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Abstract
In our previous work, we proposed a feature compensation ap-
proach using high-order vector Taylor series approximation for
noisy speech recognition. In this paper, first we improve the fea-
ture compensation in both efficiency and accuracy by boosted
mixture learning of GMM, applying higher order information of
VTS approximation only to the noisy speech mean parameters,
acoustic context expansion, and modeling the convolutional dis-
tortion as a single Gaussian. Then we design a procedure to
perform irrelevant variability normalization based joint train-
ing of GMM and HMM using the improved VTS-based feature
compensation. The effectiveness of our proposed approach is
confirmed by experiments on Aurora3 tasks.

Index Terms— irrelevant variability normalization, feature
compensation, vector Taylor series.

1. Introduction
Most of current automatic speech recognition (ASR) systems
use MFCCs (Mel-Frequency Cepstral Coefficients) and their
derivatives as speech features, and a set of Gaussian mix-
ture continuous density HMMs (CDHMMs) for modeling ba-
sic speech units. It is well known that the performance of such
an ASR system trained with clean speech will degrade signifi-
cantly when the testing speech is corrupted by additive noises
and convolutional distortions. One type of approaches to deal-
ing with the above problem is the so-called feature compensa-
tion approach using explicit model of environmental distortions
(e.g., [1]), which is also the topic of this paper.

For our approach, it is assumed that in time domain, “cor-
rupted” speech 𝑦[𝑡] is subject to the following explicit distortion
model:

𝑦[𝑡] = 𝑥[𝑡]⊛ ℎ[𝑡] + 𝑛[𝑡] (1)

where independent signals 𝑥[𝑡], ℎ[𝑡] and 𝑛[𝑡] represent the 𝑡th

sample of clean speech, the convolutional (e.g., transducer and
transmission channel) distortion and the additive noise, respec-
tively. In log-power-spectral domain, the distortion model can
be expressed approximately (e.g., [1]) as

exp(yl) = exp(xl + hl) + exp(nl) (2)

where yl, xl, hl and nl are log power-spectra of noisy speech,
clean speech, convolutional term and noise, respectively. In
MFCC domain, the distortion model becomes

yc = C log[exp(C+(xc + hc)) + exp(C+nc)] (3)

where C is a 𝐷c×𝐷l truncated discrete cosine transform (DCT)
matrix, C+ denotes the Moore-Penrose inverse of C (refer to
[9] for details), 𝐷c is the dimension of MFCC feature vector,

and 𝐷l is the number of channels of the Mel-frequency fil-
terbank used in MFCC feature extraction. In most of current
ASR systems, 𝐷c < 𝐷l. The log and exp functions in the
above equations operate element-by-element on the correspond-
ing vectors. The nonlinear nature of the above distortion model
makes statistical modeling and inference of the above variables
difficult, therefore certain approximations have to be made.

Understandably, a simple linear approximation, namely
first-order vector Taylor series (VTS) approximation, has been
tried in the past (e.g., [11, 10]). In our previous work [6], we
extend feature compensation from traditional first-order VTS to
high-order VTS with any order and give the corresponding re-
estimation formulations of parameters for both noise and con-
volutional distortion. In this paper, we first improve the feature
compensation in both efficiency and accuracy as follows: 1)
the reference (clean) GMM is built by boosted mixture learning
(BML) [7], 2) higher order information of VTS approximation
is only applied to the noisy speech mean parameters, which can
be very efficient and lead to more stable improvement of recog-
nition accuracy, 3) the posterior probability of mixture com-
ponent given each frame is calculated by a weighted average
among neighboring frames to leverage acoustic context expan-
sion in MMSE estimation of clean speech, 4) the convolutional
distortion is modeled by a single Gaussian instead of Kronecker
delta function (i.e., a constant). Then we design a procedure to
perform irrelevant variability normalization (IVN) based joint
training of GMM and HMM using VTS-based feature compen-
sation.

The rest of the paper is organized as follows. In Section 2,
we introduce an improved approach to VTS-based feature com-
pensation. In Section 3, we present the detailed procedure for
IVN-based joint training of GMM and HMM using VTS-based
feature compensation. In Section 4, we report experimental re-
sults. Finally, we conclude the paper in Section 5.

