories Tens of thousands Hundreds 

Question Set Data driven Date driven or Artificial rules 
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Then, Eq. (6) can be rewritten as: 

L (S ) = −1 

2 

γ (S )[ ln | �(S) | + D + D ln (2 π)] (12)

Thus, the log-likelihood L ( S ) depends only on the pooled state oc-

cupancy γ ( S ) and the pooled state variance �(S) . Both could be

calculated from the saved parameters of state occupancy counts,

means, and variances for all HMM states during the preceding

Baum–Welch re-estimation. 

Initially, all corresponding states are placed in the root node

of a tree. Then, the above algorithm is conducted in a top-down

manner to build this binary tree until reaching to a fixed thresh-

old. Finally, a merge operation of leaf nodes is conducted using a

minimum priority queue in a bottom-up manner by computing the

log-likelihood decrease to reach the target tied-state number. 

To generate the question set, all feature frames of characters are

placed in the root node of a binary decision tree and then a k -

means ( k = 2 ) algorithm is used to find an optimal partition, which

aims to maximize the log-likelihood of frames under the assump-

tion of a single Gaussian distribution. This procedure is conducted

in a top-down manner until each node only contains one charac-

ter class. One question of a nonleaf node can be obtained from all

reachable leaves of this node. All questions form our question set

for the state tying. There are 5 trees in total, as each character is

modeled by a 5-state HMM. In Fig. 5 , a fraction of a generated tree

for the first state is illustrated. 

In Table 2 , we summarize the differences of state tying between

HCTR and speech recognition (SR). First, the original signal in HCTR

is two-dimension image and the signal is one-dimension speech in

SR. Second, the motivation of state tying in HCTR is to overcome

the difficulty of training and decoding in CNN-HMM due to many

similar radicals among tens of thousands of characters while the

state tying in SR is introduced for the data sparseness problem of

tri-phone. Third, considering the ways of modeling in HCTR, we

only tie the states of characters being in the same position to cap-

ture similar radicals more accurately. For SR, the state tying is usu-

ally conducted on the states of tri-phones with the same central

phone. Finally, for HCTR, the question set used in state tying to-

tally depends on the character based features while the question
et in SR can be predefined artificially according to pronunciation

haracteristics. 

.3. Adaptive training for WCNN based on writer code 

As shown in Fig. 3 , the conventional CNN used for offline

CTR does not explicitly incorporate the writer information in both

raining and testing stages. However, the writing style could play

n essential role in the final CER as an irrelevant variability to rec-

gnize the character class. Accordingly, a learnable vector (writer

ode) is introduced to represent the writer style of each writer. If

e consider the CNN architecture to integrate both feature extrac-

ion and classifier implicitly, then the proposed ingenious design

f WCNN in Fig. 3 seems like a joint feature and model adaptive

raining strategy. 

To guide the CNN with writer information, two key compo-

ents, i.e, writer codes and adaptation layers, are randomly initial-

zed and can be optimized using the back-propagation algorithm.

he code of the r th writer is a G -dimensional vector V 

r directly

onnected with all adaptation layers. The p th adaptation layer can

e represented by a K × G matrix A 

p . The writer code is fed into

he adaptation layer and transformed into a new vector Q 

r,p : 

 

r,p = A 

p V 

r 
. (13)

ith the writer information Q , the corresponding p th convolu-

ional layer of WCNN can be reformulated as: 

 

r,p 

i, j,k 
= f ( BN ( M 

p 

i, j,k 
+ Q 

r,p 

k 
)) (14)

here 

 

p 

i, j,k 
= 

∑ 

l,m,n 

I p 
(i −1) ×s + m, ( j−1) ×s + n,l 

W 

p 

m,n,k,l 
+ B 

p 

k 
. (15)

n Eqs. (14)–(15) , I 
p 

i, j,k 
, O 

p 

i, j,k 
, W 

p 

m,n,k,l 
, and B 

p 

k 
are the correspond-

ng items like in Eq. (4) for the p th convolutional layer. The writer

nformation Q 

r,p 

k 
, which is the k th value of bias vector Q 

r,p , is

ewly added as a bias to build writer-aware convolutional lay-

rs. The key innovation of the WCNN architecture is illustrated in

ig. 6 . 
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Fig. 6. Illustration of convolutional layer with writer code in WCNN. 
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Suppose we use P adaptation layers with the parameter set A =
 A 

p | p = 1 , . . . , P } . In the training stage, a well-trained CNN-HMM

r CNN-PHMM system is first used to initialize WCNN with the

riter-independent parameter set �. Assume we have R writers in

he training dataset with the corresponding writer code set V =
 V 

r | r = 1 , . . . , R } . Then, the cross-entropy criterion is minimized

ith respect to writer-aware parameter set { A , V } in WCNN: 

