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ABSTRACT

The spectral information of acoustic scenes is diverse and com-
plex, which poses challenges for acoustic scene tasks. To improve
the classification performance, a variety of convolutional neural net-
works (CNNs) are proposed to extract richer semantic information of
scene utterances. However, the different regions of the features ex-
tracted from CNN-based encoder have different importance. In this
paper, we propose a novel strategy for acoustic scene classification,
namely high-resolution attention network with acoustic segment
model (HRAN-ASM). In this approach, we utilize fully CNN to
obtain high-level semantic information and then adopt two-stage
attention strategy to select the relevant acoustic scene segments.
Besides, the acoustic segment model (ASM) proposed in our recent
work provides embedding vectors for this attention mechanism. The
performance is evaluated on DCASE 2018 Task 1a, showing 70.5%
good classification accuracy under single system and no data expan-
sion, which is superior to CNN-based self-attention mechanism and
highly competitive.

Index Terms— Acoustic scene classification, attention mecha-
nism, acoustic segment model, fully convolutional neural network

1. INTRODUCTION

The goal of Acoustic Scene Classification (ASC) task is to classify
the audio to specific scenes, like metro, airport, etc. Acoustic scene
recordings contain a large amount of information and rich content.
Therefore, the development of automatic identification system for
ASC has broad prospects, and its analysis has great potential in a va-
riety of applications such as intelligent sensing devices, audio-based
multimedia search, security monitoring and so on. Great progress
has been made by several important challenges for ASC, such as De-
tection and Classification of Acoustic Scenes and Events (DCASE)
[1] [2]. However, the complexity of the acoustic scene utterances and
the sparsity of effective frames bring difficulties to the ASC task. In
this study, we focus on extracting and locating the critical acoustic
segments to distinguish different scenes.

ASC has been an active research field for decades. Many tra-
ditional models have been investigated for ASC such as Gaussian
mixture model (GMM) [3]. [4] investigated high-resolution model-
ing units of deep neural networks (DNNs) from concrete to abstract
for acoustic scene classification based on GMM and ergodic hidden
Markov model (HMM). [5] proposed a feature learning approach via
decomposing time-frequency (TF) representations with GMM and
archetypal analysis (AA). Recently, deep learning techniques have
been applied to ASC, such as convolutional neural networks (CNNs)
[6], recurrent neural networks (RNNs) [7], and convolutional recur-
rent neural networks (CRNNs) [8]. To further improve ASC per-
formance, generative adversarial networks (GANs) [9] have been

widely investigated. [10] proposed to use GAN-based method for
generating additional training database. [11] adopted a calibration
transformation to improve the performance of their binaural i-vector
system for ASC. Even though the previous methods have improved
performance a lot, there are still a lot of basic problems worth ex-
ploring. For example, many scenes are quite confusing between each
other and have high similarity in time. Even for human beings, it is
quite challenging to classify among them. Moreover, CNN-based
approaches are hard to capture the correlation of fragments in dif-
ferent scenes. In this paper, we combine acoustic segment model
(ASM) and attention mechanism framework to address these chal-
lenges in ASC.

Recently, we propose a novel acoustic scene modeling frame-
work [12] in which each audio recording as an acoustic utterance is
decoded into a sequence of acoustic events, some of them are highly
discriminative, e.g., with high indexing power [13], to access certain
acoustic scenes. Although the ASM model is able to analyze the
acoustic scene information in detail. Due to the limited modeling
ability of ASM by using GMM-HMM, in this study we consider to
combine with more powerful model like attention network to further
improve the ASC performance. Specifically, the fully convolutional
neural network (FCN) is first adopted to extract high-level semantics
representations. Then, a two-stage high-resolution attention mech-
anism is proposed to locate more discriminative acoustic segments.
In the first-stage attention, a set of embedding vectors initialized by
ASM are designed to achieve a high-resolution attention for the sec-
ond stage. Compared with the conventional one-stage self-attention
mechanism [14], our ASM initialized embedding vectors provide
our system a higher-resolution representation and accordingly result
in better performance under the premise of no data expansion.