2. Improved VTS-based Feature
Compensation

2.1. Boosted Mixture Learning Of Reference GMM

First, we perform boosted mixture learning (BML) of our refer-
ence (clean) GMM. This is motivated by a recent work [7] on
BML of CDHMMs based on maximum likelihood for speech
recognition. BML is an incremental method to learn a mixture
model, where in each step one new mixture component is esti-
mated according to the functional gradient of an objective func-
tion to ensure that it is added along the direction that maximizes
the objective function. In [7], BML achieves significant im-
provements of recognition performance over the conventional
ML training procedure, especially for small model sizes. So
for our VTS-based feature compensation, it’s natural to train
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the reference GMM by using BML, which is verified to achieve
better recognition performance. One important issue to make
BML effective is the initialization of sample weights in each
step of increasing mixture component. In this work, we use one
of the methods in [7], namely sampling boosting, to initialize
the sample weights.

2.2. Use Of Higher Order Information

Second, higher order information of VTS approximation is only
applied to calculation of noisy speech mean parameters. In [6],
high-order VTS approximation of the nonlinear distortion func-
tion is applied to the calculation of all required statistics in log-
power-spectral domain, including noisy speech mean and vari-
ance parameters, and other covariance parameters. But incon-
sistent improvements of recognition performance are observed
on different Aurora3 tasks. Our new experiments show that if
high-order VTS approximation is only applied to noisy speech
mean parameters, consistent improvements of recognition per-
formance can be achieved, yet its computational complexity is
much lower than that of the original high-order VTS so that the
additional computation cost can be ignored compared with full
operations of first-order VTS.

2.3. Acoustic Context Expansion

Third, we use acoustic context expansion in clean speech
estimation to further improve the accuracy. Acoustic con-
text expansion has been effective in several feature extrac-
tion/transformation methods, such as TANDEM [8] and fMPE
[12], where in addition to the current frame, the information
from several neighboring frames in the left and right context
is also used. In our VTS-based feature compensation, given the
noisy speech feature vector of the 𝑡th frame y𝑡 and the estimated
distortion model parameters, the minimum mean-squared error
(MMSE) estimation of clean speech feature vector x𝑡 in cep-
stral domain is calculated as [6]

x̂𝑡 = 𝐸x [x𝑡∣y𝑡] =
𝑀∑

𝑚=1

𝑃 (𝑚∣y𝑡)𝐸x [x𝑡∣y𝑡,𝑚] . (4)

To leverage acoustic context expansion, we calculate the new
posterior probability by a weighted average among neighboring
frames as follows:

[𝑃 (𝑚∣y𝑡)]new =

∑Δ
𝜏=−Δ(Δ + 1− ∣𝜏 ∣)𝑃 (𝑚∣y𝑡+𝜏 )∑Δ

𝜏=−Δ(Δ + 1− ∣𝜏 ∣) (5)

where Δ is the size for context expansion.

2.4. Gaussian Assumption For Convolutional Distortion

In [6], the convolutional distortion h has a probability density
function (pdf) of the Kronecker delta function 𝛿(h − hconst),
where hconst is an unknown deterministic vector. In this work, to
model the variation of convolutional distortion in an utterance,
we assume h follows a Gaussian pdf with a mean vector 𝝁h

and a diagonal covariance matrix Σh. To derive a closed-form
solution for ML re-estimation of both noise and convolutional
distortion under this assumption, first a likelihood function is
defined as follows:

ℒ(Y∣Λ) =
∑
Mx

∑
Mn

∑
Mh

𝑝(Y,Mx,Mn,Mh∣Λx,Λn,Λh) (6)

where Λx, Λn, and Λh are model parameter sets for x, n and
h, respectively. Y is the sequence of the noisy observation

vectors in the current utterance. Mx, Mn, and Mh are the
sequences of Gaussian component indices for x, n, and h, re-
spectively. Then we adopt an iterative EM algorithm to solve
the problem. The M-Step of the EM algorithm is to maximize
the following auxiliary function:

