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Abstract
In this paper, we propose a novel deep learning architecture for
improving word-level lip-reading. We first incorporate multi-
scale processing into spatial feature extraction for lip-reading
using hierarchical pyramidal convolution (HPConv) and self-
attention. Specifically, HPConv is proposed to replace the
conventional convolution features, leading to an improvement
over the model’s ability to discover fine-grained lip movements.
Next to deal with fixed-length image sequences representing
words in a given database, a self-attention mechanism is pro-
posed to integrate local information in all lip frames without
assuming known word boundaries, so that our deep models au-
tomatically utilize key feature in relevant frames of a given
word. Experiments on the Lip Reading in the Wild corpus
show that our proposed architecture achieves an accuracy of
86.83%, yielding a relative error rate reduction of about 10%
from that obtained with a state-of-the-art scheme of averaging
frame scores for information fusion. A detailed analysis of the
experimental results also confirms that weights learned from
self-attention tend to be zero at both sides of an image sequence
and focus non-zero weights in the middle part of a given word.
Index Terms: visual speech recognition, lip-reading, multi-
scale convolution, self-attention

1. Introduction
Automatic lip-reading, also known as visual speech recogni-
tion, aims at recognizing the speech content only based on vi-
sual information, especially the lip movements that are com-
posed of a sequence of basic visual units also called visemes [1].
Lip-reading is a challenging task for both human and machine,
due to the ambiguity introduced by the one-to-many mapping
[2] between visemes and phonemes. Nonetheless a robust lip-
reading system has a broad range of applications when the audio
data is unavailable, such as silent speech control system [3], as-
sisting audio-based speech recognition in noisy environments
[4], and biometric authentication [5].

Conventional approaches to automatic lip-reading (e.g.,
[6, 7]) are usually consisted of a spatial feature extractor, such
as discrete cosine transform [8, 9, 10] of the lip Regions of In-
terest (RoIs), and followed by a sequence modeling scheme,
such as a hidden Markov model [11, 12, 13, 14], to capture
the temporal dynamics of lip movements. Recently, automatic
lip-reading has been significantly improved due to advances in
two aspects, namely: (1) a use of deep neural network mod-
els [15, 16, 17, 18, 19, 20], and (2) an availability of a large

scale data set for training [21, 22, 23, 24, 25]. Most deep-
learning-based models usually consist of a frontend and a back-
end, which are similar to the feature extractor and the sequential
models in the conventional approaches, respectively. However,
using end-to-end training, the frontend module can often extract
better image features than those obtained in conventional ex-
tractors, for the backend module to capture discriminative tem-
poral information for improved lip-reading.

In this study, we focus on word-level lip-reading and adopt
the Lip Reading in the Wild (LRW) [21] corpus for our ex-
periments. LRW is the first and the largest publicly available
data set with word-level labels in English. It consists of fix-
length segments (1.16 seconds of 29 image frames at 25 frames
per second with no specified word boundaries) extracted from
BBC news and talk shows. There are more than 1, 000 speak-
ers and 500 target words, which is much higher than existing
lip-reading databases used for word recognition. A total of
538, 766 segments in this set are split into three subsets consist-
ing of 488, 766, 25, 000 and 25, 000 samples for training, val-
idation and testing, respectively. This task is quite challenging
due to a large variation in head poses and lighting illuminations
for the videos used in the LRW corpus.

Table 1: Review of the existing models on LRW. Acc.: Word
accuracy.

Method Frontend Backend Consensus Acc.
[21] VGG-M - - 61.10
[23] VGG-M LSTM Average 76.20
[26] 3D Conv+ResNet-34 BLSTM Average 83.00
[27] 3D Conv+ResNet-34 BGRU Average 83.40
[28] 3D Conv+ResNet-18 BLSTM Average 84.30
[29] ResNet-34+3D DenseNet Conv-BLSTM Average 83.30
[30] I3D *2 BLSTM Average 84.07
[31] 3D Conv+P3D-ResNet-50 BLSTM Average 84.48
[32] 3D Conv+ResNet-18 MS-TCN Average 85.30
[33] 3D Conv+ResNet-34+ST-GCN BGRU Average 84.25

Since LRW was released, numerous novel models have
been proposed. In addition to the frontend and backend modules
mentioned above, the word-level lip-reading models usually
contain an additional consensus module which merges scores
at a frame level in all time steps to obtain an overall score at
the sequence level to predict the recognized word. As shown in
Table 1, we list existing systems with their respective frontend,
backend, consensus and word accuracy when evaluated on the
LRW data set. We observe that all models have kernels with a
single spatial size in the frontend and average along the tempo-
ral dimension in consensus decisions.