( A , V ) = −
N B ∑ 

t=1 

log p(s t | X t , �, A , V ) (16) 

here the WCNN output p ( s t | X t , �, A , V ) is the posterior proba-

ility of the reference state s t given the input image X t within the

liding window. N B is the minibatch size using stochastic gradient

ecent algorithm. In our implementation, we process the text lines

ne by one. Thus, N B equals the number of frames of each text line.

lease note that, for each frame X t , the input parallel writer code

ector is selected from V with the writer-aware information. With

he random initialization, we jointly update { A , V } using backprop-

gation and SGD: 

 

p ← A 

p − ε tr 
∂E( A , V ) 

∂ A 

p 

V 

r ← V 

r − ε tr 
∂E( A , V ) 

∂ V 

r (17) 

here εtr is the step size in the training stage, which is initially

et to 0.001 and decreased by a factor of 0.8 after updating with 5

illion frames. We summarize the training procedure of WCNN in

lgorithm 1 . 

lgorithm 1 The training procedure of WCNN. 

Input: 

The writer-independent parameter set � is generated using

conventional CNN-HMM/CNN-PHMM systems; 

Randomly initialize the writer-aware parameter set { A , V } ; 
Prepare the minibatch level training dataset with the state label

and writer information in each frame, 

1: Randomly select one minibatch and set the input writer code

of each frame using writer information and V . 

2: Calculate all required derivatives using backpropagation. 

3: Update the adaptation layer parameters and writer codes { A , V }
using Eq. (17). 

4: Go to step 1 until the convergence condition is satisfied. 

Output: The parameter set of WCNN { �, A , V } 

In the recognition stage, for the data of an unknown writer, a

ultipass decoding is conducted. In the first-pass decoding, we use

nly CNN-HMM/CNN-PHMM with the parameter set � to generate

he recognition results that are adopted as the state labels for up-

ating the writer code vector of this unknown writer in the next

ass. In the second pass, we perform the adaptation by minimizing
he cross-entropy criterion with respect to the writer code V 

U : 

 

′ ( V 

U ) = −
N ′ B ∑ 

t=1 

log p(s U t | X 

U 
t , �, A , V 

U ) . (18) 

imilar to Eq. (16) , X 

U 
t is the t th input frame of an unknown writer,

hile s U t is its corresponding state label from the first-pass recog-

ition. The batch size N 

′ 
B refers to the number of frames of each

ext line. Please note that we do not use V 

U from the training stage

nd randomly initialize the code V 

U of the unknown writer. Ac-

ordingly, we can update V 

U as: 

 

U ← V 

U − ε ts 
∂E ′ ( V 

U ) 

∂ V 

U 
(19) 

here εts is the step size in the testing stage, which is set to

.001. Then, we conduct a second-pass decoding using { �, A ,

 

U } of WCNN. This adaptation and recognition processes could

e alternatively and iteratively conducted until a specified num-

er of multipass decoding is reached. We summarize the adapta-

ion/recognition procedure of WCNN in Algorithm 2 . 

lgorithm 2 The adaptation/recognition procedure of WCNN. 

Input: 

Prepare the WCNN parameter set { �, A } ; 
Prepare the minibatch level dataset of an unknown writer; 

Randomly initialize the corresponding writer code V 

U , 

1: Generate the state labels via first-pass decoding using �. 

2: Perform the adaptation to refine V 

U using Eq. (19). 

3: Conduct decoding using { �, A , V 

U } of WCNN. 

4: Go to step 2 for alternative adaptation and recognition until a

specified number of multipass decoding is reached. 

