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Abstract. We propose to train Hidden Markov Model (HMM) by allo-
cating Gaussian kernels non-uniformly across states so as to optimize a
selected discriminative training criterion. The optimal kernel allocation
problem is first formulated based upon a non-discriminative, Maximum
Likelihood (ML) criterion and then generalized to incorporate discrimi-
native ones. An effective kernel exchange algorithm is derived and tested
on TIDIGITS, a speaker-independent (man, woman, boy and girl), con-
nected digit recognition database. Relative 46–51% word error rate re-
ductions are obtained comparing to the conventional uniformly allocated
ML baseline. The recognition performance of discriminative kernel allo-
cation is also consistently better than the non-discriminative ML based,
nonuniform kernel allocation.

1 Introduction

Hidden Markov Models (HMMs) formulated as mixtures of Gaussian densities
have been well developed and successfully deployed to the state-of-the-art Auto-
matic Speech Recognition (ASR) systems. It is known that Maximum Likelihood
Estimation (MLE) is a consistent estimate of the underlying distribution under
certain assumptions, and Baum-Welch MLE trained Gaussian Mixture Models
(GMMs) are also viewed as the best way to approximate the “true” distributions
of the speech data.

In experimental or academic ASR systems, the number of Gaussian kernels
for every model unit (e.g., states in phonemic HMMs) is usually fixed at a con-
stant value [1]. Given a total number of Gaussian kernels of the whole system,
we allocate them to every model in a uniform manner regardless of each model’s
underlying distribution. In this kind of kernel allocation, some model units are
over-allocated. The kernels they get are more than necessary, or even can not
be reliably estimated due to the lack of training data. At the same time, how-
ever, some of other model units are under-allocated. More kernels are needed to
increase the acoustic resolution of the models so that the fine structure of the
distributions in training data can be better modeled.
1 This work has been done when the first author was a visiting student with Speech

Group, Microsoft Research Asia.



In order to alleviate this problem, many criteria have been exploited for build-
ing statistical models with adequate topology and number of parameters (e.g.,
Akaike Information Criterion (AIC) [2], Bayesian Information Criterion (BIC)
[3], and Minimum Description Length (MDL) [4]). Realistic acoustic models have
also been built by allocating parameters non-uniformly across model units [5–7].
In [8], we come up with the concept of Parsimonious HMM Modeling, which
aims at adequate number of Gaussian kernels for each state in an HMM system
when the total number of kernels is given. An effective algorithm is proposed for
Maximum Likelihood (ML) based kernel allocation, and performance improve-
ments are reported for both small and large vocabulary ASR tasks. However,
because we are usually more concerned about the classification ability of an ASR
system, it is intuitive to introduce some discriminative criteria, e.g., Maximum
Mutual Information (MMI) [9], Minimum Classification Error (MCE) [10], for
this nonuniform kernel allocation problem.

For ML based Gaussian kernel allocation, the solution is quite straightforward
because maximizing the likelihood of one state is independent of any other state.
However, for discriminative kernel allocation, the situation is different. As we
know, in discriminative training, we are essentially maximizing some measure of
the posterior probability of the reference. Because posterior probability is related
with not only the likelihood of the reference itself, but also the likelihoods of
all other competitors in the hypothesis space, it is then cumbersome to obtain
a straightforward solution for kernel allocation as that in ML sense. Therefore,
some heuristic metric is needed in discriminative sense, to reflect the relationship
between kernel allocation and discrimination.

In [5], a discrimination metric related with kernel weight count is defined, and
a successive kernel splitting algorithm is proposed. Because the metric is only
heuristic, the greedy kernel splitting may lead to unstable results especially when
the target total number of kernels is large. As an alternative, we calculate the
metric upon state level, and propose an algorithm starting from a well-trained
flat HMM system, which tries to exchange kernels among over-allocated and
under-allocated states. The well-trained flat system serves as a good reference
in calculating reliable posterior probabilities, which can lead to more stable and
effective kernel allocation behavior.