The state-of-the-art performance on LRW [32] was
achieved by a system consisting of a 3D Convolutional layer
followed by a 18-layer residual network (ResNet-18) [34] as
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a frontend and a multi-scale temporal convolutional network
(MS-TCN) backend. The final score vector at the sequence level
for the 500 words to be predicted was obtained by averaging
the output of the backend along the time dimension. It serves
as our baseline for performance comparisons. In this paper, we
improve the baseline frontend by proposing a novel hierarchical
pyramidal convolution (HPConv), that is capable of processing
the input with multiple spatial resolution, to replace the stan-
dard 2D-convolution in ResNet-18. Moreover, our proposed
backend utilizes a self-attention alternative to the baseline aver-
aging consensus and focuses on the frames of the relevant video
segment that corresponds to the spoken word, to achieve an im-
proved classification accuracy. To the best of our knowledge,
this is the first work incorporating multi-scale processing into
the frontend and adopting non-uniform self-attention weights
in consensus for word-level lip-reading.

2. Our Proposed Approach
As shown in Fig. 1, our system can be divided into three main
parts: frontend, backend and consensus modules. The frontend
module takes a gray scale sequence of lip RoIs X ∈ RT×H×W

as input to produce a feature matrix F2 ∈ RT×C1 , where T
denotes the temporal dimension and H,W represent the height
and width of the gray scale lip image, respectively. Then the
spatial knowledge F2 is summarized by applying average pool-
ing over the spatial dimensionality. The backend module is next
employed to model the temporal dynamics. The output score
matrix F3 ∈ RT×C2 is then passed through the consensus mod-
ule to merge temporal information. Finally, the posterior proba-
bility of each word P is predicted by the ensuing full connection
and SoftMax layers.
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Figure 1: Block diagram of the proposed system. The input
to each module and its corresponding dimensionality are also
shown below each arrow. Our contributions are the frontend
and consensus modules highlighted in yellow.

The MS-TCN module in the baseline [32] is kept as our
backend and we change the frontend by replacing the standard
convolution in the ResNet-18 with our proposed hierarchical
pyramidal convolution and modify the consensus from averag-
ing to our proposed self-attention based consensus.

2.1. Hierarchical Pyramidal Convolution

The ResNet-18 in the frontend of the baseline uses the standard
2D-convolution to extract spatial feature maps. It contains only
a single kernel type with a single spatial size (K1,K1) (in the
case of square kernels). Since all kernels have the same spatial
resolution, the extracted feature maps only contain fixed-sized
spatial context information.

We analyze some errors produced by the baseline, and find
that the classification accuracy of a word is improved with an
increasing number of visemes contained in the word, i.e., the
model performs poorly on words with little visemic content.

This is reasonable because words with fewer visemes often im-
ply fewer lip movements in the corresponding image segments,
making it challenging for the model to correctly classify these
samples. Accordingly, we propose using different spatial-sized
kernels to extract complementary context information, enabling
the frontend to obtain discriminative feature maps. These en-
hanced features help boost the modeling capability for fine-
grained lip movements and improve the classification accuracy
for words with only a few visemes.

Input Feature Maps Pyramidal Convolution Kernels Output Feature Maps
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Figure 2: Illustration of PyConv [35] with ~ denoting the con-
volution operation with hyperparameters given in kernelSize,
outChannels, inChannels format. K4 > K3 > K2 > K1 and
Co = Co1 + Co2 + Co3 + Co4.
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Figure 3: Illustration of the proposed HPConv with hierarchical
connections between adjacent layers of the pyramid (red lines
in figure). ©denotes the concatenation over channel dimensions
with Ci = Ci1 + Ci2 + Ci3 + Ci4.

To validate the effectiveness of multi-scale processing, we
first incorporate pyramidal convolution (PyConv) [35] as illus-
trated in Fig. 2 into the frontend. It contains a pyramid with
n levels of different types of kernels (we set n = 4 as default
in our experiments, which is consistent with the figure). The
kernels at each level contain an increasing spatial size from the
bottom of the pyramid to the top (we set K1,2,3,4 = 3, 5, 7, 9
as default in our experiments). The kernels with a smaller spa-
tial size can focus on extracting feature maps with local context
information, while the larger-sized kernels can provide more
global context information. The model can explore a good com-
bination of different kernel types through learning. For every
basic block of ResNet-18, we replace the second standard con-
volution layer with PyConv. We call this modification as the
Pyramidal ResNet-18 (Py-ResNet-18).