𝒬(Λ̄∣Λ) = 𝐸[log 𝑝(X,N,H,Mx,Mn,Mh∣Λ̄)∣X,N,H,Λ]

(7)
where Λ and Λ̄ are the sets of old and new model parameters,
respectively. The other details of derivation are similar to what
is described in the appendix of [6]. Finally the formulas for
re-estimation of noise model parameters and clean speech esti-
mation are the same as those in [6], while the updating formulas
for convolutional distortion are as follows:

𝝁h =

∑𝑇
𝑡=1

∑𝑀
𝑚=1 𝑃 (𝑚∣y𝑡)𝐸h[h𝑡∣y𝑡,𝑚]∑𝑇
𝑡=1

∑𝑀
𝑚=1 𝑃 (𝑚∣y𝑡)

(8)

Σh =

∑𝑇
𝑡=1

∑𝑀
𝑚=1 𝑃 (𝑚∣y𝑡)𝐸h[h𝑡h

⊤
𝑡 ∣y𝑡,𝑚]∑𝑇

𝑡=1

∑𝑀
𝑚=1 𝑃 (𝑚∣y𝑡)

− 𝝁h𝝁
⊤
h

(9)

where 𝐸h[h𝑡∣y𝑡,𝑚] and 𝐸h[h𝑡h
⊤
𝑡 ∣y𝑡,𝑚] are the relevant con-

ditional expectations evaluated as follows:

𝐸h[h𝑡∣y𝑡,𝑚] = 𝝁h +Σhy,𝑚Σ−1
y,𝑚(y𝑡 − 𝝁y,𝑚) (10)

𝐸h[h𝑡h
⊤
𝑡 ∣y𝑡,𝑚] = 𝐸h[h𝑡∣y𝑡,𝑚]𝐸⊤

h [h𝑡∣y𝑡,𝑚]

+Σh −Σhy,𝑚Σ−1
y,𝑚Σyh,𝑚 . (11)

As for initialization, 𝝁h is set as a zero vector and Σh is calcu-
lated as

Σh = 𝛼

[
𝑀∑

𝑚=1

𝜔𝑚

(
Σx,𝑚 + 𝝁x,𝑚𝝁⊤

x,𝑚

)

−
(

𝑀∑
𝑚=1

𝜔𝑚𝝁x,𝑚

)(
𝑀∑

𝑚=1

𝜔𝑚𝝁x,𝑚

)⊤⎤⎦ (12)

where 𝛼 is a control parameter.
To calculate the required statistics for new formulations via

high-order VTS approximation, two additional statistics com-
pared with those in [6], namely Σxy and Σhy in log-power-
spectral domain, should be calculated as

𝜎2
𝑥𝑦(𝑖, 𝑗) =

𝐾∑
𝑘=0

𝑘∑
𝑟=0

𝑘−𝑟∑
𝑝=0

𝐴𝑗(𝑘, 𝑟)𝐶𝑝
𝑘−𝑟

𝑀 𝑗
𝑛(𝑟)𝑀

𝑗
ℎ(𝑘 − 𝑟 − 𝑝)𝑀 𝑖𝑗

𝑥 (1, 𝑝) (13)

𝜎2
ℎ𝑦(𝑖, 𝑗) =

𝐾∑
𝑘=0

𝑘∑
𝑟=0

𝑘−𝑟∑
𝑝=0

𝐴𝑗(𝑘, 𝑟)𝐶𝑝
𝑘−𝑟

𝑀 𝑗
𝑛(𝑟)𝑀

𝑗
𝑥(𝑝)𝑀

𝑖𝑗
ℎ (1, 𝑘 − 𝑟 − 𝑝) (14)

where 𝜎2
𝑥𝑦(𝑖, 𝑗) and 𝜎2

ℎ𝑦(𝑖, 𝑗) denote the (𝑖, 𝑗)th element of the
matrix Σxy and Σhy, respectively. 𝐶𝑝

𝑘−𝑟 is the number of 𝑝-
combinations from a given set of 𝑘 − 𝑟 elements. Other nota-
tions are explained in [6].

