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Using Generalized Gaussian Distributions to Improve
Regression Error Modeling for Deep Learning-Based

Speech Enhancement
Li Chai , Jun Du , Qing-Feng Liu, and Chin-Hui Lee , Fellow, IEEE

Abstract—From a statistical perspective, the conventional min-
imum mean squared error (MMSE) criterion can be considered
as the maximum likelihood (ML) solution under an assumed
homoscedastic Gaussian error model. However, in this paper, a
statistical analysis reveals the super-Gaussian and heteroscedastic
properties of the prediction errors in nonlinear regression deep
neural network (DNN)-based speech enhancement when estimating
clean log-power spectral (LPS) components at DNN outputs with
noisy LPS features in DNN input vectors. Accordingly, we propose
treating all dimensions of the prediction error vector as statistically
independent random variables and model them with generalized
Gaussian distributions (GGDs). Then, the objective function with
the GGD error model is derived according to the ML criterion.
Experiments on the TIMIT corpus corrupted by simulated addi-
tive noises show consistent improvements of our proposed DNN
framework over the conventional DNN framework in terms of
various objective quality measures under 14 unseen noise types
evaluated and at various signal-to-noise ratio levels. Furthermore,
the ML optimization objective with GGD outperforms the con-
ventional MMSE criterion, achieving improved generalization and
robustness.

Index Terms—Speech enhancement, deep neural network, pre-
diction error modeling, generalized Gaussian distribution, maxi-
mum likelihood estimation.

I. INTRODUCTION

S INGLE-CHANNEL speech enhancement has attracted
considerable research attention for decades as an important

front-end of speech processing systems. It aims to reduce noise
in input speech and improve the quality and intelligibility of
speech signals in the context of automatic speech recognition,
mobile communications and hearing aids [1], [2], among other
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applications. Nonetheless, the performance of speech enhance-
ment in real-world adverse acoustic environments remains un-
satisfactory and challenging, particularly due to the wide variety
of unseen environmental noises.

Conventional speech enhancement, which includes a wide
range of approaches, such as spectral subtraction [3], Wiener
filtering [4], minimum mean squared error (MMSE) estimation
[5], and the optimally-modified log-spectral amplitude (OM-
LSA) speech estimator [6], [7], has been extensively studied in
the past. An annoying artifact, called musical noise, is generally
encountered in these techniques. Moreover, these techniques
often fail to track non-stationary noises for real-world scenarios
in unexpected acoustic conditions.

With the development of high-performance computing and
a breakthrough in training deep architectures [8], [9], deep
learning technologies have been successfully used for many ap-
plications [10]. Recently, different types of deep neural networks
(DNNs) have been applied as regression models for speech sep-
aration and speech enhancement, such as feed-forward DNNs in
[11]–[14], recurrent neural networks (RNNs) in [15]–[17], and
convolutional neural networks (CNNs) in [18], [19]. These mod-
els have demonstrated superiority over conventional approaches
due to their powerful modeling capabilities and requirement
of fewer assumptions about the signals. DNN-based speech
enhancement can be divided into two main groups: mapping-
based methods and masking-based methods. One representative
mapping-based method [13], [14] adopted feed-forward DNNs
to model the complicated relationship between noisy and clean
speech by learning deep and wide DNN architectures using a
large collection of heterogeneous training data and abundant
acoustic contextual information. This approach was able to
address nonlinear and non-stationary noises effectively. Instead
of performing direct mapping, Wang et al. [12], [20] employed a
set of complementary features extracted from corrupted speech
to estimate the ideal binary mask (IBM) or smoothed ideal ratio
mask (IRM). The predicted mask was then applied to the noisy
features to obtain the enhanced features. Speech enhancement
using the IBM target can be formulated as a binary classification
task that can effectively improve speech intelligibility. Speech
enhancement using the soft IRM target is especially beneficial
for improving the objective speech quality. In addition, Erdogan
et al. [21] developed a phase-sensitive mask that incorporates
the phase difference between noisy speech and clean speech.
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To jointly enhance the magnitude and phase spectra, a complex
IRM was proposed in [22].

From a machine learning perspective, one key challenge of
DNN-based speech enhancement lies in optimizing the com-
plicated and nonconvex objective function. DNN-based speech
enhancement using the IBM target can naturally be treated as a
supervised classification problem. A commonly used objective
function for IBM estimation is cross entropy. In contrast, DNN-
based speech enhancement using another target (e.g., magnitude
spectrum or log power spectrum of a clean signal, or IRM) can
be treated as a supervised regression problem. A commonly used
objective function for target prediction is MMSE. Advanced
objective functions for regression DNN-based speech enhance-
ment have been investigated in recent studies. A technique to
jointly optimize all the sources with a discriminative objective
function was proposed in [15], [16], [23], [24]. A multi-objective
learning scheme was adopted to utilize secondary targets in
[19], [25]. Some studies have applied an elementwise weight
function and a penalty term to the conventional MMSE by
considering human auditory perception [26]–[30]. In addition,
some differentiable objective metrics have been optimized di-
rectly by including them in the objective function [31]. More
recently, [32]–[35] directly incorporated short-time objective
intelligibility (STOI) [36] into the loss function to maximize
speech intelligibility. However, these approaches showed no or
only modest improvements in STOI compared to the conven-
tional MMSE criterion. [35] also incorporated the perceptual
evaluation of speech quality (PESQ) [37] into the loss function
and then optimized it via a gradient approximation method
to maximize speech quality. In addition, [38] directly utilized
perceptual metrics, such as PESQ or STOI, as the objective
function and then optimized it through reinforcement learning.
However, the main problem encountered in [32], [35], [38] is that
STOI- or PESQ-only optimization often leads to degradation of
another evaluation metric. For example, they achieved improved
STOI at the cost of a decrease in PESQ.