To optimize kernel allocation in discriminative sense, we aim at improving
classification performance using same amount of parameters than in the orig-
inal flat system. From another point of view, we can also achieve comparable
performance with fewer parameters and reduce computation payload. Our algo-
rithm was tested in a connected digit recognition experiment on the TIDIGITS
database. Experimental results show that by using discriminative parsimonious
HMM modeling, word error rate can be significantly reduced when compared
with the flat, ML trained or discriminative trained baseline. It also outperforms
our ML based, non-uniformly allocated model, too. Furthermore, we also build
a model using a hybrid version of kernel allocation scheme using both ML and
discriminative criteria, and the hybrid model obtains the best recognition per-
formance.



The rest of this paper is organized as follows: In Section 2, the kernel allo-
cation schemes are represented as a unified optimization problem; In Section 3,
we provide a brief review of our previous work on ML based kernel allocation;
In section 4, the kernel allocation problem is discussed under the discriminative
criterion of MMI, and a kernel exchange algorithm is proposed. Experimental
results and discussions are listed in Section 5. Finally, we draw our conclusions
and future work in Section 6.

2 Representations

In an HMM system with J states where each state output pdf, bj , is characterized
by a GMM as:

bj(o) =
mj∑

k=1

wjkN (o;µjk,Σjk) (1)

in which mj is the number of Gaussian kernels in state j, and wjk, µjk and
Σjk are the weight, mean and covariance matrix of the kth kernel in that state,
respectively.

In parsimonious HMM modeling, we first define a kernel allocation configu-
ration vector m = (m1, . . . , mJ)>. The parsimonious solution is formulated as
the following optimization:

m̂ = argmaxmF(m) s.t.
J∑

j=1

mj = JMT,ML ≤ mj ≤ MU (2)

where MT is the target average number of kernels per state, and F is the selected
optimization criterion. In general, states with too many or too few kernels should
be avoided to prevent skew probability distributions. So MU and ML are set as
the upper and lower-bounds of the number of kernels for each state.

In the following sections, we denote γr
j(t) and γg

j (t) as the posterior proba-
bility or state occupancy of the jth state at time t, given the reference and the
word graph based hypotheses, respectively. Lr and Lg are the log-likelihoods of
the training data, given the reference and the word graph.

3 Maximum Likelihood Based Kernel Allocation

Maximum Likelihood is the most commonly used criterion in statistical training.
Before comparing it with discriminative criteria, we first briefly review our pre-
vious work on ML based nonuniform kernel allocation [8]. Under ML criterion,
F in Eq.(2) is the total likelihood of the training data:

F(m) = Lr(m) =
J∑

j=1

T∑
t=1

γr
j(t) log bj(ot) (3)



Table 1. Step-back algorithm for Maximum Likelihood based kernel allocation

Initialization:

Do Baum-Welch training to get a uniformly allocated model with all
mj = MU, record all state likelihood functions during the iterative
mixture splitting process

Pruning:

While total number of kernels > J ×MT

Find the state i with minimal likelihood reduction:
i = argminj,mj>ML

[Lj(mj)− Lj(mj − 1)]

Decrease mi and total number of kernels by 1

Kernel grouping and refinement:

For each state 1 ≤ j ≤ J
Group the MU kernels to mj kernels

Do Baum-Welch retraining

Eq. (3) can be optimized by testing the likelihoods of the models trained for
every setup of m. However, this strategy is too expensive for practical applica-
tions. In [8], we proposed a step-back algorithm instead of the global likelihood
optimization. This algorithm can be carried out mainly based upon two basic
assumptions. The first assumption is that in Baum-Welch training, state segmen-
tations of the references are assumed to change only slightly for different setups
of m. Hence, we can regard the state likelihood Lr

j(mj) to be state-specific, and
decompose the total likelihood as:

Lr(m) =
J∑

j=1

Lr
j(mj) (4)

Note that in Eq. (4), Lr
j(mj) =

∑T
t=1 γr

j(t) log bj(ot) is the expected state
likelihood function which depends only on the parameters of state j. Therefore,
we can approximate the global likelihood optimization as a combinatorial opti-
mization of the state likelihood functions. Actually, the first assumption is based
on a helpful nature of likelihood: the likelihood of the observation given a cer-
tain model is independent of all other competing models. Also, as we can see,
all these state likelihood functions are by-products of a conventional iterative
mixture splitting training process. They can easily be obtained as the guidance
for kernel allocation.