2. THE PROPOSED ARCHITECTURE

In this paper, we propose a novel hybrid approach based on atten-
tion mechanism and acoustic segment model (ASM) [12] for acous-
tic scene classification. CNN-based models have been widely uti-
lized to encode complicated scene utterances into high-level seman-
tics representations. The key point of our method is to make generic
CNN-based model be aware of more critical information of the input
features by attention mechanism. Besides, the embedding of each
scene generated from ASM is regarded as prior information and the
key basis for our approach. With the help of the embedding vectors
of different scenes and the direct guidance of ASC objective func-
tion, the attention mechanism is able to provide useful and discrimi-
native information. As shown in Fig. 1, the overall framework of our
proposed HRAN-ASM consists of three parts, namely CNN-based
encoder, ASM sequences generation and attention module. The de-
tails are introduced as follows.
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Fig. 1. Overall framework of our proposed HRAN-ASM approach. Attention1 indicates the first attention and attention2 indicates the second
attention.

2.1. CNN-based Encoder

CNN has been constantly used as a feature extractor to get ab-
stract and effective information. And it has been proved that
CNN-based system can obtain a better accuracy compared with
the traditional systems on the ASC task [15]. Inspired by [16],
we convert VGGNet-16 [17] into a fully convolutional network
(FCN) by simply removing its fully connected layers. Then, we
use the VGGNet-16 based FCN as our CNN-based encoder. All
the convolution layers are followed by a batch normalization (BN)
[18] and a ReLU activation function. In addition, five max pooling
layers are added to remove noise and extract robust features. Log
Mel-filterbank (LMFB) [19] is as our input feature with the size of
c× f × t , where c is 3 and the 3 channels have the same LMFB. We
assume that the output of CNN-based encoder is a 3-dimensional
array of size C × F × T , where F and T are the sizes regarding to
the frequency and time domains and C is the number of channels.
In order to focus on specific time regions of high-level representa-
tions, the attention module is expected to deal with the output of
CNN-based encoder.

2.2. ASM Sequences Generation

The ASM sequences generation is one of the most important parts
of our method, since it provides additional information for attention
mechanism. Originally, the acoustic segment model method was in-
troduced for ASR [20] and recently has been applied to ASC tasks in
our previous work [12]. In acoustic segment approach, an acoustic
scene is represented as a sequence of acoustic alphabets, which is
characterized by a common set of fundamental acoustic units used
to span the acoustic space of all possible acoustic events. And these
fundamental acoustic units also called ASM units. In this work, the
acoustic segment model is used to generate representative embed-
ding for each scene.

Here we introduce how to generate the embedding of different
scenes briefly. In general, ASM sequences generation consists of

two stages: initial segmentation and ASM training. In the initializa-
tion phase, we use GMM-HMM-based method to refine the segment
boundaries and the segment labels by the hidden states. Then the
hidden states serve as the standard corpus to represent all latent se-
mantic acoustic scene events. In ASM training stage, each ASM unit
is modeled by a GMM-HMM and every scene utterance is decoded
into a sequence of ASM units. An example of how these ASM se-
quences look like is “S3 S17 S10 S8...”, where “S3” represents the
first “event” in this sample, “S17” is the second, etc.

In order to yield the embedding of each scene category, we first
linearly stitch together the ASM sequences belonging to the same
category. After that, term frequency (TF) and inverse document fre-
quency (IDF) (TF-IDF) [21] are used to obtain the ASM unit counts
in each scene. The former TF is the frequency of occurrence of
individual ASM unit in each scene and the latter IDF reflects the
frequency of the ASM unit in all scenes. Moreover, the dimension
of these embeddings is equal to the total number of useful features
based on unigram and bigram counts. If there are J ASM units in
a scene corpus and assume all unigrams and bigrams exist, then the
dimension of the embedding is K = J × (J + 1). The TF of ASM
unit m in the n-th scene is given by

TFm,n =
cm,n∑K
k=1 ck,n

(1)

where cm,n is the count of m in the n-th scene. The IDF is given by

IDFm = log
L+ 1

L(m) + 1
(2)

where L is the number of all scene types and L(m) is the total num-
ber of times that ASM unitm appears in all scenes. So each element
in the embedding en is given by

em,n = TFm,n × IDFm (3)

Finally, the embedding of N kinds of scene is given by

E = {e1, e2, ..., eN} , en ∈ RK (4)
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2.3. Attention Module

In this subsection, we propose two-stage attention mechanism to ex-
tract discriminative information from the high-level representation.
In fact, CNN-based self-attention [14] can also calculate the weight
of different time frames. In HRAN-ASM approach we introduce
the effective information obtained by the ASM model to help us ob-
tain more accurate discriminative fragments of acoustic scene ut-
terances. Specifically, CNN is designed in speech to diminish the
frequency domain variation [22] and reduce the distinguished infor-
mation in frequency dimension at the output of CNN-based encoder.
Therefore, we apply an average pooling layer for frequency dimen-
sion reduction and lay emphasis on exploring the impact of different
time frames on the classification network. As shown in the attention
module, the high-level representation with the size of C ×F ×T is
converted to C ×T , in which each element is a C-dimensional vec-
tor represented as ai. For the feasibility of the algorithm, we set C
to beK, which is the dimension of the embedding. And we describe
the output as s shown in Eq. (6) through a simple expression.