Based on PyConv, we propose hierarchical pyramidal con-
volution (HPConv) as illustrated in Fig. 3. The novelty here
is that we establish a hierarchical connection between adjacent
layers of the pyramid (red lines in Fig. 3). As mentioned above,
the local and global feature maps in PyConv are extracted from
the input feature maps. As with the hierarchical connections,
local feature maps are used as parts of the output and also as an
input for global feature extraction. This bottom-up information
aggregation can further improve the classification performance
of the model, especially for words with only a few visemes. For
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every basic block of ResNet-18, we replace the second convolu-
tion layer with HPConv and call this modification Hierarchical
Pyramidal ResNet-18 (HP-ResNet-18).

2.2. Self-attention Based Consensus

T  = 1 T  = 2 T  = 3 T  = 4 T  = 5 T  = 6 T  = 7 T  = 8

T  = 9 T  = 10 T  = 12 T  = 13 T  = 14 T  = 15 T  = 16 T  = 17 T  = 18 T  = 19

T  = 22 T  = 23 T  = 24 T  = 25 T  = 27 T  = 28 T  = 29T  = 26T  = 20 T  = 21

T  = 11

Figure 4: An example of a video sample segment annotated as
“ABOUT”. Only frames at the time steps T = 9 ∼ 19 are
related to the word “ABOUT”.

The most popular consensus method currently being used
is to average over scores produced at all time steps, as shown in
all the systems in Table 1. Given the feature maps at the frame
level, F3 ∈ RT×C2 , the final score vector at the sequence level,
F4 ∈ RC3 , is calculated as follows:

F4 =

∑T−1
t=0 F3,t

T
. (1)

The averaging based consensus assumes that every frame
provides an equal contribution to the final decision, which is of-
ten not a good way for the LRW data being used here. As shown
in Fig. 4, the video sample annotated as “ABOUT” includes 29
frames in total, but only frames at time steps T = 9 ∼ 19, high-
lighted in the middle red dashed box, are related to the word
“ABOUT”. The accurate word boundaries of individual words
are often difficult to locate in labeling. We therefore propose
a self-attention [36] based consensus mechanism to ensure the
model pays more attention to the frames which are more rele-
vant to the annotated word, but less to other irrelevant frames.
The proposed non-uniform self-attention based consensus can
be expressed as:

(Qn,Kn, Vn) = (F3W
Q
n , F3W

K
n , F3W

V
n ) (2)

headn = AT
nVn = SoftMax(

∑T−1
t=0 Qn,tK

T
n

T
√
dk

)Vn (3)

F4 =WOConcat(head0, · · · , headN−1) +

∑T−1
t=0 F3,t

T
(4)

where for the n-th attention head, WQ
n ∈ RC2×dk , WK

n ∈
RC2×dk , WV

n ∈ RC2×dv and WO ∈ RNdv×C3 are the pro-
jection matrices, and An ∈ RT is the attention weight vector.
Here we employ N = 8 and dk = dv = 64, same as those in
[36].

3. Experiments
In this section, we compare our proposed framework with the
baseline system that already achieved the best word accuracy on
the LRW task [32]. We pre-process each fixed-length video seg-
ment and train all models following the same procedures used in
the baseline. The readers are referred to [32] for more detail. To
better understand the two proposed frontend and consensus ap-
proaches as highlighted in Fig. 1, we also provide an in-depth

analysis of the experimental results to illustrate the contribu-
tions of HPConv and self-attention.

Table 2: A comparison of word accuracies (in %) of different
systems. 3D Conv in the frontend is omitted for simplicity. Acc.:
Word accuracy.

System Frontend Consensus Boundary Acc.
Baseline ResNet-18 Average F 85.30

N1 ResNet-18 Self-attention F 86.47
N2 Py-ResNet-18 Average F 85.88
N3 HP-ResNet-18 Average F 86.45
N4 HP-ResNet-18 Self-attention F 86.83
N5 ResNet-18 Average T 88.60
N6 ResNet-18 Self-attention T 88.59
N7 HP-ResNet-18 Average T 89.38
N8 HP-ResNet-18 Self-attention T 89.38

Table 2 lists the results of all systems. Compared to the
baseline model, our proposed HPConv in N3 performs better
than PyConv in N2, and our proposed self-attention in N1 does
better than “Average” in the baseline. The overall system (de-
noted as N4) achieves an accuracy of 86.83%, attaining the best
performance on LRW. With known word boundaries in N5-N8,
we can see N6, N7 and N8 are all better than N5.