Even under the first assumption, the combinatorial optimization is still an
NP-hard problem. Another assumption is made that all state likelihood functions
Lr

j(mj) are convex, so that the problem can be solved in a step-back manner. The
physical meaning of the second assumption is that the marginal contribution of
each new Gaussian kernel to the state likelihood does not increase with increasing
number of kernels. This assumption is quite reasonable in most of the cases in
speech modeling.



Based on the two assumptions made above, we came up with an efficient step-
back algorithm instead of the global optimization for ML based kernel allocation
[8]. The algorithm can be roughly described by the pseudo-code in Table 1.

4 Discriminative Kernel Allocation

In contrast to maximum likelihood estimation, discriminative training optimizes
HMM parameters to improve classification performance rather than the likeli-
hood of the training data. Therefore, discriminative training is often seen to be
more close to the evaluation criteria (e.g., Word Error Rate), and it is then quite
intuitive to introduce some discriminative criteria for our nonuniform Gaussian
kernel allocation problem. In this paper, one of the most widely used discrimi-
native training criteria, Maximum Mutual Information, is employed for optimal
kernel allocation. We try to allocate kernels non-uniformly across states based
upon their influence on the discrimination of the recognition system.

In MMI sense, optimization criterion F in Eq. (2) becomes the mutual infor-
mation defined as:

F(m) = Lr(m)− Lg(m) =
J∑

j=1

T∑
t=1

[
γr

j(t)− γg
j (t)

]
log bj(ot) (5)

The main difference between ML based and MMI based optimization of Eq.
(2) is that for the latter, the posterior probability of the reference state given
the word graph can be affected by the parameters of any other competing state.
Therefore, γg

j (t) is related not only to the number of kernels in state j, but also
to the numbers of kernels in all its competing states. As a result, Lg can no
longer be treated as state-specific and decomposed into state level. So there is
no straightforward solution to optimize F like the one in ML sense.

Alternatively, we propose a kernel exchange algorithm to solve the optimiza-
tion problem. This algorithm is performed in two steps: First, a state-level met-
ric related to the marginal contribution to discrimination is computed. Conse-
quently, based on this metric, those over-allocated states release some kernels to
the under-allocated states in the second step. During this procedure, the total
number of kernels in the whole system is kept constant because of the “exchange”
manner.

The key issue here is how to define the discrimination metric. Intuitively, we
use derivatives of the objective function with respect to the kernel weights as
an indicator of kernel exchange. Based on the physical meaning of derivatives,
a positive derivative value indicates that there is a need of incremental kernel
allocation, while a negative value indicates a decreasing demand. Formally, the
discrimination metric on state j can be calculated as the weighted sum of the
derivatives on all its kernel weights:

Hj =
mj∑

k=1

wjk
∂F

∂wjk
(6)



By substituting Eq. (5) into Eq. (6), we obtain:

Hj =
T∑

t=1

[
γr

j(t)− γg
j (t)

]
(7)

As we can see from Eq. (7), the discrimination metric of a state is measured
by considering its count in the reference model against its count in the compet-
ing word graph of decoded hypotheses. As the summation term is made up of
two parts, both the sign and magnitude of Hj can be analyzed in the following
three cases:

A) Hj ≈ 0 indicates a well-modeled state with adequate number of kernels:
This case indicates that γg

j (t) ≈ γr
j(t), or in another word, the reference state

j dominates the decoded word graph. In this situation, because j is already in
favor in decoding, no kernel allocation adjustment is needed;

B) Hj > 0 indicates a poorly-modeled state where more kernels are needed:
This case happens when the reference state j is not in favor in decoding

against its competing states. In this situation, because γr
j(t) > γg

j (t), a pos-
itive value of Hj will result. Therefore, Hj > 0 indicates that the state j is
poorly-modeled so that more kernels are needed to improve its discrimination.
Furthermore, the magnitude of Hj indicates how pool the state has been mod-
eled;

C) Hj < 0 indicates an interference state where the kernels are over-allocated:
This case happens when state j is not the state in reference, but it is favored

in decoding with respect to the reference. In this situation, because γr
j(t) is zero

and γg
j (t) is positive, a negative value of Hj will result. Because state j interferes

with the correct state decoding, its kernels need to be reduced to suppress the
interference. Here, the magnitude of Hj represents how worse the state interferes
other states.