Output: The writer code V 

U and recognition results 

.4. Hybrid language model 

The HLM is linear interpolation of a traditional NLM and an

NNLM. Considering all calculations in Eq. (2) are performed in the

ogarithmic domain, the HLM is represented as: 

og p HLM 

(C ) = ω log p NLM 

(C ) + (1 − ω) log p RNNLM 

(C ) (20) 

here the p NLM 

( C ) means the probability of an n -character se-

uence C = { C 1 , C 2 , . . . , C n } is computed based on NLM while the

alue of p RNNLM 

( C ) is obtained from RNNLM. ω is a hyperparame-

er to adjust the ratio between NLM and RNNLM. In the RNNLM,

 simple RNN with three layers including input layer, hidden layer

nd output layer is used. At time step i , the input vectors consist

f a 1-of- V coding R i that represents the previous word C i −1 , and

he previous hidden layer output H i −1 . The output of the hidden

ayer is computed as: 

 i = f ( W H,V R i + W H,H H i −1 ) (21) 
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Table 3 

The information of the CASIA-HWDB databases. 

# Class Writer Text Line Character Sample 

HWDB1.0 3837 420 – 1,592,978 

HWDB1.1 3834 300 – 1,145,074 

HWDB2.0 1222 419 20,495 540,468 

HWDB2.1 2310 300 17,292 429,926 

HWDB2.2 1331 300 14,443 383,153 

Table 4 

CER (%) comparison between CNN-HMM and CNN-PHMM based on dif- 

ferent settings of average states per HMM. 

# of states per HMM 5 4 3 2 1 

CNN-HMM 10.02 10.11 10.77 11.71 13.85 

CNN-PHMM 10.02 9.44 9.54 9.91 11.61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Practical issue comparison of different settings of average states 

per HMM for the corresponding CNN-PHMM system in Table 4 . 

N M and N T represent the model size and run-time latency, re- 

spectively, which are normalized by those of CNN-HMM system 

with 5 states per HMM. 

# of states per HMM 5 4 3 2 1 

N M 1 0.96 0.87 0.83 0.77 

N T 1 0.91 0.72 0.63 0.57 
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t  
where W H,V and W H,H are learnable matrices of size H × V and

H × H , respectively. The activation function f is sigmoid. In the out-

put layer, using the history information H i , the probabilities of the

predicted characters at time step i are estimated: 

P i = g( W V,H H i ) (22)

g is the softmax function and W V,H is a V × H learnable matrix.

Naturally, for a predicted character C i at time step i , we have the

following equation: 

p RNNLM 

(C i | C i −1 , C i −2 , . . . , C 1 ) = P i (C i ) . (23)

Finally, 

p RNNLM 

(C ) = 

n ∏ 

i =1 

p RNNLM 

(C i | C i −1 , C i −2 , . . . , C 1 ) = 

n ∏ 

i =1 

P i (C i ) . (24)

In this work, the dimension of the hidden layer is set to 300, the

ω is 0.5 and the weights { W H,V , W H,H , W V,H } in the RNNLM are

optimized by using the truncated BPTT [50] . 

5. Experiments 

We designed a set of experiments to validate and explain the

effectiveness of the proposed method for offline HCTR. All experi-

ments were implemented with Kaldi [28] and Pytorch [29] toolkits

using NVIDIA GeForce GTX 1080Ti GPUs. Additional, we plan to re-

lease our source codes in the near future. 

5.1. Dataset and metrics 

We conducted the experiments on a widely used database for

HCTR released by the Institute of Automation of Chinese Academy

of Sciences (CASIA) [51,52] . To train the character models, both

offline isolated handwritten Chinese character datasets (HWDB1.0

and HWDB1.1) and the training sets of offline handwritten Chi-

nese text datasets (HWDB2.0, HWDB2.1, and HWDB2.2) were used.

The detailed information, including the number of classes, writ-

ers, lines, and characters for each dataset, are shown in Table 3 .

In total, 3980 classes (Chinese characters, symbols, garbage) were

formed with 4,091,599 samples. To train the language model, the

training sets of offline handwritten Chinese text of HWDB2.0–2.2

and the news data downloaded from Internet are used. All the

news data have been checked to exclude the text of the test set.

The whole corpus contains approximately ten million characters.