A = {a1,a2, ...,aT } (5)

s =
1

T

T∑
t=1

at (6)

2.3.1. The First Attention of HRAN-ASM Approach

The purpose of the first attention mechanism is to explore the intrin-
sic connection between the current utterance and different scenes.
The ASM model is able to provide N embedding vectors for each
sence and these embedding vectors is regard as guiding information
for the first attention mechanism. We use the following formulas as
the first attention:

βi =
exp(e>

i · s)∑N
n=1 exp(e>

n · s)
, i ∈ (1, N) (7)

e =

N∑
i=1

βiei (8)

In Eq. (7), βi is the attention value scoring the similarity between
ei and s through inner product and softmax function, where ei is
the scene embedding from ASM model and s is the vector repre-
sentation of the current utterance. Moreover, the Eq. (8) calcu-
lates weighted average of ei, which provides addition information
for finding discriminative frames.

2.3.2. The Second Attention of HRAN-ASM Approach

The second attention uses the embedding, which is calculated from
the first attention, to focus on effective time regions of the output.
For the second attention, we use the following formulas:

αj =
exp(e> · aj)∑T
t=1 exp(e> · at)

, j ∈ (1, T ) (9)

s′ =

T∑
j=1

αjaj (10)

The second attention mechanism is designed to extract the elements
that are important to the scene of the utterance and aggregate those
element arrays to form a scene vector. We measure the importance

weight of the aj by the inner product between aj and the embed-
ding e calculated from the first attention. After that, the normalized
importance weight αj is calculated through the softmax function.
Finally, the summary of current scene s′ is computed by Eq. (10).

For multi-classification tasks, we usually use cross-entropy as
network loss function. In the training process, to ensure orthogonal-
ity between the scene embedding, we add the cosine distance as a
penalty to the cross entropy loss. Accordingly, the loss L is defined
by

L = Lce + γLcos (11)

Lcos =

N∑
i=1

N∑
j=1,j 6=i

dcos(ei, ej) (12)

dcos(ei, ej) =
ei · ej

‖ei‖‖ej‖
(13)

Lce is cross-entropy loss, Lcos is cosine loss and dcos is the cosine
distance between two embedding vectors. γ is a weighting factor.

3. EXPERIMENTS AND ANALYSIS

3.1. Dataset and Feature Extraction

The experiments were conducted on DCASE2018 Task 1a, which is
widely used as a benchmark for acoustic scene classification. The
audio recordings with 48 kHz sampling rate in 10 different scenes
were recorded by electret binaural microphone. The length of each
audio recording is 10 seconds. For this study, we convert the binaural
recordings into mono recordings. The input of CNN-based encoder
is 128-dimensional log Mel-filterbank (LMFB) [19] features. For
the ASM sequences generation, the 60-dimensional mel-frequency
cepstral coefficients (MFCC) with ∆ and ∆∆ are utilized as input
features. Both LMFB and MFCC adopt a 40-ms observation win-
dow with a 20-ms overlap. According to the official requirement,
the development dataset is divided into training and test subsets. The
training subset and test subset contain 6122 and 2518 segments, re-
spectively.

3.2. Experimental Configuration and Results

In this subsection, we show the experimental configuration and the
results of the acoustic scene classification based on our method.
First, the VGGNet-16 removing its fully connected layer is used
as the CNN-based encoder and the number of output channels in
the last convolutional layer is set to 405. And we initialize the en-
coder with random initialization parameters. Second, we implement
acoustic segment model to generate 20 ASM units and transcribe
each utterance to the ASM sequences. TF-IDF is performed on the
entire training subset to obtain the 405-dimensional embedding vec-
tors for each scene. More detailed setups of ASM can refer to [12].
Finally, two-stage attention mechanism combined with embedding
vectors is utilized to get salient frames of each scene and improve
recognition performance. The CNN model is trained with stochastic
gradient descent (SGD) [23] based backpropagation (BP) algorithm.
The initial learning rate is set to 0.005 and 60 epoch are conducted.
The coefficient γ is set to 1.