From a statistical perspective, the MMSE criterion can be
considered as the maximum likelihood (ML) solution under an
assumed independent, normally distributed and homoscedastic
noise model [39]–[41]. However, in this study, the statistical
analysis presented in Section III-A reveals the super-Gaussian
nature and heteroscedasticity [42] of the prediction error dis-
tribution of the nonlinear regression DNN [14] for each log-
power spectral (LPS) component. MMSE generally enjoys cer-
tain well-known optimality properties within strictly Gaussian
parametric models. Accordingly, we should pay attention to the
observation that MMSE may fail to provide optimal results in
the case of non-Gaussian error distributions because it can be
very sensitive to departures from normality, particularly for long-
tailed situations [41], [43]–[45]. This is one of main reasons for
why conventional DNN framework denoted as MMSE-DNN is
not robust in adverse acoustic environments, e.g., it leads to over-
smoothing and speech information loss problems in conditions
with a low signal-to-noise ratio (SNR) [46]. To address this issue,
we aim to improve prediction error modeling by considering a
generalized Gaussian distribution (GGD) [47] for DNN-based
speech enhancement. The family of GGDs is more flexible for
data modeling, with the distributions ranging from a highly

peaked one to a uniform density. Then, a new objective function
with the GGD error model is derived according to the ML
criterion. The main difference of our proposed ML framework
from the conventional DNN-based regression using the MMSE
criterion for function fitting is that we replace the conventional
mean squared error (MSE) with the log-likelihood as the new
DNN optimization objective. The scripts in our experiments can
be downloaded from the official GitHub website.1

Our proposed ML framework denoted as ML-GGD-DNN,
which still aims to learn the many-to-one mapping function
between the input features and the target features by modeling
the prediction error in a deterministic manner, is different from
the mixture density network (MDN) [40], which is used to
learn the conditional probability distribution of the target vector
conditioned on the input vector to obtain a complete description
of the data. When the DNN-based speech enhancement problem
is considered to be an ill-posed inverse problem where the map-
ping cannot be uniquely determined given an input signal, the
assumption of many-to-one mapping in either MMSE-DNN or
ML-GGD-DNN is not theoretically correct and potentially limits
the performance. Although [48] proposed a novel framework
utilizing an MDN to take the estimation uncertainty into account,
this novel framework required an extra statistical model-based
enhancement approach to obtain the final clean speech estima-
tion, and it showed only a slight improvement in log-spectral
distortion (LSD) compared to the conventional MMSE-DNN.
In contrast, although our proposed ML-GGD-DNN still aims to
learn the many-to-one mapping function, it achieves consistent
improvements in terms of various evaluation metrics compared
to the conventional MMSE-DNN. Moreover, although both
DNN parameters and GGD parameters need to be optimized
in the training stage for our ML-GGD-DNN, no additional
computational cost is introduced compared to the conventional
MMSE-DNN because the number of DNN parameters is signif-
icantly greater than the number of GGD parameters.

This work is an extension of our previously published version
[49] with the following new contributions:
� We present an extended general ML framework with the

corresponding formulations for DNN-based regression that
can be applied to various regression tasks.

� We elaborate a statistical analysis of the prediction errors,
which provides guidance for the selection of the specific
parameterized form of the error density.

� Based on the super-Gaussian and heteroscedastic proper-
ties of the prediction error distributions in the nonlinear
regression DNN-based speech enhancement revealed by
a detailed statistical analysis, a flexible and reasonable
GGD is statistically investigated and applied to model
the prediction error distribution in each dimension. Our
previous work using a Gaussian distribution (GD) to model
the prediction error [49] is only a special case of the newly
proposed ML-GGD-DNN framework.

1https://github.com/LiChaiUSTC/Speech-enhancement-based-on-a-
maximum-likelihood-criterion
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� This work proposes two algorithms for optimization: one
algorithm achieves better robustness, a slightly better per-
formance and easier implementation, and the other is pre-
sented as an alternative.

� The presented experiments demonstrate that the super-
Gaussian nature and heteroscedasticity represented by the
shape and scale factors in the GGD, respectively, are the
two main contributors to the success of the ML-GGD-
DNN for our DNN-based speech enhancement task. More
specifically, the ML-GGD-DNN with the assumption of
heteroscedasticity achieves a faster convergence and a bet-
ter generalization capability than that with the assumption
of homoscedasticity. The ML-GGD-DNN with a super-
Gaussian assumption achieves better robustness and per-
formance than that with a Gaussian assumption.

� Compared with either the conventional MMSE-DNN or
ML-GD-DNN in [49], the proposed approach achieves
better robustness and generalization capability, with im-
provements in both speech intelligibility and quality.

� The proposed framework is successfully extended to the
task of speech dereverberation. This provides strong sup-
port for its versatility for various regression tasks.

The remainder of this paper is organized as follows. An
extended general ML framework with the corresponding for-
mulations for DNN-based regression is presented in Section II.
Then, in Section III, a GGD is defined to model the prediction
error of DNN-based speech enhancement based on the elabo-
rated statistical analysis, followed by two training algorithms
that jointly optimize the DNN and GGD parameters and special
cases of ML-GGD-DNN. In Section IV, we present an in-depth
evaluation of the ML-GGD-DNN approach with an extension to
speech dereverberation. Finally, we conclude in Section V.

II. ML FRAMEWORK FOR DNN-BASED REGRESSION

Before introducing the specific model for speech enhance-
ment, we first propose a general ML framework for DNN
regression that can potentially be applied to many research areas,
such as computer vision [50], [51], handwriting recognition
[52], speech dereverberation [53], speech enhancement and
separation [14], [54]. Moreover, the DNN architectures can be
feed-forward DNNs, CNNs or RNNs.