The ICDAR 2013 competition set with 60 writers unseen to the

training dataset was adopted as the evaluation set [9] . The CER was

computed as: 

CER = 

N s + N i + N d (25)

N 
here N is total number of character samples in the evaluation set.

 s , N i and N d denote the number of substitution errors, insertion

rrors and deletion errors, respectively. Firstly, to focus on charac-

er modeling, we did not use additional language models. 

.2. Experiments on state tying of PHMM 

.2.1. Comparison between CNN-HMM and CNN-PHMM 

We first compared CNN-HMM with CNN-PHMM according to

he best configuration in our previous work [17] , i.e., there were

6 wt layers (14 Conv and 2 FC layers) and the number of chan-

els increased from 100 to 700. The image patch of each frame

as passed through a stack of 3 × 3 convolutional layers. Af-

er the last max pooling layer, a 1 × 1 convolutional layer was

sed to increase the nonlinearity of the net without more compu-

ation and memory than the other larger receptive fields. All con-

olutional layers were followed by the ReLU and the stride was 1,

hile the stride of all max pooling layers was 2 with a 3 × 3

indow. The BN operation was equipped for the outputs before

onlinearity in every convolutional layer. The minibatch size was

,0 0 0, the momentum was 0.9 and the weight decay was 0.0 0 01.

he learning rate was initially set to 0.01 and decreased by 0.92

fter every 40 0 0 batches. Three epochs were conducted. All other

arameters, such as frame length, frame shift, feature extraction

or GMM-HMM, and parameters of GMM-HMM, were the same as

hose used in [17] . 

For CNN-HMM, we list the results of different settings of states

er HMM in Table 4 . The observation consistent with [17] was that

he CER increased greatly from 5 states to 1 state due to the lack of

dequate resolution. Notably, the number of output nodes of CNN

as 3,980 × 5 (19,900) for 5-state HMM, while the number of

utput nodes was 3980 for 1-state HMM, which means that, the

ore states for each character, the more challenging it is to train

NN. Based on the optimal settings of the 5-state CNN-HMM sys-

em, we conducted the state-tying algorithm of our PHMM to re-

uce the average number of states per HMM. Interestingly, the per-

ormance of CNN-PHMM could improve when the average number

f states equaled 3 or 4; however, if we kept reducing this num-

er to 2 or 1, the performance declined. These observations im-

lied that there was a tradeoff between the model resolution and

he parameter redundancy. Moreover, the CER of CNN-PHMM was

uch lower than the CER of CNN-HMM for the same average state

umber, which indicated that CNN-PHMM achieved more reason-

ble state assignment among all character HMMs than CNN-HMM.

nother advantage of CNN-PHMM is its more compact CNN output

ayer, which helps compress the CNN and accelerate the decoding

rocess, as shown in Table 5 . Finally, for CNN-PHMM, an average

 states was used as the default for the subsequent experiments,

hich not only achieved a much lower CER than the best con-

gured CNN-HMM with 5 states but also yielded a much smaller

odel size and a faster decoding speed. 

.2.2. Analysis of state tying 

In Fig. 7 , we list representative examples of tied Chinese charac-

ers from positioned states 1 to 5 in our CNN-PHMM system. It was
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Fig. 7. Examples of tied Chinese characters with similar radicals. 

Fig. 8. Partial results of generated question set for tree-based state tying. 
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Table 6 

CER (%) comparison of different settings of adaptation layer number P and writer 

code dimension G in WCNN-PHMM. 

G 200 100 400 

P 0 1 2 3 4 5 6 5 5 

CER 9.54 9.29 9.17 9.04 8.99 8.96 8.96 9.05 9.02 
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uite intuitive and reasonable that most of the tied Chinese char-

cters shared the same or similar radicals although the state-tying

rocess was purely data driven with diversified writing styles. This

esult could explain why there was a large amount of parameter

edundancy in the conventional untied CNN-HMM model. We also

ive partial results of the data-driven question set in Fig. 8 . In to-

al, there were 7938 questions generated. It could be observed that

he related characters in one question were similar, which demon-

trated the effectiveness of the k -means clustering algorithm. Over-

ll, the proposed state-tying method has two advantages. First, be-

ause the total number of states corresponds to the size of the CNN

utput layer, having fewer categories will make CNN training eas-
er and speed up the recognizer. Second, reducing parameter re-

undancy can potentially increase the number of training samples

or the tied states from different characters. 