Furthermore, due to the new assumption of convolutional
distortion, the pdf of the variable z = x + h defined in [6], is
modified as

𝑝(z𝑡) =

𝑀∑
𝑚=1

𝜔𝑚𝒩 (z𝑡;𝝁x,𝑚 + 𝝁h,Σx,𝑚 +Σh) (15)

which influences the computation of statistics in [6].
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3. IVN-based Joint Training of GMM and
HMM using VTS-based Feature

Compensation
3.1. System Overview

In the traditional framework of VTS-based feature compensa-
tion, both HMMs for recognition and reference GMM for fea-
ture compensation are trained on clean speech data. In real sce-
narios, the training data may include noisy speech data. In [9],
IVN-based HMM training using VTS-based model compensa-
tion is used to train generic HMMs from both clean and noisy
speech data. In this work, we propose a novel procedure to per-
form IVN-based joint training of GMM and HMM using VTS-
based feature compensation, which is illustrated in Fig. 1. In
the training stage, the procedure is as follows:

Step 1: Initialization

First, the reference GMM for feature compensation and HMMs
for recognition are trained from multi-condition training data
using MFCC features with cepstral mean normalization (CMN).

Step 2: VTS-based feature compensation

Given the reference GMM, VTS-based feature compensation is
applied to each training utterance.

Step 3: Joint training of GMM and HMM

Based on the compensated features of training set, single pass
retraining (SPR) [14] is performed to generate the generic
GMM and HMM by using the last updated GMM and HMM
with the corresponding feature set. The SPR works as follows:
given one set of well-trained models, a new set matching a dif-
ferent training data parameterization can be generated in a sin-
gle re-estimation pass, which is done by computing the forward
and backward probabilities using the original models together
with the original training data and then switching to the new
training data to compute the parameter estimation for the new
set of models.

Step 4: Repeat Step 2 and Step 3 𝑁𝐼𝑉 𝑁 times

In the recognition stage, after feature extraction for an un-
known utterance, we perform VTS-based feature compensa-
tion using generic GMM and then do recognition using generic
HMMs.

3.2. Discussions

In the above procedure, the IVN concept is implemented by
SPR using VTS-based feature compensation. Actually, there
are other two alternatives which can also achieve this goal. One
method is to use the compensated features to retrain GMM
from scratch and then use the new GMM to compensate fea-
tures again in an iterative way. Finally a generic GMM can be
generated. The other method is to use a similar procedure as
in [9] to generate a generic GMM. For those two methods, the
generic HMMs can be trained from scratch using compensated
features based on generic GMM. As a comparison, our SPR-
based IVN training has two advantages: 1) GMM and HMMs
are jointly trained in each iteration, 2) both GMM and HMMs
are progressively updated, which brings stable improvements of
recognition performance. Our experimental results also confirm
that SPR-based IVN training can achieve better recognition per-
formance, which is recommended as a practical solution.

Figure 1: Flowchart of IVN training using VTS-based feature
compensation.

4. Experiments and Results
4.1. Experimental Setup

In order to verify the effectiveness of the proposed approach
on real-world ASR, Aurora3 databases are used, which contain
utterances of digit strings recorded in real automobile environ-
ments for German, Danish, Finnish and Spanish, respectively.
A full description of the above databases and the corresponding
test frameworks are given in [2, 3, 4, 5].

In our ASR systems, each feature vector consists of 13
MFCCs (including 𝐶0) plus their first and second order deriva-
tives. The number of Mel-frequency filter banks is 23. MFCCs
are computed based on power spectrum. Each digit is modeled
by a whole-word left-to-right CDHMM, which consists of 16
emitting states, each having 3 Gaussian mixture components.
We focus on two “training-testing” conditions for experiments
of Aurora3. One is high-mismatch (HM) condition, where
training data includes utterances recorded by close-talking (CT)
microphone, which can be considered as “clean”, while testing
data is recorded by hands-free (HF) microphone. The other one
is well-matched (WM) condition, where both training and test-
ing data are recorded by CT and HF microphones. Other control
parameters related to our previous work on VTS-based feature
compensation can be found in [6]. For boosted mixture learn-
ing, the linear scaling factor in sampling boosting is set as sug-
gested in [7] without tuning. For acoustic context expansion, Δ
is set as 3. The control parameter 𝛼 for initializing the variance
of convolutional distortion is set to 1.0. The iteration number
𝑁𝐼𝑉 𝑁 for IVN training is set to 4. Our baseline system uses
cepstral mean normalization (CMN) for feature compensation.
In all the experiments, tools in HTK [14] are used for training
and testing.
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Table 1: Performance (word accuracy in %) comparison of the
baseline system and several robust ASR systems using VTS-
based feature compensation in the high-mismatch (HM) condi-
tion on Aurora3 databases.