Suppose that we have a training set with N data pairs
(Y ,X) = {(yn,xn)|n = 1, 2, ...N}, where yn and xn are the
inputDin-dim and the targetDout-dim feature vectors of the n-th
sample, respectively; then, a regression DNN can be adopted to
model the mappingF between the two high-dimensional vectors
as follows:

x̂n = F(yn;W ), (1)

where x̂n is the n-th output estimated Dout-dimensional feature
vector and W is the parameter set of the regression DNN. The
corresponding prediction error vector en is defined as

en = xn − x̂n. (2)

From a probabilistic perspective, we can reasonably assume
that the prediction error vector follows a specific parameterized
density g(en|Θ)withΘ as the parameter set. If the target vector

xn is also a random vector and x̂n is considered as a fixed vector
with an unknown parameter set Θ, then by using Eqs. (1) and
(2), an equivalent conditional distribution of the target vectorxn

can be derived as follows:

p(xn|yn,W ,Θ) = g(xn −F(yn;W )|Θ). (3)

By assuming that all data pairs are drawn independently from
the distribution in Eq. (3), the log-likelihood function of (Y ,X)
is written as follows:

ln p(X|Y ,W ,Θ) =

N∑

n=1

ln g(xn −F(yn;W )|Θ), (4)

where the parameter set (W ,Θ) is to be optimized by maximiz-
ing the log-likelihood function. In Section III-C, two training
algorithms for optimizing W and Θ are presented. Note that
the DNN parameters W and the distribution parameters Θ are
jointly learned during training; only the DNN parameters W
are needed during testing. The main difference of our proposed
ML framework from the conventional DNN-based regression
using the MMSE criterion for function fitting is that we replace
the conventional MSE with the log-likelihood as the new DNN
optimization objective. In other words, we design a novel opti-
mization approach for the DNN parameters with a fixed DNN
architecture.

One key issue here is to set the specific form of the error
density, g(Θ). According to our studies on speech enhancement,
g(Θ) is determined by the input/target data properties and DNN
type. For example, g(Θ) may differ for computer vision and
speech processing. Even for the same task, e.g., speech enhance-
ment, the design of different learning targets may also lead to
different error densities. Thus, the selection should depend on a
statistical analysis of prediction errors.

III. ML-GGD-DNN FOR SPEECH ENHANCEMENT

A. Selection of Prediction Error Distributions

This study primarily explores applying the ML framework
in Section II for the feed-forward DNN-based speech enhance-
ment approach proposed in [14]. To determine the form of the
prediction error distribution, a statistical analysis is conducted
on the prediction error vectors of the cross-validation set for
the conventional feed-forward DNN framework in [14]. The
cross-validation set consists of approximately 400 sentences
randomly selected from the 80-hour multi-condition data set
consisting of pairs of clean and noisy speech utterances. A
detailed description of the cross-validation set is provided in
Section IV-A. The prediction error vectors are calculated by
subtracting the enhanced feature vectors from the target feature
vectors, where the enhanced feature vectors are from the output
of the conventional feed-forward DNN in [14] whose parameters
have been well optimized in advance.

First, we show the normalized histograms of randomly se-
lected dimensions (2, 128, 256) of the prediction error vectors
in Fig. 1. These dimensions are selected to represent errors in
low-frequency, middle-frequency, and high-frequency respec-
tively. Fig. 1 indicates that the distributions of all dimensions
are clearly unimodal and can well satisfy the assumptions of
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Fig. 1. The normalized histograms for selected dimensions (D2,D128,D256)
of the prediction error vector on the cross-validation set. These selected three
dimensions represent errors in low-frequency, middle-frequency, and high-
frequency, respectively.

Fig. 2. The variance/kurtosis of each dimension of the prediction error vector
on the cross-validation set. The left figure shows the variance values in 257
dimensions. The right figure shows the kurtosis values in 257 dimensions.

Fig. 3. The correlation coefficient matrix of the prediction error vector on the
cross-validation set.

zero mean and heteroscedasticity. This partially explains why the
MMSE criterion with the assumption of homoscedasticity [55],
or an identical scale factor in all dimensions of the prediction
error vectors, often leads to a poor generalization capability.
Second, the statistics of all dimensions, including the variance
and kurtosis, are shown in Fig. 2, where the variance curve
explicitly demonstrates the heteroscedasticity and the kurtosis
curve reveals that all dimensions follow the super-Gaussian
distribution with a kurtosis greater than 3 (the kurtosis of a GD).
Finally, Fig. 3 plots the correlation coefficient matrix of the pre-
diction error vectors. This figure indicates that the correlations
among most dimensions are weak despite the relatively strong
correlations between adjacent dimensions. Consequently, it is
reasonable to make the assumption of independence among the
dimensions of the prediction error vector, which also simplifies
the formula derivation.

Based on the above analysis, we utilize the univariate GGD to
model the prediction error distribution in each dimension, whose
probability density function (PDF) is defined as

pGGD(x|μ, α, β) = β

2αΓ( 1β )
exp

(
−|x− μ|β

αβ

)
, (5)

Fig. 4. The PDFs of GGDs, where the parameters β and α are measures of
the distribution’s kurtosis and variance, respectively. The left figure shows the
variation tendency of the distribution with respect to β, where the distribution
changes from sub-Gaussian to super-Gaussian as β decreases. The right figure
shows the variation tendency of the distribution with respect to α, where the
distribution becomes more concentrated around zero mean as α decreases.

Fig. 5. The ML-GGD-DNN architecture for speech enhancement.

where Γ(·) denotes the Gamma function and μ is the mean
parameter.α is a scale factor that plays the role of variance, while
β is a shape factor that measures the kurtosis [56] and controls
the GGD deviation from normality, as intuitively shown in
Fig. 4. By setting β, many classic distributions can be character-
ized, including uniform (β = ∞), Gaussian (β = 2), Laplacian
(β = 1), and other sub-Gaussian (β > 2) and super-Gaussian
(β < 2) densities. Then, the ML estimation described in
Section II is adopted for DNN parameter learning. The proposed
ML-GGD-DNN architecture is shown in Fig. 5. Note that the
same MMSE-DNN structure is used.