For further analysis, we draw the learning curves during train-

ng for conventional CNN and tied-state CNN (TCNN) in Fig. 9 . Ob-

iously, the learning curve of TCNN was always below that of CNN.

ore interestingly, the gap between the two curves significantly

ncreased in the beginning stage and then decreased to a relatively

table value as an increasing amount of training data was used. We

elieve that the compact design of the CNN output layer not only

ade the CNN model easier to train and more effective to classify

ut also fully utilized the training data by state tying. 

.3. Experiments on writer adaptive training for WCNN 

.3.1. The configuration of WCNN 

As shown in Fig. 4 , there are two key factors for writer-adaptive

raining: the number of adaptation layers P and the dimension of

riter code G . The increase in the number of adaptation layers

inking to the convolutional layers goes from input layer to out-

ut layer. Table 6 compares different settings of adaptation layer

umber P and writer code dimension G in WCNN-PHMM. P = 0

enotes the CNN-PHMM system without writer adaptive training.

lease note that second-pass decoding was adopted as a default for

CNN-PHMM. When the writer code dimension was fixed as 200,

he CER decreased from 9.54% to 8.96% with P increasing from 0

o 5. The performance was saturated when more than 5 adapta-

ion layers were used due to the limited adaptation data. Another

nteresting observation is that the performance of WCNN-PHMM

as not sensitive to writer code dimension, with a good tradeoff

f G = 200. Thus, we use the configuration of P = 5 and G = 200 in

he following experiments. 

To further demonstrate the effectiveness of writer adaptive

raining, we make a CER comparison between WCNN-PHMM and

NN-PHMM for each writer in Fig. 10 . Consistent improvements

ould be obtained for most of the 60 writers, and there were only

 exceptions (No. 6, No. 14, No. 43, No. 48, No. 54). Especially for

hose writers with relatively high CERs, significant gains could be

chieved, e.g., the CER was reduced from 15.11% to 9.66% for writer

o. 1, with a relative CER reduction of 36.1%. 

.3.2. WCNN with/without state tying 

In Section 5.3.1 , we illustrated that WCNN could yield addi-

ional gains over CNN on top of PHMM using state tying. In this

ection, as shown in Fig. 11 , we compare the relative CER reduc-

ion (%) in WCNN over CNN with/without state tying for different

ettings of text lines on the competition set. For the CNN-HMM

ystem without state tying, the best configured 5-state HMM in

able 4 was used. In the competition set, the number of text lines

or each writer ranged from 44 to 82. Overall, using all handwrit-

en text lines of one writer for unsupervised adaptation, the CERs

ould be reduced from 10.02% to 9.55% (CNN-HMM vs. WCNN-

MM) and from 9.54% to 8.96% (CNN-PHMM vs. WCNN-PHMM).

hose stable performance gains indicated that the proposed writer-

daptive training method was effective for systems with/without

tate tying (PHMM/HMM). Regarding the performance with respect

o the amount of adaptation data, we observed that only 15 hand-

ritten text lines for each writer on average could start to improve
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Fig. 9. Training loss comparison between CNN and TCNN. 

Fig. 10. CER (%) comparison between WCNN-PHMM and CNN-PHMM for each writer of the competition set. 

Fig. 11. The relative CER reduction (%) of WCNN over CNN with/without state tying for different settings of text lines on the competition set. 
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Table 7 

CER (%) and time consumption comparisons of multiple-pass decoding of 

WCNN-PHMM system. 

Multiple-pass decoding CER (%) Decoding time Adaptation time 

First-pass (CNN-PHMM) 9.54 1.00 0.00 

Second-pass 8.96 1.98 0.47 

Third-pass 8.64 2.95 0.93 
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Table 8 

CER (%) comparison of different language models. 

Method Vocabulary Without LM NLM HLM 

CNN-HMM 3980 10.02 3.72 3.54 

7360 10.1 3.82 3.58 

CNN-PHMM 3980 9.54 3.57 3.44 

7360 9.17 3.52 3.35 

WCNN-PHMM 3980 8.64 3.39 3.27 

7360 8.42 3.33 3.17 

Table 9 

Performance comparison of our proposed method and other 

state-of-the-arts methods without/with language models on 

the 2013 ICDAR competition set. 