German Danish Finnish Spanish
Baseline 83.77 54.78 77.07 80.99
VTS-256 91.03 76.92 86.29 85.35
VTS-32 90.06 74.69 85.09 84.69
+BML 90.75 76.29 86.11 85.68
+HO 91.21 77.43 86.33 86.32

+ACE 91.30 77.82 89.36 87.85
+HSG 91.31 81.70 89.52 88.54

Table 2: Performance (word accuracy in %) comparison of the
baseline system and several robust ASR systems using VTS-
based feature compensation in the well-matched (WM) condi-
tion on Aurora3 databases.

German Danish Finnish Spanish
Baseline 92.49 90.84 93.09 93.57
VTS-32 93.55 91.56 93.91 93.83

VTS-32-New 94.01 91.77 94.12 94.36
IVN-Joint 94.69 92.42 95.12 94.80

4.2. Experimental Results

Table 1 summarizes a performance (word accuracy in %) com-
parison of the baseline system and several robust ASR systems
using VTS-based feature compensation in the high-mismatch
(HM) condition on Aurora3 databases. VTS-256 refers to
the practical solution of feature compensation recommended
in [6], namely CMN+VTS(N,H)(MMSE-VTS0) where a first-
order VTS approximation in distortion model parameter estima-
tion is used and the mixture number of reference GMM is 256.
VTS-32 uses a reference GMM with 32 mixture components to
improve the efficiency of feature compensation. +BML uses
boosted mixture learning of reference GMM instead of con-
ventional ML training for VTS-32. +HO uses the second or-
der information of VTS approximation for the calculation of
noisy speech mean parameters based on +BML. +ACE adds
the acoustic context expansion to +HO. +HSG makes the sin-
gle Gaussian assumption for convolutional distortion based on
+ACE. Several observations can be made. First, the perfor-
mance gap between reference GMMs with 256 and 32 compo-
nents can be reduced significantly by using BML. Second, using
higher order information partially can upgrade the recognition
performance. Third, acoustic context expansion is verified to
be effective for VTS-based feature compensation. Finally, the
single Gaussian assumption for convolutional distortion can be
very useful when the convolutional distortion is non-stationary
in an utterance, which may be the case for Danish database
where the Baseline performance is much lower than those on
other databases due to the constant assumption for convolu-
tional distortion in CMN.

Table 2 gives a performance (word accuracy in %) com-
parison of the baseline system and several robust ASR systems
using VTS-based feature compensation in the well-matched
(WM) condition on Aurora3 databases. VTS-32 denotes the
system where the recommended solution of VTS-based feature
compensation in [6] is applied to both training and recogni-
tion stages where a 32-component reference GMM trained on
original noisy data is used. VTS-32-New is the system where

the improved VTS-based feature compensation is used. IVN-
Joint represents the system where the proposed SPR-based IVN
training with the improved VTS-based feature compensation is
used. It is observed that our improved feature compensation
approach achieves significant performance improvement com-
pared with the approach in [6], and IVN-Joint system brings
additional gains of recognition accuracy for all Aurora3 tasks.

5. Conclusion
In this paper, we propose an approach to irrelevant variability
normalization based joint training of GMM and HMMs using
an improved VTS-based feature compensation for improving
the efficiency of feature compensation and upgrading the recog-
nition accuracy of noisy speech. The effectiveness of the pro-
posed approach has been confirmed in an experimental study on
Aurora3 tasks.
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