B. Derivation of the New Objective Function

The DNN input is the (2τ + 1)D-dimensional LPS feature
vector of noisy speech with τ frames in both the left and right
context, while the DNN target output is the D-dimensional LPS
feature vector of clean speech. Suppose that the DNN output
vector at the n-th frame is x̂n(y

n+τ
n−τ ,W ) with the input vector

yn+τ
n−τ and the DNN parameter set W , while the corresponding

reference vector is xn. Accordingly, the prediction error vector
at the n-th frame can be defined as follows:

en = xn − x̂n(y
n+τ
n−τ ,W ), (6)

where x̂n(y
n+τ
n−τ ,W ) = F(yn+τ

n−τ ;W ) and F refers to a map-
ping modeled by the DNN. Based on the statistical analysis
elaborated in Section III-A, it is assumed that each dimension
of the prediction error vector independently follows the GGD
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in Eq. (5) with zero mean, the same known shape factor, and
different unknown scale factors. Therefore, the prediction error
distribution is defined as

g(en|α) =

D∏

d=1

pGGD(en,d|0, αd, β)

=

D∏

d=1

β

2αdΓ(
1
β )

exp

(
−|en,d|β

αβ
d

)
, (7)

where en,d is the d-th element of en, αd is the d-th element of
α, and β is a fixed value for all dimensions. By inserting en
from Eq. (6) into Eq. (7), the equivalent conditional distribution
in Eq. (3) can be rewritten as follows:

p(xn|yn+τ
n−τ ,W ,α)

=

D∏

d=1

pGGD(xn,d − x̂n,d(y
n+τ
n−τ ,W )|0, αd, β)

=

D∏

d=1

β

2αdΓ(
1
β )

exp

(
−|xn,d − x̂n,d(y

n+τ
n−τ ,W )|β

αβ
d

)
. (8)

This is the PDF of the conditional target distribution [57] based
on an assumed heteroscedastic GGD error model. Given a set
with N data pairs (Y ,X) = {(yn+τ

n−τ ,xn)|n = 1, 2, ..., N} and
assuming that they are drawn independently from the distribu-
tion in Eq. (8), the corresponding likelihood function is simply:

p(X|Y ,W ,α) =
N∏

n=1

p(xn|yn+τ
n−τ ,W ,α). (9)

Finally, the log-likelihood function in Eq. (4) is specified as:

ln p(X|Y ,W ,α)

=

N∑

n=1

D∑

d=1

(
ln

β

2αdΓ(
1
β )

− |xn,d − x̂n,d(y
n+τ
n−τ ,W )|β

αβ
d

)

= C −N

D∑

d=1

lnαd −
N∑

n=1

D∑

d=1

|xn,d − x̂n,d(y
n+τ
n−τ ,W )|β

αβ
d

,

(10)

where C = ND ln β
2Γ( 1

β )
is a constant not related to W and

α. If we assume that all the scale factors are the same, namely,
the homoscedasticity assumption, the log-likelihood function in
Eq. (10) shares all dimensions with the same scale factor α and
thus becomes:

ln p(X|Y ,W , α)

= C −ND lnα−
N∑

n=1

D∑

d=1

|xn,d − x̂n,d(y
n+τ
n−τ ,W )|β

αβ
. (11)

Then the optimization of the proposed objective function in
Eq. (10) is regressed to minimizing the classic β-norm function,
whereβ = 1 corresponds to the L1-norm andβ = 2 corresponds
to the L2-norm.

By maximizing the log-likelihood in Eq. (10), the solution
of the parameter set (W , α) can be derived. Note that the scale

Algorithm 1: Procedure of ML-GGD-DNN Training.
Step 1: Initialization

Initialize W randomly and αd = 1 (d = 1, 2, ..., D).
Step 2: Update W and α in each minibatch

Update W and α simultaneously via Eqs. (13)
and (14).

Step 3: Go to Step 2 for the next iteration

vectorα is adopted only in the training stage. In the enhancement
stage, the GGD information is no longer used.

C. ML-GGD-DNN Training Procedure

To estimateW andα via Eq. (10), we propose two procedures
for training ML-GGD-DNN, as shown in Algorithms 1 and
2. In Algorithm 1, stochastic gradient descent (SGD) [58] is
performed in minibatch mode of M sample frames to updateW
and α simultaneously. Correspondingly, we minimize the fol-
lowing error function rather than maximizing the log-likelihood
in Eq. (10):

E(W ,α)

= M

D∑

d=1

lnαd +

M∑

m=1

D∑

d=1

|xm,d − x̂m,d(y
m+τ
m−τ ,W )|β

αβ
d

. (12)

Based on Eq. (12), the update formulas of W and α can be
written as follows:

W (t+1) = W (t) − η
∇EW

M
(13)

α(t+1) = α(t) − ξ
∇Eα

M
(14)

where t is the iteration index for the model parameter update;
η and ξ are the learning rates; and ∇EW and ∇Eα are the
gradients of E(W ,α) with respect to W and α, respectively.
∇Eα is a D-dimensional vector whose d-th element is

∇Eαd
=

M

αd
− β

(αd)β+1

M∑

m=1

|xm,d − x̂m,d(y
m+τ
m−τ ,W )|β .