Method Vocabulary Without LM With LM 

WCNN-PHMM 3980 8.64 3.27 

7360 8.42 3.17 

Wu et al. [15] 2672 9.98 7.39 

7356 13.36 9.62 

Wang et al. [7] 7356 11.21 5.98 

Wu et al. [8] 7356 – 3.80 

Xie et al. [16] 7357 8.75 3.78 
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t  
he recognition accuracy for unsupervised adaptation. When the

umber of text lines was reduced to 10, the relative CER reduction

as limited, i.e., 0.5% and 1.1% for WCNN-PHMM and WCNN-HMM,

espectively. Furthermore, when we continued to reduce the num-

er of text lines to 5, the CERs increased compared with respec-

ive baselines. More interestingly, with increased adaptation data,

he CER reduction in WCNN over CNN for the PHMM system with

tate tying became more significant than that for the HMM system

ithout state tying, which implies that, as more handwritten data

re collected from one writer, the proposed unsupervised adapta-

ion via WCNN-PHMM can recognize handwritten text lines from

his writer with more accuracy. Thus, the proposed WCNN-PHMM

s a perfect demonstration of a compact model with adaptive ca-

ability. 

.3.3. Multiple-pass decoding of WCNN-PHMM 

The basic intuition in the adaptation stage is better targets can

romote the learning of the writer code and so produce beneficial

eedback on the decoding results. By using the results of second-

ass decoding based on WCNN-PHMM to generate better targets

or the learning of the test writer codes, a third-pass decoding

s conducted to get our final results. As shown in Table 7 , the

ultiple-pass decoding can improve the recognition results (from

.96% to 8.64%), which demonstrates that our intuition is right. We

lso list the run time comparison for different pass numbers. In

rder to make a fair comparison, all experiments here were evalu-

ted on the same machine and we normalized the decoding time

f first-pass to 1. The relative time consumption of n -pass ( n = 2,3)

ncluded two parts: the adaptation time and the decoding time. Al-

hough we could obtain a remarkable improvement via adaptation,

he time consumption was linearly increased with the number of

ecoding passes. To address this problem, the acceleration of CNN

nd fast adaptation will be investigated in our future work. 

.3.4. Visualization analysis for writer code 

To better understand why adaptation based on the writer

ode improves recognition performance, we adopted the t-SNE

53] technique to visualize the generated writer codes by reducing

ts dimension to 2. In Fig. 12 a, the distribution of several writer

odes with the same transcripts on the competition set is shown.

orrespondingly, we list their handwriting in Fig. 12 b. Interestingly,

he distance between different writers in Fig. 12 a was a strong in-

icator of the similarity of the writing styles of different writers.

or example, all the distances of ID pairs (31, 33), (32, 34), and (39,

0) were small, while the corresponding writing styles for those

airs were quite similar, as observed from the handwritten text

ines, which demonstrates that the learned writer code indeed car-

ies the writer information. 

.4. Comparison of different language models 

Table 8 shows CER comparison of different language models.

irst, to demonstrate the scalability of our approach, we also con-

ucted the corresponding 7360-class vocabulary experiments for

ifferent HMM systems. Please note that all the classes and writer

ata in HWDB1.0-HWDB1.2 were used in the 7360-class experi-

ents rather than the subset listed in Table 3 that includes 3980-
lass experiments. Thus, the output layer sizes of CNN in the CNN-

MM system and WCNN in the WCNN-PHMM system were 36,800

nd 22,080 for the 7360-class experiments, respectively, as illus-

rated in Fig. 3 . Although the confusion among the 7360 classes

s higher, the CER of the 7360-class CNN-HMM was slightly in-

reased from 10.02% to 10.1%, thus demonstrating the robustness of

he HMM system. A surprising observation was that the CER of the

360-class CNN-PHMM was remarkably reduced from 9.54% in the

980-class CNN-PHMM to 9.17%, which might be due to the larger

mount of training data used for 7360-class being better utilized

nd shared among different classes (compared with the 3980-class

ase) due to the use of our state-tying algorithm. Correspondingly,

he recognition performance of WCNN-PHMM was also improved

rom the 3980-class case to the 7360-class case, i.e, 8.60%, 8.42%

or the second-pass decoding and the third-pass decoding, respec-

ively. 