3.1. Analysis on Hierarchical Pyramidal Convolution

Figure 5: A comparison of the accuracy among Baseline, N2
and N3 on different categories with the same number of visemes
in the annotated word.

To verify the effectiveness of our proposed HPConv fron-
tend, we compare the result of the system using only HP-
ResNet-18 (denoted as N3 in Table 2) with the result obtained
with Py-ResNet-18 (denoted as N2), both performing multi-
scale feature extraction. In comparison with the baseline using
ResNet-18, applying multi-scale kernels enhances the model
classification performances over the baseline without multi-
scale spatial feature extraction. Moreover, our proposed HP-
Conv (N3) benefits more from it than PyConv (N2).

We further analyze error samples obtained with different
frontend features. Based on the number of visemes in the anno-
tated words, we divide the whole test set into 9 categories and
plot the corresponding accuracies in Fig. 5. We can see that
both N2 and N3 perform better than the baseline in almost all
cases of viseme lengths. The improvements are more significant
for words with smaller number of visemss than those with more

3003



visemes. Moreover, our proposed HPConv introduces hierar-
chical connections from local to global information, which fur-
ther improves classification accuracies over PyConv on words
with few visemes.

3.2. Analysis on Self-attention Based Consensus

One of the most significant differences between our proposed
framework and previous methods is the proposed self-attention
based consensus. It ensures that the model pays more attention
on the relevant frames during classification. Therefore in Ta-
ble 2, the result of the system using only self-attention (denoted
as N1) improves the classification performance over the aver-
age based consensus in Baseline. To further analyze why our
proposed self-attention can outperform the conventional aver-
age based consensus, we retrain the models used in Baseline,
N1, N3 and N4 using the word boundary information provided
by [21] and obtain four improved systems denoted as N5, N6,
N7 and N8, respectively. The major difference here is to apply
average or self-attention based consensus only on the frames
which are related to the annotated words. We can observe that
in the situation of using manual word boundaries, the accuracies
obtained are almost the same for both average and self-attention
based consensus when comparing N5 versus N6 and N7 versus
N8. It is conjectured that the learned attention weights act like
“soft word boundaries”. Although not exact, they function in a
similar way to manual word boundaries.

Figure 6: Classification accuracy of the baseline model on dif-
ferent edit distances between the manual and the learned word
boundaries.

To verify our assumption, we categorize all test samples
by the edit distance [37] between the manual word bound-
ary vector, Bman = [0, · · · , 0, 1, · · · , 1, 0, · · · , 0]T ∈ RT

and the word boundary vector with averaging, Bavg =
[1, · · · , 1]T ∈ RT , and the learned vector with self-attention,
Batt = u(

∑N−1
n=0 An/N − α), where u(·) is the unit step

function using a threshold constant α = 0.01. First, we plot
the classification accuracies of the baseline model as a func-
tion of the edit distance in Fig. 6. We observe that the ac-
curacy tends to decline with increasing edit distances between
the learned and manual word boundaries. Next in Fig. 7, we
plot the number of samples obtained with the baseline and N1
systems corresponding to each edit distance. Clearly, the self-
attention based consensus can learn word boundaries better and
result in much smaller edit distances than average based consen-
sus. These two observations can well explain the effectiveness
of the self-attention based consensus mechanism.

The weights learned with the proposed self-attention con-
sensus for the example in Fig. 4 are plotted in Fig. 8. We can
find that even though each head has a different focus, the at-

Figure 7: A comparison of the number of samples among Base-
line and N1 on different edit distances between the manual and
the learned word boundaries.

tention weights on all irrelevant frames are quite small (mostly
equal to 0), which helps the model to ignore noisy information
for better classification performance.
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4. Conclusion
We propose hierarchical pyramidal convolution and self-
attention based consensus to replace the standard convolution
and the average based consensus commonly used in state-of-
the-art lip-reading systems. Extensive experiments and anal-
yses empirically validate that our proposed HPConv improves
our model’s utilization of slight lip movements and the self-
attention based consensus ensures the model pays more atten-
tion to the relevant image frames. Together, our system achieves
the best word accuracy on the LRW lip-reading task.

In the future, it would be interesting to explore more ef-
fective network structures to simultaneously utilize spatial and
temporal context information with multi-scale processing. And
we also further study how to improve the accuracy of learned
word boundaries.
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