(15)
The gradient ∇EW is often obtained by using the chain rule
via the intermediate variables, namely, the DNN output, which
are the same as those in MMSE-DNN [14]. Therefore, we only
need to derive the gradient with respect to the output:

∇Ex̂m,d
= sgn (x̂m,d − xm,d)

β

αβ
d

|x̂m,d − xm,d|β−1, (16)

where x̂m,d is a shorthand notation of x̂m,d(y
m+τ
m−τ ,W ). Note

that when the sample prediction error is equal to zero for β < 1,
∇Ex̂m,d

is infinite; that is, this point is non-differentiable. The
sample prediction error is equal to zero, which indicates this
point is learned very well and thus should not contribute to the
backpropagation [59]. Accordingly, we set the value of ∇Ex̂m,d

at this point to zero.
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Algorithm 2: Procedure of ML-GGD-DNN Training.
Step 1: Initialization

Initialize W randomly.
Step 2: Fix W and update α in each minibatch

Update α via Eq. (17).
Step 3: Fix α and update W in each minibatch

Update W via Eq. (13).
Step 4: Go to Step 2 for the next iteration

An alternating two-step optimization scheme is used in
Algorithm 2 for the optimization of W and α. First, a closed-
form solution of α can be derived by fixing W and minimizing
E(W ,α) in Eq. (12):

αd =

[
β

M

M∑

m=1

|xm,d − x̂m,d(y
m+τ
m−τ ,W )|β

] 1
β

. (17)

Second, by fixing α, W can be optimized by the backpropa-
gation procedure with the SGD method in Eq. (13). The error
function given by Eq. (12) is guaranteed to decrease monoton-
ically with the above update procedures because Eq. (17) and
Eq. (13) are derived as transformations that minimize Eq. (12)
with the fixed W and α, respectively. The convergence of the
above iterative optimization is also guaranteed because Eq. (12)
is lower-bounded as long as α is updated by Eq. (17).

The main difference between Algorithms 1 and 2 is that
Algorithm 2 uses a closed-form solution for α without tuning
the learning rate ξ. The experiments in Section IV-B show that
Algorithm 2 is more robust because Algorithm 1 is sensitive to
ξ. For both procedures in Algorithm 1 and 2, training is repeated
until a predefined convergence criterion is satisfied or a maxi-
mum number of epochs is reached. Note that although the two
algorithms are shown based on the SGD and backpropagation,
their underlying ideas could easily be adapted to other learning
algorithms, such as backpropagation through time [60].

D. Special Cases of ML-GGD-DNN

1) ML-GGD-DNN With β = 2: With β = 2, GGD corre-
sponds to the GD. We denote this DNN model as ML-GD-DNN.
Accordingly, the error function in Eq. (12) becomes:

E2(W ,α)

= M

D∑

d=1

lnαd +

M∑

m=1

D∑

d=1

(
xm,d − x̂m,d(y

m+τ
m−τ ,W )

αd

)2

,

(18)

which is exactly the formulation of our previous work using
a GD to model the prediction error [49]. If we further make
the homoscedasticity assumption, then the objective function of
ML-GD-DNN in Eq. (18) degenerates into the MSE function of
MMSE-DNN [14].

2) ML-GGD-DNN with β = 1: With β = 1, GGD corre-
sponds to the Laplacian distribution (LD). We denote this DNN
model as ML-LD-DNN. Accordingly, the error function in

Eq. (12) becomes:

E1(W ,α)

= M

D∑

d=1

lnαd +

M∑

m=1

D∑

d=1

|xm,d − x̂m,d(y
m+τ
m−τ ,W )|

αd
. (19)

Similarly, ML-LD-DNN will degenerate into DNN based on the
least absolute deviation (LAD) [61] as opposed to least squares
(LS or MMSE), denoted as LAD-DNN, situations under the
homoscedasticity assumption. The LAD is more robust and less
affected by outlier contamination than the MMSE [43]–[45],
[62]. In particular, the LAD is well suited for longer-tailed error
distributions. In [63], the LAD is adopted as the optimization
criterion of the shallow neural network rather than the MMSE
criterion. In this study, experiments are conducted to compare
the LAD with the MMSE as the special cases of ML-GGD for
the feed-forward DNN-based speech enhancement task, which
can be found in Sections IV-C and IV-E.

IV. EXPERIMENTS AND RESULT ANALYSIS

A. Experimental Setup

In this study, all experiments were conducted on speech
waveforms with 16 kHz sampling. A total of 115 noise types,
including 100 noise types in [64] and 15 homemade noise types,
were adopted for training to improve the robustness to unseen
noise conditions. The clean speech data were derived from the
TIMIT corpus [65]. All 4620 utterances from the training set of
TIMIT were corrupted with the abovementioned 115 noise types
at six levels of SNRs, i.e., 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and
−5 dB, to build an 80-hour multi-condition data set consisting of
pairs of clean and noisy speech utterances. Approximately 400
sentences randomly selected from the 80-hour data set were used
as the cross-validation set, and the rest were used as the training
set. The 192 utterances from the core test set of TIMIT were used
to construct the test set for each combination of unseen noise
type and seen SNR level. In this study, 14 unseen noise types
were adopted for testing, i.e., Jet Cockpit2, Destroyer Engine,
Destroyer Operations, F-16 Cockpit, Factory1, Factory2, HF
Channel, Military Vehicle, M109 Tank, Machine Gun, Pink,
Volvo, Speech Babble and White noise, denoted as N1, N2,
N3, N4, N5, N6, N7, N8, N9, N10, N11, N12, N13 and N14,
respectively. All were collected from the NOISEX-92 corpus
[66], where Military Vehicle, Pink, Volvo and White noise are
stationary and the others are non-stationary. The six levels of
SNRs in the training set were also adopted for testing.

For feature extraction, a 512-point short-time Fourier trans-
form was used to compute the spectra of each overlapping
windowed frame. Here, a 32-ms Hamming window and a 16-ms
window shift were adopted. The input and target feature design
were investigated in [67]. In our experiments, 257-dimensional
(D= 257) LPS vectors were generated to train the DNNs. Mean
and variance normalizations were applied to the input and target
feature vectors of the DNN. All DNN architectures were fixed
as 1799-2048-2048-2048-257, namely, the sizes were 1799 for
the input layer (7-frame expansion), 2048 for the three hidden
layers, and 257 for the output layer. Note that these specific DNN
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TABLE I
A COMPARISON OF THE AVERAGE PERFORMANCE OF TWO TRAINING

PROCEDURES FOR ML-GGD-DNN (β = 2) ON THE TEST SET AVERAGED

OVER ALL EXAMINED SNRS AND 14 UNSEEN NOISE TYPES

architectures were selected with reference to [13], [14]. The
sigmoid activation function was utilized for all hidden layers,
and the output layer was linear. For the parameter update in
MMSE-DNN and ML-GGD-DNN, which were both initialized
randomly, the learning rate for supervised fine-tuning was set to
0.1 (η = 0.1) for the first 10 epochs and decreased at a rate of
90% after every epoch in the next 40 epochs with a minibatch
size of 128 (M = 128). For waveform reconstruction, the phase
of noisy speech was combined with the enhanced LPS features.

