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Abstract. Discriminatively trained HMMs are investigated in both clean
and noisy environments in this study. First, a recognition error is defined
at different levels including string, word, phone and acoustics. A high res-
olution error measure in terms of minimum divergence (MD) is specifi-
cally proposed and investigated along with other error measures. Using
two speaker-independent continuous digit databases, Aurora2(English)
and CNDigits (Mandarin Chinese), the recognition performance of recog-
nizers, which are trained in terms of different error measures and using
different training modes, is evaluated under different noise and SNR con-
ditions. Experimental results show that discriminatively trained models
performed better than the maximum likelihood baseline systems. Specif-
ically, for MD trained systems, relative error reductions of 17.62% and
18.52% were obtained applying multi-training on Aurora2 and CNDigits,
respectively.

Keywords : Noise Robustness, Minimum Divergence, Minimum Word
Error, Discriminative Training

1 Introduction

With the progress of Automatic Speech Recognition (ASR), noise robustness
of speech recognizers attract more and more attentions for practical recogni-
tion systems. Various noise robust technologies which can be grouped into three
classes. 1. Feature domain approaches, which aim at noise resistant features,
e.g., speech enhancement, feature compensation or transformation methods [1];
2. Model domain approaches, e.g., Hidden Markov Model (HMM) decompen-
sation [2], Parallel Model Combination (PMC) [3], which aim at modeling the
distortion of features in noisy environments directly; 3. Hybrid approaches.

In the past decade, discriminative training has been shown quite effective in
reducing word error rates of HMM based ASR systems in clean environment. In
the first stage, sentence level discriminative criteria, including Maximum Mu-
tual Information (MMI) [4, 5], Minimum Classification Error (MCE) [6], were
proposed and proven effective. Recently, new criteria such as Minimum Word
Error (MWE) and Minimum Phone Error (MPE) [7], which are based on fine
error analysis at word or phone level, have achieved further improvement in
recognition performance.



In [8–10], noise robustness investigation on sentence level discriminative crite-
ria such as MCE, Corrective Training (CT) is reported. Hence, we are motivated
to give a more complete investigation of noise robustness for genaral minimum
error training.

From a unified viewpoint of error minimization, MCE, MWE and MPE are
only different in error definition. String based MCE is based upon minimizing
sentence error rate, while MWE is based on word error rate, which is more
consistent with the popular metric used in evaluating ASR systems. Hence, the
latter yields better word error rate, at least on the training set [7]. However,
MPE performs slightly but universally better than MWE on testing set [7]. The
success of MPE might be explained as follows: when refining acoustic models in
discriminative training, it makes more sense to define errors in a more granular
form of acoustic similarity. However, binary decision at phone label level is only
a rough approximation of acoustic similarity.

Therefore, we propose to use acoustic dissimilarity to measure errors. Be-
cause acoustic behavior of speech units are characterized by HMMs, by mea-
suring Kullback-Leibler Divergence (KLD) [11] between two given HMMs, we
can have a physically more meaningful assessment of their acoustic similarity.
Given sufficient training data, “ideal” ML models can be trained to represent
the underlying distributions and then can be used for calculating KLDs.

Adopting KLD for defining errors, the corresponding training criterion is
referred as Minimum Divergence (MD) [12]. The criterion possesses the following
advantages: 1) It employs acoustic similarity for high-resolution error definition,
which is directly related with acoustic model refinement; 2) Label comparison
is no longer used, which alleviates the influence of chosen language model and
phone set and the resultant hard binary decisions caused by label matching.
Because of these advantages, MD is expected to be more flexible and robust.

In our work, MWE, which matches the evaluation metric, and MD, which
focus on refining acoustic dissimilarity, are compared. Other issues related to
robust discriminative training, including how to design the maximum likelihood
baseline, and how to treat with silence model is also discussed.

Experiments were performed on Aurora2 [13], which is a widely adopted
database for research on noise robustness, and CNDigits, a Chinese continuous
digit database. We tested the effectiveness of discriminative training on different
ML baseline and different noise environments.

The rest of paper is organized as follows. In section 2, issues on noise ro-
bustness of minimum error training will be discussed. In section 3, MD training
will be introduced. Experimental results are shown and discussed in section 4.
Finally in section 5, we give our conclusions.

2 Noise Robustness Analysis of Minimum Error Training

In this section, we will have a general discuss on the major issues we are facing
in robust discriminative training.