Second, by adding a language model, a great improvement

ould be obtained for all the systems. Besides, compared with the

LM, all systems that use the HLM performed better, e.g, a rel-

tive CER reduction of 6.3%, 4.8% and 4.8% could be obtained in

he 70 0 0-class CNN-HMM, CNN-PHMM and WCNN-PHMM, respec-

ively. It is reasonable that a weak character model could benefit

ore from a powerful language model. 

.5. Overall comparison and error analysis 

Table 9 shows an overall comparison of our proposed method

nd other state-of-the-art methods without/with a language model

n the ICDAR 2013 competition set. we list the state-of-the-art

versegmentation method heterogeneous CNN [7] , CNNs-RNNLM

8] and the segmentation-free method SMDLSTM-CTC [15] , CNN-

CE [16] in Table 9 for comparison. With the same configuration

f vocabulary size (4 more garbage classes adopted in our HMM

ystem), the proposed WCNN-PHMM yielded the best performance

hether a language model was employed or not. Moreover, as

hown in Table 8 , by using a powerful language model (HLM), the

NN-HMM, CNN-PHMM with one-pass decoding still could outper-

orm the other methods. 

For error analysis, we provide two examples in Fig. 13 . In the

eft part of the figure, the conventional CNN-HMM misrecognized

he first character of the text line, while CNN-PHMM generated the

orrect result. A reasonable explanation is that the left radical of

he character in the brown box became easier to recognized be-
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Fig. 12. Visualization analysis of several writer codes on the competition set. 

Fig. 13. Two examples of recognition results for different HMM systems. 

Fig. 14. Comparison of segmentation results of different HMM systems. 
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cause state tying could potentially learn the parameters better than

the radical with more shared training samples from other charac-

ters. In the right of the figure, CNN-PHMM made a substitution er-

ror (red), while WCNN-PHMM could correct this mistake. Arguably,

even humans could confuse this handwritten character in isolation

without any prior knowledge. However, by learning the writing

style of this particular writer using the writer code, our WCNN-

PHMM could correctly recognize it. Besides, the HMM-based ap-

proaches can assign each image frame to a certain state belong-

ing to a character. Once the process of recognition is completed,

the segmentation information between different characters can be

naturally found. Fig. 14 shows the segmentation results of differ-

ent HMM-based systems, i.e. CNN-HMM, CNN-PHMM and WCNN-
HMM. The red lines were the boundaries of different characters.

or many characters such as the characters within the green dot-

ed boxes, the CNN-PHMM and WCNN-PHMM provided more ac-

urate boundaries than the CNN-HMM. For characters within the

lue dotted boxes, we observed that the WCNN-PHMM could still

ive the right boundaries while the CNN-PHMM and CNN-HMM

ailed. 

Finally, in Fig. 15 a and b, we explain and analyze the scores

f the reference states of the underlying characters from the CNN

utputs for CNN-HMM, CNN-PHMM, and WCNN-PHMM. Fig. 15 a

hows the comparison of the state posterior probability (SPP) of

he frames for the reference character class in the brown box of

ig. 13 . CNN-PHMM consistently generated higher SPPs than CNN-
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Fig. 15. Comparison of reference state posterior probability (SPP) for different HMM systems. 
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MM for all frames of the sequence. Similarly, in Fig. 15 b, corre-

ponding to the character class in the red box of Fig. 13 , WCNN-

HMM always yielded higher SPPs than CNN-PHMM. 

. Conclusion 

In this study, we propose a novel WCNN-PHMM architecture

or offline handwritten Chinese text recognition to handle two key

ssues: the large vocabulary of Chinese characters and the diver-

ity of writing styles. By combining parsimonious HMM based on

tate tying and unsupervised adaptation based on writer code, our

ew approach demonstrates its superiority to other state-of-the-

rt approaches according to both experimental results and anal-

sis. However, current code-based adaptation simply depends on

he backpropagation of network, which means adequate data is im-

ortant. Besides, the 1-D HMM can not provide up-and-down in-

ormation of characters. For future work, we will investigate the

eta-learning to reduce dependence on data in adaptation and a

ore advanced way by using 2D-HMM to achieve recognition and

egmentation. Furthermore, we will aim to accelerate the CNN to

educe decoding time. 
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