To summarize, both the sign and magnitude of Hj form the basis of our
kernel exchange algorithm: 1) Hj ≈ 0 indicates that no kernel exchange for
state j is needed; 2) Positive Hj indicates that the correct reference state is not
favored against competing states in decoding, acoustic discrimination needs to
be improved by assigning an extra kernel to state j; 3) Negative Hj indicates
that the state interferes with correct hypothesis decoding, less kernels are more
appropriate for state j to reduce the interference it causes.

Based on these properties of the discrimination matric H, we can first sort all
the states by their Hj , and exchange certain number of kernels from the states
with small and negative H to those with large and positive H. This kernel ex-
change algorithm can be shown as the pseudo-code in Table 2. Our discrimina-
tion metric H is defined at state level, as a result, kernel allocation is performed
upon the state instead of the kernel level [5]. Besides, as the well-trained flat



Table 2. Kernel exchange algorithm for discriminative kernel allocation

Initialization:

Do Baum-Welch training to get an ML model with fixed, uniform
kernel allocation (MT kernels per state)

Kernel allocation and discriminative training (MMI):

Collect statistics to compute discrimination metric Hj

Sort the states by Hj

Kernel exchange:
Set n = 0, define N kernels to be exchanged
While n < N

Find the state i with most negative Hi:
i = argminj,mj>ML,Hj<0Hj

Decrease mi by 1, remove the state from the sort list
Find the state i with most positive Hi:

i = argmaxj,mj<MU,Hj>0Hj

Increase mi by 1, remove the state from the sort list
Increase n by 1

Do MMI retraining

ML model can provide us with relatively reliable estimate of the posterior prob-
abilities, the kernel exchange method can be more stable and effective than a
top-down greedy splitting.

5 Experiments

5.1 Experimental Setup

The proposed kernel exchange algorithm was tested in a connected digit, TIDIG-
ITS database. The vocabulary is made up of the digits of ‘one’ to ‘nine’, plus
‘zero’ and ‘oh’. All four categories of speakers, i.e., men, women, boys and girls,
were used for both training and testing.

The digits were modeled using 10-state, left-to-right, no-skip, whole-word
HMMs. Different training strategies and kernel allocation criteria were evaluated,
and Fig. 1 illustrates the models we constructed and compared:

MLE

ML Kernel 

Allocation

MMI

MMI Kernel 

Allocation

A

B

C

D

MMI Kernel 

Allocation

E

Fig. 1. Experimental setup



Model A: uniformly allocated model using MLE training;
Model B: non-uniformly allocated model using ML criterion;
Model C: uniformly allocated model using MMI training;
Model D: non-uniformly allocated model using MMI criterion;
Model E: non-uniformly allocated model using both ML and MMI criteria.

We used Extended Baum-Welch (EBW) algorithm [11] to re-estimate pa-
rameters in MMI training. For the models using MMI based kernel allocation,
10% of the states were chosen to exchange their kernels in each iteration, and we
performed the exchange process iteratively for five times. After each exchange
process, two MMI training iterations without kernel exchange was also performed
to refine the kernel pdf parameters.

5.2 Experimental Results
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Fig. 2. Word error rate under different training strategies and kernel allocation criteria

The recognition performances from models A to E in average Word Error
Rate (WER) are shown in Fig. 2. The WER of a digit is defined as the sum
of its deletion, substitution and insertion errors, normalizing by its count in
the testing set transcription. Consistent improvements can be observed for non-
uniformly allocated models, in comparing with uniformly allocated ones.