2.1 Error Resolution of Minimum Error Training

In [7] and [12], various discriminative trainings in terms of their correspond-
ing optimization measures are unified under the framework of minimum error
training, where the objective function is an average of the recognition accura-
cies A(W ,W r) of all hypotheses weighted by the posterior probabilities. For
conciseness, we consider single utterance case:

F(θ) =
∑

W∈M
Pθ(W |O)A(W ,W r) (1)

where θ represents the set of the model parameters; O is a sequence of acoustic
observation vectors; W r is the reference word sequence; M is the hypotheses
space; Pθ(W |O) is the generalized posterior probability of the hypothesis W
given O , which can be formulated as:

Pθ(W |O) =
Pκ

θ (O |W )P (W )∑
W ′∈M Pκ

θ (O |W ′)P (W ′)
(2)

where κ is the acoustic scaling factor.
The gain function A(W ,W r) is an accuracy measure of W given its ref-

erence W r. In Table 1, comparison among several minimum error criteria are
tabulated. In MWE training, A(W ,W r) is word accuracy, which matches the
commonly used evaluation metric of speech recognition. However, MPE has been
shown to be more effective in reducing recognition errors because it provides a
more precise measurement of word errors at the phone level. We can argue this
point by advocating the final goal of discriminative training. In refining acoustic
models to obtain better performance, it makes more sense to measure acoustic
similarity between hypotheses instead of word accuracy. The symbol matching
does not relate acoustic similarity with recognition. The measured errors can
also be strongly affected by the phone set definition and language model selec-
tion. Therefore, acoustic similarity is proposed as a finer and more direct error
definition in MD training.

Table 1. Comparison among criteria of minimum error training. ( PW : Phone sequence
corresponding to word sequence W ; LEV(,): Levenshtein distance between two symbol
strings; | · |: Number of symbols in a string. )

Criterion A(W ,W r) Objective

String based MCE δ(W = W r) Sentence accuracy

MWE |W r| − LEV(W ,W r) Word accuracy

MPE |PW r| − LEV(PW ,PW r) Phone accuracy

MD −D(W r ‖ W ) Acoustic similarity

Here we aim to seeking how criteria with different error resolution performs
in the noisy environments. In our experiments, whole-word model, which is com-



monly used in digit tasks, is adopted. For the noisy robustness analysis, MWE
which matches with the model type and evaluation metric of speech recognition,
will compared with MD, which possesses the highest error resolution as shown
in Table 1.

2.2 Different Training Modes

In noisy environments, various ML trained baseline can be designed. So the
effectiveness of minimum error training with different training modes will be
explored. In [13], two different sets of training, clean-training and multi-training,
are used. In clean-training mode, only clean speech is used for training. Hence,
when testing in noisy environments, there will be a mismatch. To alleviate this
mismatch, multi-training, in which training set is composed of noisy speech with
different SNRs, can be applied. But multi-training can only achieve a “global
SNR” match. To achieve a “local SNR” match, we propose a SNR-based training
mode. In our SNR-based training, each HMM set is trained using the speech
with a specific SNR. A big HMM set is composed of all the SNR-based HMM
sets. So there will be several SNR-based models for each digit. When testing,
we will adopt the multi-pronunciation dictionary to output the digital label.
SNR-based training can be considered as a high resolution acoustic modeling of
multi-training. Illustration of three training modes is shown in Fig. 1.

Fig. 1. Illustration of three training modes



2.3 Silence Model Update

Silence or background model can have a significant effect on word errors. Hence,
whether or not to update silence model in minimum error training can be critical
under noisy conditions. In our research, we pay special attention to this issue for
reasonable guidelines.

3 Word Graph based Minimum Divergence Training

3.1 Defining Errors by Acoustic Similarity

A word sequence is acoustically characterized by a sequence of HMMs. For au-
tomatically measuring acoustic similarity between W and W r, we adopt KLD
between the corresponding HMMs:

A(W ,W r) = −D(W r ‖W ) (3)

The HMMs, when they are reasonably well trained in ML sense, can serve as
succinct descriptions of data.

3.2 KLD between Two Word Sequences

Given two word sequences W r and W without their state segmentations, we
should use a state matching algorithm to measure the KLD between the corre-
sponding HMMs [14]. With state segmentations, the calculation can be further
decomposed down to the state level:

D(W r ‖W ) = D(s1:T
r ‖s1:T )

=
∫

p(o1:T |s1:T
r ) log

p(o1:T |s1:T
r )

p(o1:T |s1:T )
do1:T (4)

where T is the number of frames; o1:T and s1:T
r are the observation sequence

and hidden state sequence, respectively.
By assuring all observations are independent, we obtain:

D(s1:T
r ‖s1:T ) =

T∑
t=1

D(st
r ‖st) (5)

which means we can calculate KLD state by state, and sum them up.
Conventionally, each state s is characterized by a Gaussian Mixture Model

(GMM): p(o |s) =
∑Ms

m=1 ωsmN (o; µsm ,Σsm ), so the comparison is reduced to
measuring KLD between two GMMs. Since there is no closed-form solution, we
need to resort to the computationally intensive Monte-Carlo simulations. The
unscented transform mechanism [15] has been proposed to approximate the KLD
measurement of two GMMs.