The enhancement performance was assessed by using PESQ
for measuring speech quality [37], STOI [36] for measuring
speech intelligibility and segmental SNR (SegSNR in dB) and
LSD (in dB) for evaluating signal differences in the time domain
and the frequency domain, respectively [68].

B. Training Procedure of ML-GGD-DNN

In Section III-C, we propose two training procedures of ML-
GGD-DNN listed in Algorithms 1 and 2. To compare them, a set
of experiments was conducted for ML-GGD-DNN with β = 2
(namely, ML-GD-DNN with a GD), as shown in Table I. We
examined the average performance of four measures at different
SNRs across 14 unseen noise types. For Algorithm 1, the main
issue is the setting of the learning rate ξ for updating α. If we
set ξ to be the same as η = 0.1, the learning process cannot
converge. Thus, in our experiment, ξ was set to 10−7 to guarantee
convergence. In contrast, Algorithm 2 has a closed-form solution
for α in Eq. (17), which can be considered as a version of
Algorithm 1 with an automatic setting of the learning rate ξ.
Based on the results in Table I, Algorithm 2 yielded slight
but consistent improvements in STOI/SegSNR/LSD measures
over Algorithm 1. For PESQ, the two procedures generated
comparable results. Overall, Algorithm 2 demonstrated better
performance and easier implementation. Therefore, we selected
Algorithm 2 as the default training procedure in all subsequent
experiments.

C. Learning Behavior of ML-GGD-DNN

In Fig. 6, we present the learning curves of the square roots
of MSEs and log-likelihoods among MMSE-DNN, LAD-DNN
and ML-GGD-DNN with different shape factors on the cross-
validation set. The log-likelihoods of ML-GGD-DNN with dif-
ferent shape factors are computed using Eq. (10), while the
log-likelihoods of MMSE-DNN and LAD-DNN are computed
using Eq. (11). Note that the closed-form solution of the scale
factor α in Eq. (11) for Algorithm 2 is as follows:

α =

[
β

MD

M∑

m=1

D∑

d=1

|xm,d − x̂m,d(y
m+τ
m−τ ,W )|β

] 1
β

. (20)

Fig. 6. A comparison of learning curves among MMSE-DNN, LAD-DNN
and ML-GGD-DNN with different shape factors on the cross-validation set.
The left figure shows the variation curves of the square root of the MSE on
the cross-validation set with respect to the epoch. The right figure shows the
variation curves of the log-likelihood on the cross-validation set with respect to
the epoch.

TABLE II
AVERAGE LOG-LIKELIHOODS AND SQUARE ROOTS OF MSES OF

ML-GGD-DNN SYSTEMS ON THE TEST SET AVERAGED OVER ALL EXAMINED

SNRS AND 14 UNSEEN NOISE TYPES

Accordingly, the scale factor α in Eq. (11) for the computation
of log-likelihoods on the cross-validation set is obtained by
inserting a mini-batch of M sample frames from the training
set into Eq. (20). Based on Fig. 6, several observations can be
made. First, the learning curves of the square roots of MSEs
reveal that using LAD-DNN to minimize the absolute error
on the training data consistently generated smaller MSEs on
the cross-validation set than using MMSE-DNN to minimize
the MSE on the training data, which implies that LAD-DNN
can achieve better robustness and generalization capability than
MMSE-DNN. Second, MMSE-DNN and LAD-DNN consis-
tently yielded greater MSE values and a slower convergence
than ML-GD-DNN (namely, ML-GGD-DNN with β = 2) and
ML-LD-DNN (namely, ML-GGD-DNN with β = 1), respec-
tively. This result implies that the objective function based on the
heteroscedastic error model can achieve a better generalization
capability and faster convergence than the homoscedastic error
model. Third, the MSE is minimized for MMSE-DNN training,
whereas the log-likelihood is maximized for ML-GGD-DNN
training. From the learning curves of the square roots of the
MSEs, all ML-GGD-DNNs with different shape factors clearly
achieved a better and faster convergence than MMSE-DNN. In
addition, the MSEs of ML-GGD-DNNs using different shape
factors could not be well differentiated. Conversely, the learning
curves of log-likelihood were clearly distinguished for ML-
GGD-DNNs with different shape factors. The log-likelihood of
ML-GGD-DNN on the cross-validation set was increased as β
decreased from 2 to 0.7. This is consistent with the variation
tendency of the evaluation metrics on the test set with respect to
the shape factors shown in Table III. Accordingly, these results
indicate that ML-GGD-DNN using the scale factor has a better
generalization capability than MMSE-DNN.

Table II shows the average log-likelihoods and square roots of
MSEs of ML-GGD-DNN systems on the test set averaged over
all examined SNRs and 14 unseen noise types. By comparing
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TABLE III
AVERAGE PERFORMANCE COMPARISON OF DIFFERENT SYSTEMS ON THE TEST

SET AT DIFFERENT SNRS AVERAGED OVER 14 UNSEEN NOISE TYPES

Table II and the last column in Table III, we can observe that
the MSE could not accurately evaluate the objective metrics. In
contrast, the variation tendencies of all objective metrics with
respect to β were closer to those of the log-likelihood measure
rather than the MSE measure. This suggests that our proposed
new optimization function is highly correlated with objective
measures for speech enhancement.