We took the models with average 6 kernels per state for analysis, and the
kernel allocation results and recognition performances under different training
strategies and kernel allocation criteria are given in Table 3. For ML based kernel
allocation, a relative error reduction of 26.72% compared to the baseline Model



Table 3. Average state kernel number and word error rate under different training
strategies and kernel allocation criteria

Kernel Allocation and Recognition Performance Summaries

Model One Two Three Four Five Six Seven Eight Nine Zero Oh Overall

A
#kernels 6.0 6.0
WER(%) 0.58 0.96 0.56 0.86 0.21 0.21 0.21 2.83 0.59 0.37 5.38 1.16

B
#kernels 4.4 5.9 6.5 6.1 5.6 7.0 6.3 5.6 6.3 6.9 5.4 6.0
WER(%) 0.08 0.88 0.35 0.86 0.16 0.21 0.21 1.44 0.62 0.43 4.19 0.85

C
#kernels 6.0 6.0
WER(%) 0.32 0.72 0.35 0.64 0.27 0.27 0.27 1.58 0.56 0.27 2.77 0.73

D
#kernels 5.9 6.0 6.0 6.0 6.0 6.3 6.5 5.4 6.1 6.8 5.0 6.0
WER(%) 0.24 1.22 0.32 0.56 0.29 0.16 0.21 0.94 0.62 0.24 2.12 0.63

E
#kernels 4.1 6.2 6.5 6.4 5.7 7.0 6.7 5.3 6.4 7.6 4.2 6.0
WER(%) 0.11 0.82 0.37 0.56 0.21 0.13 0.13 0.72 0.78 0.24 2.20 0.57

A was obtained. For MMI based kernel exchange, the reduction was 45.69%.
The best performance was obtained by the hybrid Model E, with a relative error
reduction of 50.86%.

We also compared the kernel allocation behaviors of different criteria on a
digit by digit basis:

For Model B using ML based kernel allocation, more kernels tend to be
assigned to the digits which have richer phonetic contents. Longer digits like
‘six’ and ‘zero’ get more kernels than shorter digits like ‘oh’ and ‘one’. It is quite
reasonable because of the nature of likelihood.

For Model D using discriminative kernel allocation, the kernel assignment is
somewhat different. Longer digits do not necessarily get more kernels (e.g., ‘six’),
and dramatic change happens to those troublesome digits like ‘oh’, ‘eight’ and
‘zero’. Because ‘oh’ and ‘eight’ are often observed to cause insertion errors and to
be in favor in decoding against correct hypothesis, their kernels are reduced most
in MMI based kernel allocation. These released kernels are then reassigned to the
under-allocated digits (e.g., ‘zero’), so that their discriminations and recognition
performances are improved.

Finally, as shown in Fig. 2 and Table 3, the best performance was obtained
by Model E. This model uses ML based kernel allocation first as an initialization,
and the likelihood-optimized model provides better estimate of posterior proba-
bilities which are then used to guide the MMI based, discriminative, and sharper
kernel refinement. This result suggests that different criteria can be combined
together without conflict, to get an improved recognition performance.

Based on our experiments, we believe that a discriminative model can be
trained by optimizing both its kernel pdf parameters and how these kernels are
allocated. When compared with non-discriminative, ML based kernel allocation,
better results can be obtained by discriminative kernel allocation. We can also
combine these optimization criteria to achieve an improved performance.



6 Conclusions and Future Work

In this paper we propose a discriminative nonuniform Gaussian kernel alloca-
tion scheme for training HMM. The kernel allocation is formulated as a unified
optimization problem, in which different criteria can be adopted. Two of the
most widely used criteria, ML and MMI, are compared, and a kernel exchange
algorithm for MMI based kernel allocation is devised. Experimental results show
that better recognition performance can be obtained by optimizing kernel alloca-
tion discriminatively. And the best performance is obtained by first training an
ML based model with nonuniform kernel allocation, and then refining it via the
MMI kernel exchange. Kernel allocation behaviors under different criteria are
also compared. We find these behaviors are quite reasonable, when the physical
meaning of their corresponding criteria are considered. Adopting our discrim-
inative kernel allocation scheme for large vocabulary tasks will be our future
work.
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