Table 1. The performance of different approaches on test set.

System VGGNet-16[24] ASM[12] Self-Attention

Accuracy 67.4% 66.1% 68.9%
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Table 1 shows the performance comparison of different ap-
proaches on test set. “VGGNet-16”, “ASM[12]” and “Self−Attention”
denote the VGGNet-16-based classifier without attention mecha-
nism, our previously proposed ASM approach [12] and VGGNet-16
with self-attention approach [14]. First, we can find that the self-
attention approach can improve the ASC performance comparing
to “VGGNet-16”, which demonstrates that the attention mechanism
can be aware of more critical information for ASC task. Second,
“ASM” can achieve the comparable performance to “VGGNet-16”,
although these are two very different approaches. This result may
imply that there are complementary between the two methods.

Table 2. The performance comparison of our HRAN approach with
different initialization methods for the embedding vectors on test set.

System Self-Attention HRAN-Orth HRAN-ASM

Accuracy 68.9% 68.3% 70.5%

Table 2 shows performance comparison of our HRAN approach
with different initialization methods for the embedding vectors on
test set. “HRAN-Orth” and “HRAN-ASM” denote the proposed
HRAN approach with random orthogonal initialization (Orth) [25]
and ASM initialization for embedding vectors, respectively. First,
we can find that both “HRAN-Orth” and ”HRAN-ASM” outper-
form “VGGNet-16” in Table 1, which indicates that the proposed
attention mechanism also can be aware of more critical informa-
tion for ASC task. Second, “HRAN-ASM” can further improve the
performance comparing to “HRAN-Orth”, e.g., the accuracy from
68.3% to 70.5%. It demonstrates that the first attention mecha-
nism based on ASM initialization is better than that based on or-
thogonal initialization. Considering that different scenes might in-
clude similar segments, the embedding vectors in HRAN-Orth are
not sufficient to characterize each scene comparing to that in HRAN-
ASM. Hence, the embedding initialized by ASM leads to much bet-
ter performance than orthogonal initialization. Finally, our proposed
HRAN-ASM approach which utilized the embedding vectors ob-
tained by ASM and VGGNet-16 simultaneously achieves the best
performance, which demonstrates the strong complementarity be-
tween the embedding vectors obtained by ASM and VGGNet-16.

3.3. Analysis and Visualization

To illustrate the attention mechanism effect in HRAN-ASM ap-
proach, we visualize the weights of the first-stage attention and the
second-stage attention respectively. Fig. 2 (a) shows the LMFB
spectrogram of one example from the Bus scene. Fig. 2 (b) shows
the corresponding weights α of the second-stage attention over the
time axis. In our experiments, T is 15. For the first-stage attention
weights α displayed in Fig. 2 (c), the blue bars represent the weights
of N ASM embedding vectors, where the N is 10. From Fig. 2
(b), the LMFB features at different time indices are assigned with
different weights, which describes the importance contribution at
different time indices to current acoustic scene. In the last three
seconds of this utterance the female conductor calls out and subse-
quently the bus is arriving, so it’s easy to judge that the category
is “bus”. Obviously our HRAN-ASM approach is able to explic-
itly show larger weights to those critical segments and give better
classification results accordingly. Compared with the conventional
self-attention approach, our approach can generate different weights
(β in Fig. 2 (c)) to the set of embedding vectors initialized by ASM
while only a global embedding vector is adopted in the self-attention

case.

(a) The LMFB spectrogram

(b) The weights α of the second-stage attention

(c) The weights β of the first-stage attention

Fig. 2. Visualization of attention for one example in Bus scene.

4. CONCLUSIONS

In order to consider more critical information of the input features,
we propose a novel approach based on acoustic segment model and
two-stage attention mechanism to solve scene confusion problems.
The acoustic segment model is used to generate representative em-
bedding for each scene as a guided information, and a two-stage
attention mechanism combined with embedding vectors is utilized
to get salient frames of each scene and improve recognition rate.
The experiments verify that our approach achieves highly compet-
itive performance under single system and no data expansion. Be-
sides, we demonstrate that our hybrid approach is able to explicitly
show the correlation of segments in different scenes by the two-stage
attention.
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