Fig. 7. Average performance comparison between ML-GGD-DNNs (β = 2
for Gaussian and β = 1 for Laplacian) with heteroscedasticity and homoscedas-
ticity assumptions for the STOI/LSD/SegSNR/PESQ measures at different
SNRs averaged over 14 unseen noise types.

D. Influence of the Scale Factors

Fig. 6 demonstrates the improved performance of ML-GGD-
DNN using the scale factors based on the learning curve of the
square root of the MSE. To further verify its effectiveness for
enhancing performance, we present an average performance
comparison between ML-GGD-DNNs with heteroscedasticity
and homoscedasticity assumptions in Fig. 7, where “Gaus-
sian” denotes the gains of ML-GD-DNN (namely, ML-GGD-
DNN with β = 2) with the heteroscedasticity assumption
over MMSE-DNN with the homoscedasticity assumption, and
“Laplacian” denotes the gains of ML-LD-DNN (namely, ML-
GGD-DNN with β = 1) with the heteroscedasticity assumption
over LAD-DNN with the homoscedasticity assumption. The
corresponding evaluation metrics of the unprocessed system
denoted as Noisy, MMSE-DNN system and LAD-DNN system
are shown in Table III. Fig. 7 shows that for both Gaussian
and Laplacian densities, the heteroscedastic models (ML-GD-
DNN and ML-LD-DNN) outperformed the corresponding ho-
moscedastic models (MMSE-DNN and LAD-DNN) in most
cases with only one exception for the SegSNR measure of
GD at −5 dB SNR. The reason for this exception is that
the MMSE-DNN with the homoscedastic Gaussian assumption
aggressively reduces noise, especially in very low SNR cases,
which yields better SegSNR scores but leads to larger speech
distortions. Generally, the heteroscedastic model with the opti-
mization of scale factors generated better speech intelligibility
(STOI gain), fewer speech distortions (LSD gain), better speech
quality (PESQ gain), and greater noise reductions (SegSNR
gain). In addition, the performance gains for Gaussian were
often larger than those for Laplacian. This result is reasonable
because according to the statistical analysis in Section III-A, the
LD is closer than the GD to the true distribution of the prediction
error. Accordingly, it is potentially easier to achieve performance
gains for the Gaussian case. Overall, we can conclude that the
heteroscedasticity assumption is one main contributor to the
success of ML-GGD-DNN by using the scale factors.
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Fig. 8. Average STOI and SegSNR comparison of different systems among 14 unseen noise types averaged over all examined SNRs.

E. Influence of the Shape Factors

If we assume that all the scale factors are the same, namely, the
homoscedasticity assumption, then the optimization of the pro-
posed objective function in Eq. (10) is regressed to minimizing
the classic β-norm function. In this case, we can simply discuss
the influence of the shape factor β. Here, we perform a compar-
ison between LAD-DNN (β = 1) and MMSE-DNN (β = 2),
as shown in Table III. An asterisk indicates that the score of
LAD-DNN was significantly higher than that of MMSE-DNN
in a paired one-sided t-test [69] (p-value ≤ 0.05). We notice
that MMSE-DNN suffered in STOI and SegSNR compared
to the unprocessed system at 20dB SNR. This is because the
intelligibility of noisy speech is high in such low-noise condi-
tions, and MMSE-DNN could easily introduce some artifacts
and cause inevitable speech distortions. In contrast, LAD-DNN
showed significant advantages over the MMSE-DNN across all
evaluation metrics, and consistent improvements were observed
over all SNR levels. For example, the STOI increased from 0.670
to 0.700 at −5 dB SNR and from 0.775 to 0.795 at 0 dB SNR,
gains of 2.51 dB were achieved in SegSNR at 20 dB SNR, and the
STOI of 0.972 was better than those of both MMSE-DNN and
the unprocessed system at 20dB SNR. All these results indicate
that the super-Gaussian model (LAD-DNN) is more robust and
yields better generalization capability than the conventional
Gaussian model (MMSE-DNN).

For the more general case, namely, the heteroscedasticity
assumption with different scale factors at different vector com-
ponents, we conducted experiments on the shape factors β < 2
of ML-GGD-DNN based on the elaborated statistical analy-
sis shown in Section III-A that the prediction errors follow
super-Gaussian distributions. It is impractical to show the results
of all shape factors of β < 2; therefore, we select only sev-
eral representative values to show the relationship between the
speech enhancement performance and shape factors. As shown
in Table III, with decreasing shape factor β, better STOIs were
achieved and SegSNRs were first improved and then decreased
for all SNR levels. Additionally, the STOI was saturated when
β = 0.7 for all SNR levels. However, there were minor differ-
ences for the best configuration of SegSNR for each SNR level.
For example, SegSNR yielded the best results with β = 1 at low
SNRs (e.g., −5 dB) and β = 0.7 at high SNRs (e.g., 20 dB),
respectively.

To examine the effects of different noise scenarios, Fig. 8
shows the average STOI and SegSNR of different enhancement
systems among 14 unseen noise types averaged over all SNR
levels. From Table III and Fig. 8, we can observe that both
the STOI and SegSNR of the systems based on the GD were
worse than those of the systems based on the super-Gaussian
distribution for all SNR levels and unseen noise types, indicating
that the GD cannot model the prediction errors well. Conse-
quently, both MMSE-DNN and ML-GD-DNN lack robustness
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since they adopt GD to model the prediction errors. All of
the results indicate that the objective function based on the
super-Gaussian error model is more robust and yields better
generalization capability than that based on the Gaussian error
model.We can conclude that the super-Gaussian assumption is
another main contributor to the success of ML-GGD-DNN with
β < 2.