Let N (o;µ,Σ) be a N -dimensional Gaussian distribution and h is an arbi-
trary IRN → IR function, unscented transform mechanism suggests approximat-
ing the expectation of h by:

∫
N (o;µ,Σ)h(o)do ≈ 1

2N

2N∑

k=1

h(ok ) (6)

where ok(1≤k≤2N) are the artificially chosen “sigma” points: ok=µ+
√

Nλkuk,
ok+N=µ−√Nλkuk(1≤k≤N), where λk,uk are the kth eigenvalue and eigenvector
of Σ , respectively. Geometrically, all these “sigma” points are on the principal
axes of Σ . Eq. 6 is precise if h is quadratic.

Based on Eq. 6, KLD between two Gaussian mixtures is approximated by:

D(sr ‖s)≈ 1
2N

M∑
m=1

ωm

2N∑

k=1

log
p(om,k |sr)
p(om,k |s) (7)

where om,k is the kth “sigma” point in the mth Gaussian kernel of p(om,k |sr).
By plugging it into Eq. 4, we obtain the KLD between two word sequences given
their state segmentations.

3.3 Gain Function Calculation

Usually, word graph is a compact representation of large hypotheses space in
speech recognition. Because the KLD between a hypothesised word sequence
and the reference can be decomposed down to the frame level, we have the
following word graph based representation of (1):

F(θ) =
∑

w∈M

∑

W∈M:w∈W

Pθ(W |O)A(w) (8)

where A(w) is the gain function of word arc w. Denote bw, ew the start frame
index and end frame index of w, we have:

A(w) = −
ew∑

t=bw

D(st
w ‖st

r ) (9)

where the st
w and st

r represent the certain state at time t on arc w and the
reference, respectively.

As mentioned in [7], we use Forward-Backward algorithm to update the word
graph and the Extended Baum-Welch algorithm to update the model parameters
in the training iterations.

4 Experiments

4.1 Experimental Setup

Experiments on both English (TIDigits and Aurora2) and Chinese (CNDigits)
continuous digit tasks were performed. The English vocabulary is made of the



11 digits, from ’one(1)’ to ’nine(9)’, plus ’oh(0)’ and ’zero(0)’. The Chinese vo-
cabulary is made of digits from ’ling(0)’ to ’jiu(9)’, plus ’yao(1)’. The baseline
configuration for three systems is listed in Table 2.

For TIDigits Experiments, man, woman, boy and girl speakers, were used in
both training and testing.

The Aurora2 task consists of English digits in the presence of additive noise
and linear convolutional channel distortion. These distortions have been synthet-
ically introduced to clean TIDigits data. Three testing sets measure performance
against noise types similar to those seen in the training data (set A), different
from those seen in the training data (set B), and with an additional convolu-
tional channel (set C). The baseline performance and other details can be found
in [13].

The original clean database of CNDigits is collected by Microsoft Research
Asia. 8 types of noises, i.e. waiting room of a station, platform, shop, street,
bus, airport lounge, airport exit, outside, are used for noise addition. 8000 clean
utterances from 120 female and 200 male speakers for training set are split
into 20 subsets with 400 utterances in each subset. Each subset contains a few
utterances of all training speakers. The 20 subsets represent 4 different noise
scenarios at 5 different SNRs. The 4 noises are waiting room, street, bus and
airport lounge. The SNRs are 20dB, 15dB, 10dB, 5dB and the clean condition.
Two different test sets are defined. 3947 clean utterances from 56 female and
102 male speakers are split into 4 subsets with about 987 utterances in each. All
speakers are involved in each subset. One noise is added to each subset at SNRs
of 20dB, 15dB, 10dB, 5dB, 0dB, -5dB and the clean condition. In the first test
set, called test set WM(Well-Match), the four noises, the same as those used
in training set, are added to the 4 subset. The second test set, called test set
MM(Mis-Match), is created in exactly the same way, but using four different
noises , namely platform, shop, airport exit and outside. Our design of CNDigits
database is similar to Aurora2.

For mininum error training, the acoustic scaling factor κ was set to 1
33 . All

KLDs between any two states were precomputed to make the MD training more
efficient. For Aurora2 and CNDigits, we select the best results after 20 iterations
for each sub set of testing.

Table 2. Baseline configuration

System Feature Model # State # Gauss # string of # string of

Type /Digit /State training set testing set

TIDigits left-to-right 10 6 12549 12547

Aurora2 MFCC E D A whole-word model 16 3 8440*2 1001*70

CNDigits without skipping 10 3 8000 987*56



4.2 Experiments on TIDigits Database

As a preliminary of noise robustness analysis, we first give the results of MD on
the clean TIDigits database compared with MWE. As shown in Fig. 2, perfor-
mance of MD achieves 57.8% relative error reduction compared with ML baseline
and also outperforms MWE in all iterations.
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Fig. 2. Performance comparison on TIDigits

4.3 Experiments on Aurora2 Database

Table 3. Word Accuracy (%) of MWE with or without silence model update in different
training modes on Aurora2.