F. Post-Processing With Fusion

In this section, the goal is to further improve the perfor-
mance via post-processing of the top-performing systems. Here,
we provide a post-processing strategy by fusion techniques.
Fusion techniques [70], also named ensemble or aggregation
techniques, precisely aim at combining several methods to better
solve a given problem. Transposed to the context of speech
enhancement, fusion [71], [72] is opposed to selection as it
consists in using several speech enhancement methods and
combining their solutions rather than selecting the best solution
according to some criterion. To combine the advantages of the
top-performing systems, we conducted a fusion via the simple
average of enhanced LPS features from the three top-performing
systems (β = 1, β = 0.9 and β = 0.7) as follows:

x̂n =
x̂1
n + x̂2

n + x̂3
n

3
, (21)

where x̂1
n, x̂2

n and x̂3
n are then-thD-dimensional enhanced LPS

feature vectors of the three top-performing systems, respectively,
and x̂n is the fusion result. From Table III and Fig. 8, we notice
that the fusion system consistently generated the best results
for almost all evaluation metrics, SNR levels and unseen noise
types. These results demonstrate the complementarity of differ-
ent settings ofβ. Moreover, the advantages of the top-performing
systems were fully utilized by the fusion technique. Note that
although the fusion increases the computation, it provides a solu-
tion to offline applications in which the best overall performance
of different measures compared to systems with a single shape
factor can be achieved regardless of algorithm complexity.

G. Overall Comparison

As a summary, the average performances of the different
systems on the test set averaged over all examined SNRs and 14
unseen noise types are listed in the last column in Table III. Our
proposed ML-GGD-DNN consistently outperformed MMSE-
DNN in terms of all 4 measures. On average, improvements of
0.025 in STOI, 1.77dB in SegSNR, 0.5dB in LSD, and 0.08 in
PESQ were obtained for ML-GGD-DNN with β = 0.9. More
importantly, the ML-GGD-DNN systems with β < 2 yielded
consistent and significant improvements in a paired one-sided
t-test (p-value ≤ 0.05) over both the MMSE-DNN and ML-
GD-DNN systems across all evaluation metrics, demonstrating
the better robustness and generalization capability of the super-
Gaussian error model. Moreover, the fusion system of β = 1
β = 0.9 and β = 0.7 settings yielded additional improvements
for all settings.

TABLE IV
OVERALL COMPARISON OF THE AVERAGE PERFORMANCE ON THE TEST SET

AVERAGED OVER ALL THE UNSEEN SNRS AND 14 UNSEEN NOISE TYPES

Although matching the SNR level is the least critical aspect
in acquiring good performance for DNN-based speech enhance-
ment algorithms compared to matching the noise type and target
speaker [73], to consider a more realistic condition in which
both the noise types and SNR levels of the training and test sets
are mismatched, we also present a comparison of the average
performance for unseen SNR levels. The corresponding test set
was built with the 192 utterances from the core test set of TIMIT
corrupted with the same 14 unseen noise types at six unseen
levels of SNRs, i.e.,−9 dB, −6 dB,−3 dB, 3 dB, 6 dB and 9 dB.
Table IV shows the average performances of different systems
on this test set averaged over all the unseen SNRs and 14 unseen
noise types. The improved performance of ML-GGD-DNN at
unseen SNR levels is also demonstrated.

Fig. 9 shows a spectrogram comparison of utterances cor-
rupted by four representative noise types. Although MMSE-
DNN could perform well in terms of noise reduction, large
speech distortions and even removal of some speech segments
exist. Our proposed ML-GGD-DNN (β = 0.9) can satisfactorily
alleviate these problems, resulting in less speech distortions and
better speech preservation, for example, as shown in Fig. 9, the
black solid box areas. In summary, the proposed ML-GGD-DNN
can simultaneously improve speech intelligibility and quality
over MMSE-DNN.

H. Extension to Speech Dereverberation

Although this paper primarily explores ML-GGD-DNN for
DNN-based speech enhancement, the general ML framework for
DNN regression presented in Section II can be applied to many
other regression tasks, where the specific form of error density
should be selected based on a statistical analysis of the prediction
errors. To provide strong support for the versatility of our pro-
posed extended ML framework shown in Section II, we applied
the ML framework to DNN-based speech dereverberation [53].
Because the statistical analysis reveals the same super-Gaussian
and heteroscedasticity of the prediction error distributions in
DNN-based speech dereverberation as in DNN-based speech
enhancement, we applied the ML-GGD-DNN framework di-
rectly to speech dereverberation. A series of experiments were
performed on the training set consisting of 7138 reverberant
utterances generated by convolving the anechoic speech data
from the WSJ0 [74] SI-84 training set with a series of impulse
responses recorded from several different rooms in the REVERB
challenge [75]. The test set was created by convolving the 330
utterances from the WSJ0 5K test set with another three different
impulse responses. The results shown in Table V demonstrate the
effectiveness of the ML framework for speech dereverberation.
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Fig. 9. The spectrograms of utterances corrupted by N3 (Destroyer Operations), N5 (Factory1), N10 (Machine Gun), and N13 (Speech Babble) at 5 dB. Each
row corresponds to one example set with the clean speech, noisy speech, MMSE-DNN and ML-GGD-DNN (β = 0.9) enhanced speech.

TABLE V
COMPARISON OF THE AVERAGE PERFORMANCE ON THE TEST SET

V. CONCLUSION

In this paper, we have proposed an ML approach to modeling
error vectors in regression DNN-based speech enhancement
under the assumption that each dimension component of the
prediction error vector is statistically independent and follows
a GGD. Then, the conventional MSE function can now be
replaced with the log-likelihood function as the new DNN
optimization objective. The proposed ML approach is general
and applicable to various DNN-based regression tasks. Its ef-
fectiveness for DNN-based speech enhancement and speech
dereverberation tasks has been demonstrated. More specifically,
the proposed ML objective function, assuming super-Gaussian
heteroscedasticity, can achieve better robustness and generaliza-
tion capability than the conventional MMSE criterion based on
a homoscedastic Gaussian error assumption with performance
improvements in both speech intelligibility and quality. Finally,
estimating different shape factors for different prediction error

vector components and applying the general ML framework to
other DNN-based regression tasks are also topics of interest for
our future studies.
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