Training Mode Update Silence Model Set A Set B Set C Overall

Clean YES 61.85 56.94 66.26 60.77

Clean NO 64.74 61.69 67.95 64.16

Multi YES 89.15 89.16 84.66 88.26

Multi NO 88.91 88.55 84.43 87.87

Silence Model Update. As shown in Table 3, we explore whether to update
silence model in minimum error training using different training modes. Because
it is unrelated with criteria, here we adopt MWE. when applying clean-training,
the performances on all test sets without updating silence model are consistently
better. But in multi-training, the conclusion is opposite. From the results, we



can conclude that increasing the discrimination of silence model will lead to
performance degradation in mismatched cases (clean-training) and performance
improvement in matched cases (multi-training). Obviously our SNR-based train-
ing belongs to the latter. In all our experiments, the treatment of silence model
will obey this conclusion.

Table 4. Performance comparison on Aurora2 (MD vs. MWE)

Error Resolution of Minimum Error Training. As shown in Table 4, the
performances of MD and MWE are compared. Here multi-training is adopted
because it’s believed that matching between training and testing can tap the
potential of minimum error training. For the overall performance on three test
sets, MD consistently outperforms MWE. From the viewpoint of SNRs, MD
outperforms MWE in most cases when SNR is below 15dB. Hence, we can con-
clude that although MWE matches with the model type and evaluation metric
of speech recognition, MD which possesses the highest error resolution outper-
forms it in low SNR. In other words, the performance can be improved in low
SNR by increasing the error resolution of criterion in minimum error training.

Different Training Modes. Fig. 3 shows relative improvement over ML base-
line using MD training with different training modes. From this figure, some
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Fig. 3. Relative Improvement over ML baseline on Aurora2 using different training
modes in MD training

Table 5. Summary of performance on Aurora2 using different training modes in MD
training.

Word Accuracy (%) Relative Improvement

Training Mode Set A Set B Set C Overall Set A Set B Set C Overall

Clean-Training 63.49 58.94 68.96 62.76 5.56% 7.21% 8.32% 6.76%

Multi-Training 90.20 89.22 85.10 88.79 19.60% 21.45% 8.17% 17.62%

SNR-based Training 91.27 89.27 86.70 89.56 10.00% 26.21% 1.14% 15.68%

conclusions can be obtained. First, Set B, whose noise scenarios are different
from training achieves the most obvious relative improvement in most cases. The
relative improvement of set A are comparable with set B in the clean-training
and multi-training but worse than set B in SNR-based training. The relative im-
provement of set C, due to the mismatch of noise scenario and channel, almost
the worst in all training modes. Second, the relative improvement performance
declines for decreasing SNR in clean-training. But in multi-training and SNR-
based training, the peak performance is in the range of 20dB to 15dB. Also in
the low SNRs, the performance of cleaning-training is worse than the other two
training modes on set A and set B.

The summary of performance is listed in Table 5. Word accuracy of our SNR-
based training outperforms multi-training on all test sets, especially set A and
set C. For the overall relative improvement, the best result of 17.62% is achieved
in multi-training.



Table 6. Performance comparison on Chinese digit database (CNDigits) using multi-
training

4.4 CNDigits Database Experiments

On CNDigits database, we compare MD and MWE with ML applying multi-
training as a further verification of conclusions on Aurora2. Performances are
shown in Table 6. Totally MD achieves 18.52% relative improvement over ML
baseline. Although minimum error training on both English and Chinese is ef-
fective in noisy envrionments, there are still some differences. First, the most
obvious relative improvement on CNDigits occurs in clean condition which is
different from that on Aurora2. Second, more than 10% relative improvement is
still obtained at low SNRs (below 0dB) on CNDigits. Third, MD outperforms
MWE in all noisy conditions.

5 Conclusions

In this paper, the noise robustness of discriminative training is investigated. Dis-
criminatively trained models are tested on both English and Chinese continuous



digit databases in clean and noisy conditions. Most experiments adopt MD crite-
rion. First, silence model should only be updated when the training and testing
data are matched (Both are noisy data). Second, minimum error training is ef-
fective in noisy conditions for both clean-training and multi-training, even for
SNR-based training which produces higher resolution acoustic models. Third,
MD with higher error resolution than MWE is more robust in low SNR scenar-
ios. Even when testing on mismatched noise scenarios, minimum error training
is also noise robust as matched noise scenarios.

In future work, we will focus on seeking noise resistant features based on
minimum error training and improve performance further in noise conditions.
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